
c© 2012 Cem Onyuksel

FEEDBACK CONTROL OF MANY DIFFERENTIAL-DRIVE ROBOTS
WITH UNIFORM CONTROL INPUTS

BY

CEM ONYUKSEL

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Adviser:

Assistant Professor Timothy Bretl

Abstract

We describe a method of feedback position control for an ensemble of robots

with unicycle kinematics under the constraint that every robot receives ex-

actly the same global control inputs. Each robot in the ensemble scales its

given control inputs by a bounded model parameter and thus may achieve a

turning rate and forward speed which are unique. Exploiting inhomogeneities

in robot execution of control inputs, we derive a globally asymptotically sta-

bilizing feedback control policy to regulate the position of each robot. This

policy scales linearly for any number of robots, and it stabilizes the system

asymptotically to the goal position even with Gaussian noise in actuation.

Computer simulations and hardware experiments are used to validate the pol-

icy. Additionally, we propose methods for trajectory tracking and obstacle

avoidance. Finally, we show an example of multi-robot object manipulation

and assembly.

ii

To my parents for their love and support

iii

Acknowledgments

First and foremost, I would like to thank my advisor Timothy Bretl for his

constant support and for always pushing me to be my best. Also, I would like

to thank the members of RMS Lab for helping me brainstorm ideas and work

through problems. You are all both supportive colleagues and good friends. I

extend a special thanks to Aaron Becker for his massive contributions to my

work in ensemble control; we make a great team! Thanks to Dan Block for his

guidance in the lab as well as for letting me use his robots for experiments.

iv

Table of Contents

Chapter 1 Introduction . 1
1.1 Robust Control . 1
1.2 Sensorless Manipulation . 3
1.3 Ensemble Control . 4
1.4 Micro- and Nano-Robots . 7

Chapter 2 Controlling an Ensemble of Unicycles 11
2.1 System Kinematics . 11
2.2 Designing a Control Policy . 12
2.3 A Finite Ensemble in Continuous Time 16
2.4 A Finite Ensemble in Discrete Time 18

Chapter 3 Implementation and Extensions 21
3.1 Simulation of Continuous-Time Systems 21
3.2 Extension to Unidirectional Vehicles 23
3.3 Discrete-Time Simulations with a Standard Noise Model . . . 25
3.4 Using 1/ε to Improve Convergence 30
3.5 Collision Avoidance with Potential Functions 31
3.6 Trajectory Tracking . 31

Chapter 4 Hardware Experiments . 35
4.1 Differential-Drive Robots . 35
4.2 System Overview . 35
4.3 Online Calibration . 37
4.4 Experiments . 37

Chapter 5 Conclusion . 44
5.1 Applications of Feedback Ensemble Control 44
5.2 Future Work . 45

Appendix A Source Code . 47
A.1 Simulations . 47
A.2 Hardware Experiments . 75

References . 108

v

Chapter 1

Introduction

We develop a globally asymptotically stabilizing feedback control policy that

enables position control of a collection of differential-drive robots, which all

receive the same control signal. The method presented is robust to standard

models of noise and is globally asymptotically stable. Simulations involv-

ing thousands of robots and hardware experiments with four to six robots

demonstrate that the control policy is viable. Our control policy can be

used to control systems of micro- and nano-robots in which robots exhibit

unicycle kinematics and all robots in the system receive the same global in-

puts. While not all micro- or nano-robot systems have the same unicycle

kinematics described by our model, our method can be adapted to specific

systems by adding constraints on the inputs or goal positions. This thesis

draws from and extends much of the work presented in the author’s previous

publication [1].

1.1 Robust Control

Robust control is a mature field with a large body of work. Fundamentals of

robust control — state space models, linear analysis, stabilization, optimal

control, model uncertainty, and feedback — can be found in textbooks [2,3].

The control policies presented in this thesis are feedback control policies to

control multiple differential-drive robots with bounded model perturbations,

and we draw from previous work on these topics.

Differential-drive robots are a class of robots that have wheels which can

be independently controlled. Often, there are two drive wheels with ad-

ditional unpowered castor wheels to balance the robot. These robots are

nonholonomic systems with unicycle kinematics. Usually, lateral motion is

not allowed, and thus differential-drive robots can be modeled as having a

1

forward velocity and turning rate, as we model our robots in Chapter 2.

Previous work analyzed the kinematics of a differential-drive robot with

two drive wheels and a third castor wheel which has no wheel slip to de-

veloped PID (proportional + integral + derivative) feedback controllers for

stable path-following by using nonlinear feedback linearization techniques [4].

Later work examined trajectory tracking by decoupling position control from

velocity control to reduce internal and external sources of error and achieve

accurate tracking [5]. Lucibello et al. provide methods for regulating position

and orientation of a single robot with unicycle kinematics to achieve expo-

nential convergence to the goal, rejecting disturbances [6]. We draw on these

techniques to control the linear and angular velocity of the differential-drive

robots used in the hardware experiments in Chapter 4.

The control methods described in this thesis are designed to control sys-

tems of not one, but many robots. Multi-agent systems have gained popu-

larity as flocking, swarming, schooling, and distributed control have become

more widely-studied; often, methods of multi-robot control combine low-

level controllers for each robot that define group dynamics with high-level

controllers that specify overall group tasks. The CMUnited-98 robot soccer

champion team utilized control and planning methods that allowed the team

of five robots to avoid moving obstacles in a dynamic environment while

working cohesively as a team to achieve a high-level goal [7]. On their team,

each differential-drive robot had its own on-board control algorithm to steer

it along desired trajectories, while the high-level controller defined trajecto-

ries that would achieve the high-level goals of passing the ball and shooting

on the opponents’ goals. Egerstedt and Hu designed a method for controlling

formations of robots where the low-level controller’s goal is to keep the robots

in a rigid formation, and one robot is designated as the leader [8]. In their

method, the high-level controller moves the leader along desired trajectories;

the formation is treated as a rigid body, and thus the entire formation moves

along the desired trajectories.

In some systems, the individual robots can perform advanced tasks be-

yond staying in formation. An underwater de-mining system, developed by

Tan, consists of a swarm of robots where each individual robot sweeps for

mines while avoiding obstacles and other robots [9]. The entire swarm is

controlled through statistical methods where the mean configuration and

variance of the swarm is controlled by the high-level controller, resulting in

2

a hybrid controller that balances individual robot tasks with swarm tasks.

Some multi-agent systems allow the group to break apart and re-form. In

flocking methods, there is no need for a leader, and robots will rejoin a flock

if they are separated from it (for example to go around an obstacle). Low-

level controllers on each robot try to keep uniform distance between members

of the flock while maintaining the same velocity and heading as neighbors,

and the entire flock works together to perform a high-level task [10]. The

multi-agent methods presented in this thesis draw from these methods, but

individual robots do not need any on-board intelligence. The global con-

troller we present takes both low-level objectives (trajectory control for each

robot) and high-level objectives (tasks such as assembly) into account to send

one uniform control signal to all robots in the system.

1.2 Sensorless Manipulation

The robotic systems explored in this thesis are made of robots that differ

from each other by a bounded model parameter, but that parameter may

not always be known. Sensorless manipulation can position and orient ob-

jects unambiguously without the need for sensing, and often without knowing

specific information about the objects. Thus, it is possible to create open-

loop paths that position and orient objects which are robust to different sizes,

weights, and starting configurations of objects. Erdmann et al. designed a

tray manipulator that could orient objects by tilting the tray and using the

walls to force the objects inside the tray into certain orientations [11]. For

certain shapes of objects, the resulting orientations could be completely de-

termined, but for other shapes of objects, the number of possible orientations

could only be reduced. In another system, built by Böhringer et al., a vi-

brating platform that could sort objects places on the platform by making

use of frictional forces between objects and the platform [12]. Vibration

patterns create a two-dimensional force field on objects, and chaining to-

gether sequences of vibrations allows objects to be positioned and oriented

in the plane with no sensor feedback from the object. In yet another system,

designed by Akella et al., polygonal parts are manipulated with a suction-

gripping robot arm on a conveyor belt [13]. At one end of the conveyor belt,

a fence forces the object to align one of its faces with the fence, and through

3

a series of rotations with the robot arm and alignments with the fence, it is

possible to generate a sensorless plan to orient parts. Akella’s system can

orient parts within size and shape tolerances. Sensorless manipulation tech-

niques show that open-loop methods can control the position and orientation

of objects even if certain properties of the objects are unknown, similar to

how the wheel size of our differential-drive robots may be unknown.

Often, it is desirable to control robots where a dynamic or kinematic model

is not known. Closely related to sensorless manipulation, control policies

which are robust to model perturbations allow the steering of robots where

the kinematic or dynamic properties are unknown. Our systems consist of

robots with various, bounded model parameters, so in addition to being ro-

bust to external disturbances, we need our controllers to be robust to model

perturbations. Cheah and Slotine present a method of adaptively control-

ling robots where the kinematic and dynamic properties are unknown using

sensing feedback and updating estimates of the robots’ properties online as

it moves [14]. In Sections 4.3 and 4.4, we present our method to update the

kinematic model for each of our robots as they move and verify our method

in hardware experiments. If the dynamic and kinematic parameters are both

unknown and time-varying, then it may not be possible to learn them. Mao

shows that such systems can be robustly stabilized with feedback control

if their time-varying parameters are polytopic — within a set of possible

values [15]. We show that our method works for unknown, uncalibrated,

and even incorrect parameter values, as long as they are within the bounds

of our model. The textbook Mobile Robots presents a feedback controller

which guarantees exact asymptotic convergence for a single robot with the

same type of model perturbations we consider — scaling of angular and lin-

ear velocities [16, Chap. 11.6.2]. We extend this work by showing that we

can control many robots with different model parameters simultaneously.

1.3 Ensemble Control

Ensemble control is a framework in which instead of controlling each agent

in a group individually, one controls the entire group at once in such a way

that all the agents in the group are steered to their goal positions. Brockett

and Khaneja developed methods to control the spin of ensembles of nuclear

4

particles with the objective of achieving the correct energy levels for certain

measurements and imaging [17, 18]. Similar to our differential-drive robots,

their nuclear particle systems are nonholonomic, and they have model pa-

rameters that scale system characteristics; in their case, interactions with

other particles can cause the system to be at different energy levels, and

they use ensemble control techniques to steer particles to the desired energy

level. Li and Khaneja extend this work to controlling quantum ensembles

using compensating pulse sequences, again for nuclear magnetic resonance

imaging [19, 20]. Because the quantum particles have no intelligence and all

the particles in an ensemble receive the same control inputs, it is necessary

to design these global control inputs so as to control all the particles in the

ensemble.

Li formally introduced the idea of ensemble control as a class of control

problems beyond those of nuclear and quantum particles [21]. He also pro-

vided necessary and sufficient conditions for determining if an ensemble is

controllable. The controllability of ensembles can be understood by tak-

ing high-order Lie brackets of an ensemble system and examining its vector

fields to make a polynomial approximation of the infinite-dimensional sys-

tem [22, 23]. Optimal control inputs can be calculated to drive an ensemble

to a goal by approximation of the minimum-energy control law [24]. En-

semble control techniques can also be applied to finite-dimensional systems,

similar to our systems of multiple robots, even if those systems are time-

varying [25]. The conditions for controllability in this case are similar to

those of the non-time-varying infinite case.

Building upon Li’s work, Becker et al. demonstrated that open-loop po-

sition control of a unicycle with an unknown parameter could be achieved

by applying ensemble control methods to the system [26]. By steering an

entire ensemble of possible robots (which encompasses all possible param-

eter values) to the goal, one can guarantee that the robot is steered to its

goal, even though its parameter is unknown. Specifically, motion primitives

can be concatenated to generate arbitrarily accurate paths for the unicycle;

error decreases exponentially with the number of primitives used. It is not

possible to control the orientation of an ensemble of robots with unicycle

kinematics [27], so ensemble control of unicycles is limited to position con-

trol. Nonetheless, position control can be very useful in robotic systems.

As shown in simulation in Chapter 5, an ensemble of robots can be used as

5

a set of manipulators to move objects around and build larger structures.

Also, Chapter 3 shows how position control allows trajectory tracking, which

enables a host of applications where orientation is not critical.

An ensemble of unicycles is an example of an underactuated system — a

system with more degrees of freedom than control inputs. One study of an

underactuated system examined a two-link arm where only the bottom link

was controlled [28]. To balance the arm in the vertical position, a swing-up

algorithm was developed based on the total energy in the system, and the

system switched to a linear controller when the arm was near the top. Im-

provements to the control design widen the basin of attraction by treating

velocity of the second link as an unknown value (instead of trying to stabi-

lize it at zero) [29]. So one approach to attempting to control underactuated

systems is to exploit system properties such as total energy. Another ap-

proach is to only control a controllable subspace of the configuration space.

Oriolo et al. demonstrate that although it is not possible to control a robot

with unactuated joints to a single point, it is possible to control such a robot

to a manifold of points [30]. Similarly, although we are not able to control

the entire configuration of our ensembles of unicycles, we are able to control

ensembles to a subspace (orientation is not fixed) and thus we show that we

can control the position of an ensemble of robots with unicycle kinematics.

Groups of robots can manipulate objects by pushing them around the

workspace. Lynch derived necessary and sufficient conditions for stable push-

ing — the object remains fixed to the pusher [31]. These conditions take into

account friction between the pusher and the object and the trajectory of the

pusher with respect to the orientation of the object. Pusher trajectories are

shown in Figure 1.1. Drawing from this work, we can put constraints on

an ensemble of pushing robots such that none of the robots in the ensemble

violate the necessary conditions, and thus we could achieve stable pushing.

Other methods of object manipulation involve surrounding objects with a

formation of robots that traps the object, also called caging [32]. Algorithms

for cooperative object manipulation by formations of robots may be decen-

tralized [33]. We aim to be able to apply more sophisticated cooperative

object manipulation algorithms to our ensemble of differential-drive robots,

which would allow us to have guarantees about stability and success of ma-

nipulation.

Unlike many previous ensemble control methods, the policies presented

6

Figure 1.1: On the left, a stable pushing trajectory [31], c©1999 IEEE. On
the right, object manipulation by caging [33], c©2008 IEEE.

in this thesis are closed-loop policies with feedback. As demonstrated in

computer simulations and hardware experiments, extending open-loop en-

semble control methods by adding feedback allows the system to be robust

to noise and disturbances. This is especially important when applying ensem-

ble control to real systems because there may be imperfections in actuation

or sensing which would cause open-loop methods to perform poorly. In some

cases, as shown in Chapters 3 and 4, noise in the system can actually improve

performance when using a feedback ensemble control policy.

1.4 Micro- and Nano-Robots

The target of this work is to provide a framework which can be used to control

micro- and nano-robot systems where it is not possible to send commands to

individual robots. The control policies derived in Chapter 2 are for robots

with unicycle kinematics. These include the three systems shown in Figure

1.2: light-driven nanocars, scratch-drive micro-robots, and radio-controlled

differential-drive robots.

Nanometer-sized transporters, or nanocars, have properties similar to the

differential-drive robots used in this thesis in simulations and hardware exper-

iments. Initially, the cars were thermally powered [37], but modern iterations

aim to be powered by light instead. The light-driven nanocar [34] is a syn-

thesized molecule 1.7×1.38 nm in size containing a uni-directional molecular

motor, actuated by a certain wavelength of light. Future work by Tour et al.

aims to add controllable steering to this molecule.

7

10-9 10-6 10-3 100

Longest Axis (m)

Figure 1.2: Three robotic systems with uniform inputs. On the left,
light-driven nanocars, image adapted with permission from [34], c©2012
American Chemical Society. In the middle, scratch-drive micro-robots [35],
c©2008 IEEE. On the right, six differential-drive Segbot robots [36].

The scratch-drive micro-robot, from Donald and Paprotny et al. [38], is a

device 60×250 µm in size actuated by varying the electric potential across

a substrate; multiple scratch-drive robots on the same substrate are con-

trolled by this single uniform control input. To independently control each

micro-robot, the system is designed with unique robots such that individual

robots can be actuated while the others are immobilized or spin in place.

Scratch-drive micro-robots can be used for assembly tasks by controlling

each scratch-drive robot, in turn, into a formation [35]. In contrast, we show

an example of an assembly task done by actuating all of the robots in our

ensemble simultaneously in Chapter 5. Our approach can be adapted to

scratch-drive micro-robots because small imperfections in each robot cause

each one to move and turn at slightly different rates, which is precisely the

model perturbation that we exploit to allow us to simultaneously actuate all

the robots, yet steer each one toward a desired goal.

Our approach is related to recent work by Sitti et al. [39,40]. They manip-

ulate the 2D coordinates of multiple geometrically-dissimilar cuboid perma-

nent magnets (Mag-µBots) by exploiting heterogeneity in their dimensions

and geometry to actuate groups of robots with magnetic fields. Their mag-

netic robots each respond differently to input fields, and the field can be

selected to actuate individual or subgroups of robots. Similarly, we exploit

heterogeneity in the wheel sizes of our robots; however, unlike the Mag µ-

Bots, we require that all of the robots in our ensemble always act on every

8

input to the system; we do not do any switching between robots but rather

actuate all of them at once.

To move objects at the micro- and nano-scale, very precise manipulators

have been developed. Sebastian et al. developed a robust control algorithm

for precise motion control of piezoactuators from atomic force microscopes

(AFM) [41]. Piezoactuators are used to move nanoscopic objects in the

workspace. Another nonlinear control technique for piezoactuators was de-

veloped by Bashash et al. [42]. AFM actuation methods are very precise, but

manipulation with AFM is difficult because each object needs to be pushed

one at a time; we propose a method for manipulating multiple robots, and

thus multiple objects simultaneously.

Other methods of nano-manipulation include physical, fluidic, magnetic,

and optical methods. Expanding on methods of sensorless manipulation and

parts-handing, Böringer et al. use vibration patterns to manipulate and sort

micro-scale parts on a plane [43]. Electrowetting on dielectrics (EWOD) is a

fluidic method that controls micro-robots by altering properties of the fluid

which transports them [44]. Both of these methods allow multiple objects to

be controlled simultaneously. A magnetic system, PolyMites, can be man-

ufactured to have different linear velocities, but currently, they are steered

such that all robots in the workspace have the same orientation, so ensemble

control cannot immediately be applied to this system [45]. Cells implanted

with magnetic diodes, magnetotaxis, can be steered with a magnetic field,

but current work does not allow their velocity to be controlled [46]. However,

magnetotaxis in the same workspace share a global control signal, similar to

the unicycle systems discussed in this thesis. Ensemble control policies can

be leveraged to control multiple magnetotaxis simultaneously as long as the

turning rates are different or there is sufficient noise in the system, as shown

in Chapter 3.

Hu et al. developed an optical system where bubbles in oil are manipulated

by focusing patterns of light in the workspace [47]. This creates a thermal

gradient to actuate the bubbles. This system was used with multiple micro-

robots (bubbles) to manipulate six robots simultaneously (in two groups of

three), and the robots themselves were used as manipulators to manipulate

beads in the oil [48]. Different-sized bubbles react to light patterns with

different forces, so this system can be modeled as an ensemble with bounded

model parameters. Applying ensemble control to this work could allow many

9

bubbles to be independently actuated while applying a uniform global control

input to the system. This may allow more complex manipulation tasks.

Inspired by previous work on robust control and ensemble control, this

thesis (1) provides a globally asymptotically stabilizing feedback control pol-

icy to control an ensemble of differential-drive robots, (2) demonstrates its

convergence under a standard noise model in simulation and hardware ex-

periments, with constraints on inputs and around obstacles, (3) shows that

the policy still works when the parameter values are incorrectly specified or

if all robots are identical, and (4) gives an example of a simple assembly task

that can be performed with an ensemble as a robotic manipulator. This work

is directly applicable to micro- and nano-robot systems that have unicycle

kinematics and may be applied to other types of micro- and nano-robots with

some adaptation.

10

Chapter 2

Controlling an Ensemble of Unicycles

In this chapter, a globally asymptotically stabilizing feedback controller for

an ensemble of unicycles is developed through Lyapunov analysis [49]. The

resulting controller regulates the position of each robot in the ensemble such

that it is robust to external disturbances and Gaussian noise in actuation, as

demonstrated in later chapters. The derived control policy will move robots

closer to their goals when it is possible to do so by controlling the linear

velocity, u1(t), of the ensemble; it will never increase the average distance

of the ensemble to the goal. There exist configurations where no u1(t) can

decrease the position error; however, it is proven that for any such configu-

ration, except the origin, the ensemble can always be rotated in place such

that there exists some u1(t) which will decrease the position error.

2.1 System Kinematics

Consider a single nonholonomic unicycle that rolls without slipping. Its

configuration is described by its 2-dimensional position and orientation, q =

[x, y, θ]>, and its configuration space is Q = R2× S1. The control inputs are

the forward speed u1(t) ∈ R and turning rate u2(t) ∈ R. The kinematics of

the unicycle are given by

q̇(t) = u1(t)

cos θ

sin θ

0

+ u2(t)

0

0

1

 . (2.1)

Given q(0), qgoal ∈ Q, the control problem for regulating the position of a

11

single robot is to find inputs u1(t) and u2(t) such that for any q(0) and qgoal,

lim
t→∞

∥∥∥∥∥∥∥
1 0 0

0 1 0

0 0 0

 (q(t)− qgoal(t))

∥∥∥∥∥∥∥
2

= 0.

If such inputs always exist, then we say that the system is globally asymp-

totically stabilizable.

To extend the system to an ensemble, the control problem is solved under

model perturbations which scale u1(t) and u2(t) by some unknown, bounded

constant ε ∈ [1 − δ, 1 + δ] for some 0 ≤ δ < 1. The ensemble control policy

steers an uncountably infinite collection of unicycles parametrized by ε, each

one governed by

q̇ε(t) = ε

u1(t)
cos θε(t)

sin θε(t)

0

+ u2(t)

0

0

1


 , (2.2)

where θε is the orientation of the robot with parameter ε.

The main control input to the system is u1(t), and the next section will

describe how to choose u1(t) at every time t. However, u2(t) must also be

specified such that the ensemble’s orientation is not static. So one possible

function is u2(t) = 1. Then θ = θ0ε + εt, where θ0ε is the starting orientation

of the robot with parameter ε. Substituting into (2.2), the resulting system

is defined by:

ẋε(t) = εu1(t) cos
(
θ0ε + εt

)
ẏε(t) = εu1(t) sin

(
θ0ε + εt

)
. (2.3)

2.2 Designing a Control Policy

A control policy which globally asymptotically stabilizes the position of an

ensemble to its goal can be found by using a control-Lyapunov function.

Without loss of generality, assume the goal position for each robot in the

ensemble is (0, 0). A suitable candidate Lyapunov function must be contin-

uous, positive-definite, and radially unbounded in order to guarantee global

12

asymptotic stability; one such function is the sum-squared distance of the

ensemble from the origin, weighted by ε:

V (t, x, y) =

∫ 1+δ

1−δ

1

2ε

(
x2ε(t) + y2ε (t)

)
dε. (2.4)

Theorem 1. The ensemble (2.3) with 0 ≤ δ < 1 is globally asymptotically

stabilizable.

Proof. Begin by taking the derivative of the candidate Lyapunov function,

V (t, x, y).

V (t, x, y) =

∫ 1+δ

1−δ

1

2ε

(
x2ε(t) + y2ε (t)

)
dε

V̇ (t, x, y) =

∫ 1+δ

1−δ

1

ε
(xε(t)ẋε(t) + yε(t)ẏε(t)) dε

=u1(t)

∫ 1+δ

1−δ

(
xε(t) cos

(
θ0ε + εt

)
+ yε(t) sin

(
θ0ε + εt

))
dε

=u1(t)F (t, x, y)

Here, F (t, x, y) is the integral term which is finite as long as xε(t) and

yε(t) are square integrable over ε. Note that V (t, x, y) is positive definite and

radially unbounded, and V (t, x, y) ≡ 0 only at the origin, where the origin is

defined as

(xε(t), yε(t)) = (0, 0), ∀ε.

Next, choose

u1(t) =− F (t, x, y)

=−
∫ 1+δ

1−δ

(
xε(t) cos

(
θ0ε + εt

)
+ yε(t) sin

(
θ0ε + εt

))
dε. (2.5)

With this choice of u1(t),

V̇ (t, x, y) =− (F (t, x, y))2 .

Note that V̇ (t, x, y) ≤ 0, but there exists a subspace of (xε(t), yε(t)) such

that V̇ (t, x, y) = 0. Because V̇ (t, x, y) is negative semi-definite, one can only

claim stability, not asymptotic stability.

13

To gain a proof of asymptotic stability, we use an approach similar to that

of Beauchard et al. [50] to extend LaSalle’s invariance principle [51] to this

infinite-dimensional system. The proof proceeds by showing the invariant

set — a set which once entered the function V (t, x, y) will never leave —

contains only the origin.

Let the set S be all the (xε(t), yε(t)) configurations where there is no u1(t)

which will decrease the position error of the system:

S =
{
xε(t), yε(t)

∣∣∣V̇ (t, x, y) = 0
}

=
{
xε(t), yε(t)

∣∣− (F (t, x, y))2 = 0
}

= {xε(t), yε(t)|F (t, x, y) = 0} .

Let Sinv be the invariant set; it is a subset of S where F (t, x, y) = 0 for

all orientations of the ensemble. When the ensemble reaches a position in

Sinv, there is no orientation, θ0ε + εu2(t) = θ0ε + εt, such that the ensemble can

move to reduce error. In other words, once the ensemble is at a position in

Sinv, there will never exist a u1(t) which will move the ensemble to a position

with lower error, regardless of the orientation.

The invariant set is defined by the following expression:

Sinv =

{
xε, yε

∣∣∣∣ ∫ 1+δ

1−δ

(
xε cos

(
θ0ε + εt

)
+ yε sin

(
θ0ε + εt

))
dε = 0, ∀t

}
. (2.6)

To show that the only point in Sinv is the origin, assume for the sake of

contradiction that there exists a point in Sinv such that (xε, yε) 6= (0, 0) for

some ε ∈ [1− δ, 1 + δ].

The Fourier transform operation is defined as

F [f(t)] =
1√
2π

∫ ∞
−∞

f(t)eiωtdt.

Then, apply a Fourier transform to F (t, x, y) from time domain t to fre-

quency domain w.

14

F
[∫ 1+δ

1−δ

(
xε cos

(
θ0ε + εt

)
+ yε sin

(
θ0ε + εt

))
dε

]
{ω} = F [0] , ∀ω∫ 1+δ

1−δ

(
F
[
xε cos

(
θ0ε + εt

)]
{ω}

+F
[
yε sin

(
θ0ε + εt

)]
{ω}

)
dε = 0, ∀ω∫ 1+δ

1−δ
e−iθ

0
ε

√
π

2
(xε (δ(−ε+ ω) + δ(ε+ ω))

+iyε (δ(−ε+ ω)− δ(ε+ ω)))dε = 0, ∀ω, (2.7)

where δ(·) is the Dirac-delta operator. The Dirac-delta operator is non-zero

only when ε = ±ω. Thus, integrating (2.7) yields

x(ω)± iy(ω) = 0, ∀ω,

and because x and y are both real-valued, it reduces to

xε = 0, yε = 0, ∀ε ∈ [1− δ, 1 + δ].

So there is a contradiction because we initially assumed that (xε, yε) 6= (0, 0)

for some ε ∈ [1− δ, 1 + δ]. Therefore, the only point in Sinv is the origin, and

LaSalle’s invariance principle holds.

The Lyapunov function, V (t, x, y), is positive-definite and radially un-

bounded, its derivative, V̇ (t, x, y), is negative semi-definite, and the only

invariant point where V̇ = 0 is the origin. Therefore, the origin of the sys-

tem (2.3) is globally asymptotically stable under the control policy

u1(t) =−
∫ 1+δ

1−δ

(
xε(t) cos

(
θ0ε + εt

)
+ yε(t) sin

(
θ0ε + εt

))
dε

u2(t) =1. (2.8)

15

2.3 A Finite Ensemble in Continuous Time

The previous section demonstrates that an ensemble with infinitely-many

robots can be controlled in continuous time such that it globally asymp-

totically stabilizes to its goal position. However, most real-life applications

involve a finite number of robots. We call an ensemble with a finite number

of robots a finite ensemble.

To model a finite ensemble of n robots, redefine the system kinematic

model from (2.3) by subscripting the state and ε with i, representing the ith

robot in the ensemble:

ẋi =εiu1(t) cos (θi(t))

ẏi =εiu1(t) sin (θi(t))

θ̇i =εiu2(t). (2.9)

To adapt to discrete time, the control policy (2.8) is modified such that

the integration over ε is replaced by a finite sum from 1 to n:

u1(t) =− 1

n

n∑
i=1

(
xi(t) cos

(
θ0i + εit

)
+ yi(t) sin

(
θ0i + εit

))
u2(t) =1, (2.10)

where for the ith robot, εi is the variable parameter, (xi(t), yi(t)) is the

position at time t, and θi(t) = θ0i + εit is the orientation at time t.

Theorem 2. The finite ensemble 2.9 under control law 2.10 is globally

asymptotically stable.

Proof. A suitable Lyapunov function is the mean squared distance of the

16

finite ensemble from the origin, weighted by ε:

V (t, x, y) =
1

n

n∑
i=1

1

2εi

(
x2i + y2i

)
(2.11)

V̇ (t, x, y) =
1

n

n∑
i=1

1

εi
(xiẋi + yẏi)

=u1(t)
1

n

n∑
i=1

(
xi cos

(
θ0i + εit

)
+ yi sin

(
θ0i + εit

))
=u1(t)F (t, x, y)

Once again, the invariant set Sinv is the set of positions (x,y) — with x

and y each being vectors of the positions of n robots — where there is no

orientation such that the ensemble can move to decrease error in position:

Sinv =

{
x,y

∣∣∣∣∣ 1n
n∑
i=1

(
xi cos

(
θ0i + εit

)
+ yi sin

(
θ0i + εit

))
= 0, ∀t

}
. (2.12)

To show that the only point in Sinv is the origin, assume for the sake of

contradiction that there exists a point in Sinv such that (x,y) 6= (0, 0).

As in section 2.2, then apply the Fourier transform to F (t, x, y).

1

n

n∑
i=1

e−iθ
0
ε

√
π

2
(xi (δ(−εi + ω) + δ(εi + ω))

+iyi (δ(−εi + ω)− δ(εi + ω))) = 0, ∀ω. (2.13)

Again xi and yi are real-valued. By setting ω ± εi for i ∈ [1, n] it follows

that in the invariant set

(xi, yi) = (0, 0) ∀i ∈ [1, n],

so there is a contradiction, and (x,y) must be the origin. Therefore, the finite

ensemble is globally asymptotically stabilizable with control policy (2.10).

17

2.4 A Finite Ensemble in Discrete Time

Sometimes it is more natural to control systems in discrete-time, such as

when feedback is received at a certain sampling rate. To implement the

feedback control policy (2.10) on a robotic testbed with actuation and sensing

at discrete times, we break time into discrete increments of size ∆T and in

each time-step we perform two stages of actuation. During the first stage we

apply a linear velocity, and during the second stage we command the robots

to turn in place.

k =
t

∆T
−mod (t,∆T)

F (k) =
1

n

n∑
i=1

(xi(k) cos(θi(k)) + yi(k) sin(θi(k)))

[
u1(k), u2(k)

]
=

[−F (k), 0] stage 1

[0, φ] stage 2
(2.14)

We can then write the kinematics for the position as[
xi(k + 1)

yi(k + 1)

]
=

[
xi(k)

yi(k)

]
+

[
εi cos(θi(0) + εikφ)

εi sin(θi(0) + εikφ)

]
u1(k), (2.15)

for i = 1, 2, . . . , n and k ∈ Z.

Eq. (2.15) is a discrete-time linear time-varying system. As ∆T → 0, the

discrete-time ensemble (2.15) approaches the continuous-time model (2.9).

To prove (2.14) stabilizes (2.15), we show the system is uniformly k-step

controllable, as in The Control Handbook [52, chap 25.3]. In standard nota-

tion, (2.15) is written as

qi(k + 1) =Ai(k)qi(k) +Bi(k)u(k). (2.16)

Here Ai(k) is the identity matrix for all i, k. We can calculate Bi(k) as

18

Bi(0) =

[
cos(θi(0))

sin(θi(0))

]

Bi(1) =

[
cos(θi(0) + εiφ)

sin(θi(0) + εiφ)

]
...

Bi(k) =

[
cos (θi(0) + εikφ)

sin (θi(0) + εikφ)

]

B(k) =


B1(k)

B2(k)
...

Bn(k)


The controllability matrix Ck is defined as

Ck = [B0,B1 . . .Bk−1] .

The finite ensemble with n robots has 2n degrees of freedom. To control

each robot’s x, y position requires C to be rank 2n. This matrix is almost

always full rank provided that k � 2n and a suitable choice of φ. In our

simulations and hardware experiments we use φ = π
2
. If Ck is full rank, then

for any starting state q0 and desired final state q1, the control sequence is

derived by solving in the least squares sense the overdetermined system of

equations

Cku[0,...,k−1] = (q1 − q0). (2.17)

We note that for k = 2n, C is almost always ill-conditioned, leading to very

large control commands and poor convergence. Better results are obtained

for k = 5n, as shown in Figure 2.1, with control effort 15 orders of magnitude

less than that for k = 2n and exact convergence to the goal.

In this chapter, methods for controlling ensembles of robots using feedback

control were presented, and it was proven that these methods globally asymp-

totically stabilize an ensemble to a goal position. These control policies can

be used to steer collections of infinitely-many robots in continuous-time and

collections of finitely-many robots in both continuous- and discrete-time.

19

0 50 100 150 200

2

4

6

8

10
x 1015

Er
ro

r

0 50 100 150 200

-1

-0.5

0

0.5

1

1.5
x 1016

Step

C
on

tr
ol

0 100 200 300 400 500 600

20

40

60

80

100

Er
ro
r

0 100 200 300 400 500 600

-20

0

20

40

60

80

Step

C
on
tr
ol

Figure 2.1: Error and control effort of a discrete-time finite ensemble of
n = 120 robots under control (2.17). At top are results for k = 2n. The
controllability matrix Ck is ill conditioned, leading to poor convergence and
large control efforts. The bottom plot shows k = 5n, leading to control
effort 15 orders of magnitude less and convergence to the goal. The initial
error for each simulation is 100, but with k = 2n the final error is 58, while
the final error for k = 5n is zero.

20

Chapter 3

Implementation and Extensions

This chapter describes specific implementations of the ensemble control meth-

ods described in Chapter 2 and simulations of ensembles in continuous- and

discrete-time. Also, we discuss constraints on the inputs, apply a standard

noise model to discrete-time systems, and show how ensembles can track

paths. The implementations and extensions described in this chapter are

beneficial for applying the theoretical control policies to real systems, such

as in Chapter 4.

3.1 Simulation of Continuous-Time Systems

We simulated the finite ensemble described in (2.9) with the control policy

shown in (2.10). Simulations were conducted in Matlab, using ODE-45 to

simulate n = {1000, 2000} robots in continuous time for two different test

cases. For these tests δ = 1/2, and εi = 1− δ + 2δ
n
i. For the continuous-time

simulations, u2(t) = cos(
√
t) because a finite ensemble poorly approximates

an infinite ensemble for large t when u2(t) = 1. The error plots show the

average distance of a single robot from its goal over time. The source code

for all discrete-time Matlab simulations is in Appendix A.1.1.

3.1.1 Point to Point

Robots are initialized to (xi, yi, θi) = (1, 1, 0) and steered to the origin. Re-

sults are shown in Figure 3.1. As the error plot shows, error never increases,

and the error quickly and asymptotically approaches zero. This simulation

verifies that our continuous-time finite ensemble control policy works for a

large number of robots with ε ∈ [1 − δ, 1 + δ] that all start in the same

configuration.

21

1 2 3 4 5 6 7 8 9 10
x 104

10 -4

10 -2

100

Time

Er
ro

r

n=1000
n=2000

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
XY plot for n = 1000 unicycles

x

y

ϵ=[0.5,1.5]

Figure 3.1: Continuous-time simulation of n robots, with ε ∈ [0.5, 1.5], all
initialized to (1, 1) and steered to (0, 0) using control policy (2.10) and
u2(t) = cos(

√
t). The simulation was run with n = {1000, 2000}. Each trial

achieved the same error, as shown in the top plot. State trajectories of the
system are shown in the bottom plot. Lines show the path followed for five
particular values of ε. Thick black lines show the entire ensemble at
instants of time.

22

3.1.2 Path to Point

Robots are initialized to θi = 2πi/n, (xi, yi) = (cos(θi), sin(θi)), a circle of

radius 1, and steered to the origin. Results are shown in Figure 3.2. Again,

the error plot shows a monotonic, asymptotic decrease. This simulation

verifies that our continuous-time finite ensemble control policy works for a

large number of robots with ε ∈ [1 − δ, 1 + δ] that all start in different

configurations.

From these simulations, we see that under our control policy, the error

converges asymptotically to zero. Additionally, the system errors and tra-

jectories for n = 1000 and 2000 are identical, suggesting that this level of

discretization accurately represents the infinite ensemble (n = ∞) kinemat-

ics.

3.2 Extension to Unidirectional Vehicles

Some systems, including the nanocar and scratch-drive micro-robot, have

unidirectional constraints on their inputs. To handle linear velocity con-

straints, we modify (2.8) to be non-negative in u1(t):

u1(t) = max

(
0,−

∫ 1+δ

1−δ

(
xε(t) cos

(
θ0ε + εt

)
+ yε(t) sin

(
θ0ε + εt

))
dε

)
u2(t) = cos

(√
(t)
)
. (3.1)

Recall that for continuous-time simulations, u2(t) is modified to get a more

accurate representation of an infinite ensemble. This policy can be extended

to robots with minimum turning radius (e.g. [35,38]) by redefining the robot

center as the center of rotation; because our control policy requires only

non-negative turns, it can be extended to vehicles with a minimum turning

radius by the following transformation: given a minimum turning radius rmin,

define the new robot center to be the center of rotation. This is a translation

(−rmin, 0) in the robot reference frame, as shown in Figure 3.3.

In simulation, robots are initialized in the same manner as 3.1.1, but simu-

lated with the bidirectional control policy (2.10) as well as the unidirectional

control policy (3.1). From the results shown in Figure 3.4, one can conclude

that constraining inputs to only be positive slows down convergence of the

23

0 2 4 6 8 10
x 104

10 -4

10 -2

100

Time

Er
ro

r

n=1000
n=2000

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
XY plot for n = 1000 unicycles

x

y ϵ=0.5
ϵ=1.5

Figure 3.2: Continuous-time simulation of n robots, with ε ∈ [0.5, 1.5],
initially evenly distributed about the unit circle and steered to (0, 0) using
control policy (2.10) and u2(t) = cos(

√
t). The simulation was run with

n = {1000, 2000}. Each trial achieved the same ending error, as shown in
the top plot. State trajectories of the system are shown in the bottom plot.
Lines show the path followed for five particular values of ε. Thick black
lines show the entire ensemble at instants of time.

24

rmin rmin

Figure 3.3: Because our control policy requires only non-negative turns, it
can be extended to vehicles with a minimum turning radius (e.g.
scratch-drive robots and automobiles) by defining the robot center to be
the center of rotation.

1 3 5 7 9
x 104

10 -4

10 -2

100

Time

Er
ro

r

Bidirectional inputs
Unidirectional inputs

Figure 3.4: Lyapunov function for a continuous-time simulation of
n = 1000 robots, with ε ∈ [0.5, 1.5], all initialized to (1, 1) and steered to
(0, 0) using the bidirectional control policy (2.10) and the unidirectional
control policy (3.1).

ensemble to its goal, but even with unidirectional inputs, the ensemble still

successfully asymptotically converges to its goal.

3.3 Discrete-Time Simulations with a Standard Noise

Model

To model noise that is natural in a real system, we apply the noise model in

Probabilistic Robotics by Thrun et al. [53, Chap. 5.4.2]. This model defines

each discrete-time motion as a rotation, a translation, and a second rotation.

It uses the four parameters α1, α2, α3, and α4 to weight the correlation of noise

between rotation and translation actions. If the desired rotation, translation,

25

and second rotation are given by (δrot1, δtrans, δrot2), then the actual actions,

after noise is applied, are given by

δ̂rot1 = δrot1 − sample(α1δ
2
rot1 + α2δ

2
trans)

δ̂trans = δtrans − sample(α3δ
2
trans + α4δ

2
rot1 + α4δ

2
rot2)

δ̂rot2 = δrot2 − sample(α1δ
2
rot2 + α2δ

2
trans), (3.2)

where sample(x) generates a random sample from the zero-centered normal

distribution with variance x.

An important note for the application of control policies under the noise

model is that these are feedback control policies, and the orientation of each

robot in the ensemble is constantly being measured. This means that in con-

trol policies (2.8), (2.10), and (2.14), the term for the calculated orientation

θ0i + εit should be replaced by a term that is the measured orientation θi(t)

in simulations with noise or in hardware experiments.

To test the discrete-time control policy (2.14) with our noise model, we

simulated a collection of 120 robots in Matlab under various levels of noise

with both differing and identical values of ε. Sample trajectories are shown in

Figure 3.5. For each discrete-time simulation, the goal of the ensemble is to

move from spelling the word “ROBOTICS” to spelling the word “ILLINOIS”,

and error is measured as the average distance of one robot to its goal. The

source code for all discrete-time Matlab simulations is in Appendix A.1.2.

3.3.1 Simulating Different ε Values with Noise

Simulating with a bounded range of ε ∈ [1− δ, 1 + δ], we found that with no

noise, the position error of our robot collection converged exponentially to

zero error. When the noise model (3.2) was applied to add Gaussian noise in

actuation, the error converged to a non-zero value for small values of noise,

and diverged for large values of noise, as shown in Figure 3.6.

In this simulation, all values of α are held equal for each level of noise, so

for example when the noise is set to 0.1, α1 = α2 = α3 = α4 = 0.1. This

simulation shows that if noise affects both translation and rotation equally,

then it is best to have the least amount of noise possible in actuation.

26

120 unicycles

ϵ=0.5 ϵ=1.5

Figure 3.5: Simulation results from applying the control policy (2.14) for
120 robots with unicycle kinematics. Wheel size (ε) was evenly distributed
from 0.5 to 1.5. The plot shows the starting ‘+’ and ending ‘◦’ positions
along with 8 selected state trajectories.

0 0.2 0.4 0.6 0.8 1.0 1.210
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Step

Er
ro

r

Different Wheels Sizes at Various Noise Levels

1
0.1
0.01
0.005
0.001
0.0001
0

x 10
4

Figure 3.6: Error of a discrete-time, finite collection of 120 robots
simulated under a standard noise model (3.2). The convergence of the
position error, where ε ∈ [0.5, 1.5], with different levels of noise
parametrized by α; all α are equal.

27

0 0.4 0.8 1.2 1.6 2
x 10

4
10

1

10
2

10
3

10
4

Step

Er
ro

r

Identical Robots at Various Noise Levels

1
0.1
0.01
0.005
0.001
0.0001
0

Figure 3.7: Error of a discrete-time, finite collection of 120 robots
simulated under a standard noise model (3.2). The convergence of the
position error, where all ε are set to 1, with different levels of noise
parametrized by α; all α are equal.

3.3.2 Identical Robots

In this simulation, all 120 robots are identical, and they attempt to complete

the same task as in Section 3.3.1. Interestingly, the best performance is not

achieved with a very large or small amount of noise in actuation, but rather

the least error is achieved within a specific intermediate range of noise values.

Again, all values of α are held equal for each level of noise. Large α values

caused the error to diverge, while small α values led to very slow convergence.

With no noise at all, the error gets stuck at a constant value and does not

continue to decrease. This result is shown in Figure 3.7.

This simulation suggests that for an ensemble completing a task, there is

an optimal level of noise such that the ensemble converges to the goal and

does so quickly. Too much noise in actuation outstrips the feedback control

policy, while too little noise does not generate sufficient new orientations for

good selections of u1(t).

28

0 0.4 0.8 1.2 1.6 2
x 104

10
0

101

10
2

10
3

Step

Er
ro

r

Vary α with α = α = α = 0.01 1 2 3 4

1
0.1
0.01
0.005
0.001
0.0001
0

Figure 3.8: Error of a discrete-time, finite collection of 120 robots
simulated under a standard noise model (3.2). The convergence of the
position error, where all ε are set to 1, with different levels of noise
parametrized by α. Focusing the noise in the rotation (α1) improves
convergence with identical robots.

3.3.3 Effect of Rotational Noise

Again with 120 identical robots attempting the same task as Sections 3.3.1

and 3.3.2, we held the translational and cross-term noise at 0.01 (α2 = α3 =

α4 = 0.01. This value was chosen because it performed the best in the iden-

tical robot simulation of Section 3.3.2. But in this simulation, we varied the

rotational noise parameter, α1. We found that convergence rate increased

proportionally with α1, up to a limit of approximately α1 = 1, where in-

creasing α1 beyond 1 did not change performance. This result is shown in

Figure 3.8.

These results are interesting because they show that noise is necessary for

a finite collection of identical robots to be controllable. Particularly, systems

perform the best if they have a minimal amount of noise in translational

actuation but a large amount of noise in rotational actuation. This is a

subset of a larger class of problems for which noise is beneficial, or even

necessary, for stability and control, and it can help inform robotic system

designers that if they would like good performance from ensemble control

29

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

4

10
-10

10-5

100

105

Step

Er
ro

r

1/e
No Weight

Figure 3.9: Error plots for a discrete-time simulation of 120 robots, with
ε ∈ [0.5, 1.5], comparing control policies (2.14) and (3.3). Weighting by 1/ε
improves convergence.

methods, it is better to have noisy turning than noisy linear movement.

3.4 Using 1/ε to Improve Convergence

The control laws presented in Chapter 2 are globally asymptotically stabi-

lizing, but in practice there are ways to improve performance of ensembles.

One method is to modify the control policy to take into account known values

of ε for each robot and to weight the summed error accordingly. Modifying

(2.14) to incorporate this change yields

k =
t

∆T
−mod (t,∆T)

F (k) =
1

n

n∑
i=1

1

εi
(xi(k) cos(θi(k)) + yi(k) sin(θi(k)))

[
u1(k), u2(k)

]
=

[−F (k), 0] stage 1

[0, φ] stage 2
(3.3)

In (3.3), robots with larger values of ε are viewed as closer than they

actually are because they can move farther in the same time as a robot with

a smaller value of ε. Policies (2.14) and (3.3) are compared in Figure 3.9,

and it is evident that adding the 1/ε weighting improves performance.

30

3.5 Collision Avoidance with Potential Functions

When steering an ensemble, it may be desirable to avoid obstacles in the

workspace. One method of obstacle-avoidance is potential fields, as presented

in Principles of Robot Motion [54, Chap. 4]. In this method, robots avoid

obstacles by being repelled from them by an artificial potential field. For the

ith robot in an ensemble, one possible repulsive field function is:

urepi (t) =

1
2
ηcos(φi(t))

(
1

D(xi(t),yi(t))
− 1

Q?

)2
D(xi(t), yi(t)) ≤ Q?

0 D(xi(t), yi(t)) > Q?,
(3.4)

where D(xi(t), yi(t)) is distance of robot to the closest obstacle, φi(t) is angle

from robot to the closest obstacle, Q? is the maximum effective distance of

the potential field, and η is a gain.

Then the control policy for a finite ensemble (2.10) is modified to incorpo-

rate the repulsive field:

u1(t) =− 1

n

n∑
i=1

(xi(t) cos (θi(t)) + yi(t) sin (θi(t))− urepi (t)) . (3.5)

Potential fields have the possibility to get stuck in local minima, as high-

lighted by Koren and Borenstein [55], so we can no longer guarantee that

our ensemble is globally asymptotically stable under (3.5), but in practice,

ensembles are able to reach their goals if given more time. Figure 3.10 shows

a simulation with an ensemble avoiding two obstacles using potential fields.

3.6 Trajectory Tracking

Ensembles can track trajectories by slowly varying the goal position of each

robot over time. Figure 3.11 shows a simulation of six robots following six dif-

ferent trajectories simultaneously, all responding to the same control signal.

Trajectory tracking allows the ensemble control framework presented in this

document to be combined with high-level motion planning; a motion-planner

can be used to generate trajectories for each robot, and then ensemble control

can control the ensemble such that each robot tracks its trajectory.

As this chapter details, feedback ensemble control is a framework that can

31

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

10-3

100

103

Step

Er
ro

r

Figure 3.10: Obstacle avoidance with potential fields, using control policy
(3.5). The top plot shows the error over time, and the bottom plot shows
the paths traced by all 120 robots. In this simulation, η = 20 and Q? = 30.

32

k = 0 k = 500 k = 1000 k = 1500

↖
ε = 0.5

↖
ε = 1.5k = 2000

500 1000 1500 20000

0.2

0.4

0.6

L
ya

p
u
n
ov

er
ro

r

Steps

Figure 3.11: Simulation of trajectory-following. Six differential-drive
robots with wheel sizes ranging from 0.5 to 1.5 of nominal are steered with
a common control signal to follow trajectories that spell out ‘RMSLAB’.
The top left robot (R) has the smallest wheels while the lower right robot
(B) has the largest wheels. The bottom plot shows that the Lyapunov
function stabilizes around 0.37.

33

be extended to meet the requirements of many systems. Ensembles can be

controlled even with noise in sensing and actuation and around obstacles as

well as along trajectories.

34

Chapter 4

Hardware Experiments

To verify the feedback ensemble control methods presented in Chapter 2,

computer simulations were supplemented with hardware experiments on differential-

drive robots, with an optical motion-capture system for position and orien-

tation feedback. Hardware experiments did, in fact, verify that the control

policies described in this thesis are effective.

4.1 Differential-Drive Robots

Our differential robots are the Segbots, courtesy of Dan Block [36]. They

have two large direct-drive wheels in the back, and a free-wheeling ball caster

in the front, as shown in Figure 4.1. The robots have very little on-board

intelligence; the motor controllers simply translate linear and angular veloc-

ities to voltages to be applied with friction compensation. The robots have

no notion of goals or trajectories to follow. In the experiments shown in

this paper, we use wheels with diameters in the set {102, 108, 127, 152} mm.

Trials with identical-size wheels all used 102mm wheels.

4.2 System Overview

A block diagram of our system in Figure 4.2 shows the relevant hardware.

The robots are commanded to either move linearly or turn in place in units

of encoder ticks. These commands are broadcast over 900MHz radio using

an AeroComm 4490 card. The robots have no notion of what wheel size they

have or where they are; they simply respond to the global control signals.

Four to five optical tracking dots are fixed to the top of each robot. Position

and orientation data for each vehicle are uniquely measured by an 18-camera

NaturalPoint Optitrack system with reported sub-millimeter accuracy. A

35

Figure 4.1: Four differential-drive robots with wheel diameters in the set
{102, 108, 127, 152} mm, courtesy of Dan Block [36]. Each robot receives
the same broadcast control signal, but the different wheel sizes scale the
commanded linear and angular velocities.

Robot 1
Robot 1

Robot 1
Robot 1

Robot n

Control

Law

Goal

Position
Motion

tracking
Radio +

-

Figure 4.2: Block diagram for steering a multi-robot system with a global
signal.

36

Matlab program receives feedback from the Optitrack system and computes

the control policy (2.14) before sending the global control signals to each

robot simultaneously at each discrete time-step.

4.3 Online Calibration

Calibration is not necessary for successful implementation of the controller,

but it improves performance. There are very accurate methods to perform

calibration of differential-drive robots such as Borenstein’s method [56], but

they require a separate calibration step. We instead use an online calibration

method. While online calibration may not be as accurate, we demonstrate

in Section 4.4.2 that calibration of ε values is helpful but not critical.

In our hardware experiments, for every translation command u(k), we

record beginning and ending positions to calculate di, the distance traveled,

and update each εi value according to the following rule:

εi(k + 1) = εi(k) +K
|u(k)|
M

(
di
|u(k)|

− εi(k)

)
.

K is the weighting we give new measurements of ε, and M is the maximum

possible distance we may command the robot to move. For the experiments

shown here K = 0.1 and M = 0.7.

4.4 Experiments

A series of experiments were conducted to show that the derived control

policy converges in a real system. Results for unique wheel sizes with online

calibration, for unique wheel sizes without online calibration, and for robots

with identical wheels are shown. In each experiment, goals are defined in

the workspace, and the ensemble controller is left to steer the robots to their

goals. Then, the goals are moved, and the controller steers the robots to

the new set of goals. Error is measured individually for each robot as its

distance to its goal in meters and overall as the sum of all individual errors.

The source code for the Matlab program as well as the program running

on the robots is in Appendix A.2.

37

4.4.1 Unique Wheel Sizes with Online Calibration

In this experiment, each robot is initially assumed to have ε = 1, and the

actual values of ε were learned through online calibration. The robots were

successfully commanded from a horizontal line, to a box formation, to a

vertical line, and finally to a tight box formation. The results in Figure

4.3 show convergence both in position and in ε values. Online calibration

requires persistent excitation, so convergence slows as the robots approach

their targets.

The error plots show that the robots steadily approach their goals. Con-

trary to the perfect (no noise in sensing or actuation) theoretic control policy,

the robots do actually move away from their goals on occasion. This is caused

by a combination of imperfect sensing from the optical tracking system as

well as imperfect execution of given commands by the robots (noise in ac-

tuation). The formations shown below the error plots are what the optical

tracking system sees at each time specified.

4.4.2 Unique Wheel Sizes without Calibration

Surprisingly, it is not necessary to know or to learn the ε values. For this

entire experiment ε was set to 1. Four robots were successfully commanded

from a horizontal line to a box formation, and then to a vertical line. For

each formation, error converged to less than half a meter, as shown in Figure

4.4. With no calibration, the robots took longer to converge to their goals,

but they were still successful.

This experiment shows that even with incorrect ε values, our control policy

can still control the ensemble. This is primarily because it is a feedback

policy, so it constantly adjusts to compensate for errors in the robot positions.

4.4.3 Identical Wheel Sizes

In this experiment, all the robots were fitted with identical wheels, effectively

making all the robots identical. Again, the robots were commanded to move

from a horizontal line to a box and then to a vertical line formation. The

ensemble does not converge as tightly to the goals as in previous experiments,

and the first formation change takes longer than usual; however, each robot

38

0 500 1000 1500 2000 2500 3000 3500
0.5

1

1.5

2

Time (s)

ϵ

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

Time (s)

D
ist

an
ce

 (
m

)

-1 0 1 2
-1

0

1

2

-1 0 1 2
-1

0

1

2

-1 0 1 2
-1

0

1

2

-1 0 1 2
-1

0

1

2

m

t = 0 s
e = 3937 mm

t = 1198 s
e = 174 mm

m

t = 2334 s
e = 230 mm

t = 3190 s
e = 276 mm

Figure 4.3: Hardware experiment with unique wheel sizes and online
calibration. The top plot shows ε values estimated by online calibration.
The bottom plot shows the summed distance error as the robots were
steered through the sequence of formations shown.

39

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

Time (s)

D
ist

an
ce

 (
m

)

-1 0 1 2

-1

0

1

-1 0 1 2

-1

0

1

-1 0 1 2

-1

0

1

m

t = 0 s
error = 3190 mm

m

t = 896 s
error = 158 mm

t = 3929 s
error = 380 mm

Figure 4.4: Hardware experiment with unique wheel sizes and no
calibration. The plot shows the summed distance error as the robots were
steered through the sequence of formations shown.

40

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

Time (s)

D
ist

an
ce

 (
m

)

-1 0 1 2

-1

0

1

m

t = 0 s
error = 5967 mm

-1 0 1 2

-1

0

1

m

t = 1017 s
error = 393 mm

-1 0 1 2

-1

0

1

t = 1670 s
error = 542 mm

Figure 4.5: Hardware experiment with identical wheel sizes. The plot
shows the summed distance error as the robots were steered through the
sequence of formations shown.

in the ensemble does get quite close to its goal, and this experiment shows

that even an ensemble of identical robots can be successfully steered to a

goal. Figure 4.5 shows the experiment.

As with the simulation in Section 3.3.2, an ensemble of identical robots

will approach its goal to as near as actuation noise in the system will allow.

Coincidentally, it is noise in actuation that allows the ensemble to converge

at all. With no noise, an ensemble of ensemble robots would get stuck far

from the goal, as shown in Figure 3.7. But a real hardware system, such

as the differential-drive robots used in this experiment, has sufficient noise

in actuation so that the ensemble can approach its goal. However, it is

undesirable to have so much noise in actuation that the motion of the robots

is not responsive to the control inputs.

The hardware experiments verify that the control law for a finite ensemble

in discrete-time, (2.14), does steer robots to their goals. The error plots

show that convergence is asymptotic to zero error. The system is also robust

41

against external disturbances. In Figure 4.6, the robots were tasked with

coming together to one location in the room. Even when we moved the

robots far from each other, the system recovered from the perturbation. The

experiments conducted with differential-drive robots suggest that our control

policies would also be effective on micro- or nano-robot systems with similar

unicycle kinematics.

42

Figure 4.6: Photographs of hardware experiments steering four
differential-drive robots with different wheel sizes (left column) and six
differential-drive robots with identical wheel sizes (right column). The
robots are initialized in a straight line and all receive the same control
input from a wireless signal. A motion capture system is used for feedback
to steer the four robots to the colored targets and the six robots to
rendezvous. In the third frame a disturbance is injected by moving a single
robot away from its target (left) and by splitting the ensemble (right).

43

Chapter 5

Conclusion

This thesis investigates ensembles of unicycles that share a uniform control

input. Through Lyapunov analysis, we derived a globally asymptotic stabi-

lizing controller for a continuous-time, infinite ensemble. We extended this

controller to finite ensembles of unicycles in continuous and discrete time.

In simulation, it was shown that a discrete-time, finite ensemble of unicy-

cles converges asymptotically and rejects disturbances from a standard noise

model. Also, obstacle-avoidance and trajectory-following methods were pro-

posed, with accompanying simulations to verify their feasibility. Hardware

experiments demonstrated online calibration which learned the unknown pa-

rameter for each robot. These experiments led to encouraging results that

(1) our controller still works when all wheel sizes are wrong and (2) if ac-

tuation is imperfect, our controller works even when all wheel sizes are the

same.

5.1 Applications of Feedback Ensemble Control

The ability to control position enables many tasks. For example, Chapter

4 demonstrates robot gathering using six robots with identical-sized wheels.

Robot gathering robustly collects all the robots to one position; to achieve

robot gathering, the goal position of each robot is set to the mean position

of the ensemble.

Dispersion is the opposite of gathering. To achieve dispersion, the goal po-

sition of each robot is set to the mean of the ensemble, but the control policy is

set to u(t) = F (t), which will repel robots from each other. Dispersion may be

useful for distributing micro- and nano-robots over a substrate. Other tasks

include forming subgroups, path-following, and pursuit/avoidance. Each can

be implemented by a suitable selection of goal trajectories.

44

Two applications that are the focus of much micro- and nano-robot re-

search are nano-manipulation and assembly [57, 58]. Nano-manipulation is

simply manipulating objects at the nano-scale, and assembly is building

structures from smaller components. With the ability to control position

and track trajectories, micro- and nano-robots in an ensemble can be used

as a manipulator. In Figure 5.1, we show how we are able to move six

unicycle robots to assemble a structure from smaller components. The simu-

lation was generated with the Box2D game environment, which has realistic

collision detection and physics. The source code for this simulation is in Ap-

pendix A.1.3. One advantage of using an ensemble control method over other

methods such as using an atomic force microscope tip is that with ensemble

methods, multiple robots, and thus multiple objects, can be manipulated at

once.

5.2 Future Work

This work shows that an ensemble of nonholonomic unicycles with uniform in-

puts to all robots can be regulated to arbitrary positions, reject disturbances

from a standard noise model, and converge to goals with global asymptotic

stability. This work may be particularly relevant to systems of micro- and

nano-robots, which are often constrained to uniform inputs. The control

policies described focus on unicycle kinematics, but future work could adapt

these policies to other types of robots with different kinematics or dynamics.

Future work could seek to add guarantees to using an ensemble as a set

of manipulators — when can we be sure we will not lose hold of the ob-

ject? When can we guarantee that we will place the object within a certain

precision? Also, it may be beneficial to combine high-level motion-planning

principles with low-level ensemble trajectory tracking to move in more intel-

ligent paths. The policies presented are not optimal, and adding optimality

to the ensemble control policies could improve the execution speed of tasks.

The ensemble control policies in this thesis are best applied to systems

where robots do not have on-board intelligence or controlling each robot

individually is infeasible; micro- and nano-robotic systems often have these

characteristics, and as small robots become more prolific, there will be more

applications for the control framework presented here.

45

Figure 5.1: Images from an assembly and manipulation simulation. Robots
are red circles, and objects are diamonds. The goal trajectories are
represented by the yellow circles. The robots approach the objects, push
them into position, and then orient them to assemble the final object.

46

Appendix A

Source Code

A.1 Simulations

A.1.1 Continuous-Time Matlab Simulations

% simUnicyclesCirclePt.m

%

% Cem Onyuksel and Aaron Becker 2012

%

% run simulations of unicycle in continuous-time

% in the mathematica file, you see that control authority over the

% continuum drops as theta grows. (the continuum theta is

% being wrapped around and around the unit circle.

% A better control policy would be to flip u2 every pi deg.

format compact

saveState = true;

global eps

global invEps

global unidirectional

%clc

nRob = 50;

delta = .5;

eps = linspace(1-delta, 1+delta, nRob)’;

invEps = false;

unidirectional = false;

47

%%%INITIALIZE TO START AT {1,1,0}

%state0 = [ones(nRob,1);ones(nRob,1);zeros(nRob,1);];

%%% INITIALIZE TO START IN CIRCLE

sp = (1:nRob)*2*pi/nRob;

state0 = [cos(sp)’;sin(sp)’;sp’];

tic

display(’Starting Simulation’)

options = odeset(’RelTol’,1e-7,’AbsTol’,1e-7);

tms = logspace(0,5,1000);

[T,Y] = ode45(@unicycleMinAveCont,tms,state0,options);

invEps = true;

[T2,Y2] = ode45(@unicycleMinAveCont,tms,state0,options);

%[T,Y] = ode45(@unicycleMinAveCont,(0:500:10000),state0,options);

%[T,Y] = ode45(@unicycleMinAveCont,[0,100],state0,options);

%[T,Y] = ode45(@unicycleMinAveCont,[0,50],state0,options);

toc

% 50 robots, 1000 seconds sim time, 110 seconds compute

% Plotting the columns of the returned array Y versus T

% shows the solution

if saveState

replines = round(linspace(1, nRob,5));

display([’plotting lines ’,num2str(replines)]);

figure(1)%%%%%%%%%%%%%%%%%%%%%%%%%%% XY PLOT %%%%%%%%%%%%%%%

clf

plot(Y(1,1:nRob),Y(1,nRob+1:2*nRob),’b+’,Y(end,1:nRob), ...

Y(end,nRob+1:2*nRob),’ro’)

hold on

nFreeze = 5;

FreezePts = round(linspace(1,numel(T),nFreeze));

plot(Y(:,replines),Y(:,nRob+replines))

title([’XY plot for n = ’,num2str(nRob),’ unicycles’])

axis equal

48

xlabel(’x’)

ylabel(’y’)

text(Y(1,1),Y(1,nRob+1),[’\epsilon=’,num2str(min(eps))])

text(Y(1,nRob),Y(1,2*nRob),[’\epsilon=’,num2str(max(eps))])

figure(2)%%%%%%%%%%%%%%%%%%%%%%%%%%% STATE/TIME PLOT %%%%%%%%

clf

plot(T,Y(:,replines),’-’)

hold on

plot(T,Y(:,nRob+replines),’--’)

xlabel(’time’)

ylabel(’state values’)

title([’State Evolution for n = ’,num2str(nRob),’ unicycles’])

end

figure(3)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LYAPUNOV FUNC VALUES %%%%%

clf

Yt = Y’;

errorD = sum((Y(:,1:nRob)’.^2+Y(:,nRob+1:2*nRob)’.^2).^.5)’./nRob;

Yt2 = Y2’;

errorD2 = sum((Y2(:,1:nRob)’.^2+ ...

Y2(:,nRob+1:2*nRob)’.^2).^.5)’./nRob;

%semilogy(T,sum(Y(:,1:2*nRob)’.^2)’./nRob,’r’)

semilogy(T,errorD,’r’), hold on

semilogy(T2,errorD2,’b’)

xlabel(’time’)

ylabel(’Error’)

title([’Lyapunov function V for n = ’,num2str(nRob),’ unicycles’])

set(gca,’Ytick’,[1e-6,1e-4,1e-2,1e-0])

49

% unicycleMinAveCont.m

%

% Aaron Becker and Cem Onyuksel 2012

%

% Simulate in continuous time, a finite ensemble of kinematic

% unicycles with unique parameters that scale their

% linear and angular velocity

function dy = unicycleMinAveCont(t,y)

% UNICYCLEMINAVECONT evolve the system one timestep.

% t = time, y = state,

% invEps adds a 1/eps scaling to F if true, unidirectional

% makes the control input unidirectional if true

%v1p2 uses structure [x1,..,xn,y1,...,yn,h1,...,hn]

global eps

global invEps

global unidirectional

% display(’In unicycleMinAveCont’)

% display(y)

% display(eps)

dy = zeros(size(y)); % a column vector

unicycles = numel(y)/3;

%u2 = 1; %constant turning

u2 = cos(t.^.5);

%u2 = cos(t/max(eps));

%u2 = cos(t/max(eps));%periodic turning

if invEps

% x * cos(theta) + y *sin(theta)

F = sum((eps.^-1).*(y(1:unicycles).* ...

cos(y(2*unicycles+1:end)) + ...

y(unicycles+1:2*unicycles).* ...

50

sin(y(2*unicycles+1:end))));

else

F = sum((y(1:unicycles).* ...

cos(y(2*unicycles+1:end)) + ...

y(unicycles+1:2*unicycles).* ...

sin(y(2*unicycles+1:end))));

end

if unidirectional

u1 = max(0,-F/unicycles);

else

u1 = -F/unicycles;

end

dy(1:unicycles) = u1*eps.*cos(y(2*unicycles+1:end));

dy(unicycles+1:2*unicycles) = u1*eps.*sin(y(2*unicycles+1:end));

dy(2*unicycles+1:end) = u2*eps;

A.1.2 Discrete-Time Matlab Simulations

function simDT()

% This code simulates N unicycles in discrete time moving from

% start to end configurations. End configuration can be a vector

% parameterized by time for a moving goal or path following.

%

% N is an integer number of robots.

% start is an Nx3 matrix of robot start positions

% goal is a Nx3xT matrix of robot goal positions, where T is the

% time dimension. Note that we can not control orientation, so

% the third element of the third dimension is ignored in the

% control law.

%

% Aaron Becker, March 1, 2012

% Cem Onyuksel April 12, 2012

%

%%%%%%%%%%%%%%%%%%%%%%%%%

% select which simulations to run

51

trajectory = false;

varynoise = false;

varynoiseIdentical = false;

varya1Identical = false;

unidirectional = false;

obsavoid = true;

epsilontest = false;

tic

%%%

% Effects of 1/eps

%%%

if epsilontest

% set up the simulation

timesteps = 20000;

[start, goals] = roboticsIL(timesteps);

N = size(start,1); % number of robots

T = 1:size(goals,3); % time

S = zeros(size(goals)); % state of robots

delta = 0.5; % spread of ensemble wheel sizes

eps = linspace(1-delta, 1+delta, N)’; % ensemble parameter

PN = 0.000; % noise levels

% initialize

S(:,:,1) = start;

% iterate!

for t = 2:length(T)

S(:,:,t) = ApplyControlLaw(S(:,:,t-1),goals(:,:,t),...

eps,PN,PN,PN,PN,true);

end

% plot error with 1/eps

figure(11);

x = zeros(N,length(T));

y = zeros(N,length(T));

52

x(:,:) = (S(:,1,:)-goals(:,1,:)).^2;

y(:,:) = (S(:,2,:)-goals(:,2,:)).^2;

error = sum(x + y)./N;

subplot(2,1,1);

semilogy(T,error,’Color’,’r’,’LineWidth’,1);

hold on

S(:,:,1) = start;

% iterate!

for t = 2:length(T)

S(:,:,t) = ApplyControlLaw(S(:,:,t-1),goals(:,:,t),eps,...

PN,PN,PN,PN,false);

end

% plot no 1/eps error

x = zeros(N,length(T));

y = zeros(N,length(T));

x(:,:) = (S(:,1,:)-goals(:,1,:)).^2;

y(:,:) = (S(:,2,:)-goals(:,2,:)).^2;

error = sum(x + y)./N;

semilogy(T,error,’Color’,’b’,’LineWidth’,1);

hold off

xlabel(’Step’)

ylabel(’Error’)

title(’Effects of 1/\epsilon’)

legend({’1/\epsilon’,’No Weighting’},’Location’,’NorthEast’)

axis([0 timesteps 10^-10 10^5])

end

%%%

% Obstacle Avoidance

%%%

if obsavoid

% set up the simulation

timesteps = 20000;

53

[start, goals] = roboticsIL(timesteps);

N = size(start,1); % number of robots

T = 1:size(goals,3); % time

S = zeros(size(goals)); % state of robots

delta = 0.5; % spread of ensemble wheel sizes

eps = linspace(1-delta, 1+delta, N)’; % ensemble parameter

PN = 0.0001; % noise levels

% obstacles of form [x,y,radius]

%obs = [75,120,50;200,120,50;325,120,50];

obs = [75,120,50;325,120,50]; % obstacles of form [x,y,radius]

% initialize

S(:,:,1) = start;

% iterate!

for t = 2:length(T)

S(:,:,t) = ApplyObstacleControlLaw(S(:,:,t-1),...

goals(:,:,t),obs,eps,PN,PN,PN,PN);

end

% plot error

figure(9);

x = zeros(N,length(T));

y = zeros(N,length(T));

x(:,:) = (S(:,1,:)-goals(:,1,:)).^2;

y(:,:) = (S(:,2,:)-goals(:,2,:)).^2;

error = sum(x + y)./N;

subplot(2,1,1);

semilogy(T,error,’Color’,’r’,’LineWidth’,1);

xlabel(’Step’)

ylabel(’Error’)

title(’Obstacle Avoidance’)

axis([0 timesteps 10^-3 10^5])

set(gca,’Ytick’,[1e-3,1e0,1e3])

% plot paths

figure(10);

for i=1:N

54

plot(reshape(S(i,1,:),1,timesteps),-reshape(S(i,2,:),1,...

timesteps), ’k’,’MarkerSize’,1);

hold on; axis equal;

end

% plot start and end configurations

plot(start(:,1,1),-start(:,2,1),’go’,’MarkerSize’,3);

plot(S(:,1,end),-S(:,2,end),’rx’,’MarkerSize’,3);

% plot obstacles

for i=1:size(obs,1)

p = linspace(0,2*pi,1000);

plot(obs(i,3)*cos(p)+obs(i,1),...

-obs(i,3)*sin(p)-obs(i,2),’b’);

end

hold off;

end

%%%%%%%%%%%%%%%%%%%%%%

% TRAJECTORY FOLLOWING

%%%%%%%%%%%%%%%%%%%%%%

if trajectory

% set up the simulation

timesteps = 10000;

N = 3; % number of robots

% trajectories

s1 = [100*cos(linspace(0,pi,timesteps))’, ...

100*sin(linspace(0,pi,timesteps))’,zeros(timesteps,1)];

s2 = s1 + 50;

s3 = [linspace(0,100,timesteps)’,zeros(timesteps,1),...

zeros(timesteps,1)];

goals = zeros(N,3,timesteps);

goals(1,:,:) = s1’;

goals(2,:,:) = s2’;

goals(3,:,:) = s3’;

55

start = [s1(1,:);s2(1,:);s3(1,:)];

T = 1:size(goals,3); % time

S = zeros(size(goals)); % state of robots

delta = 0.5; % spread of ensemble wheel sizes

eps = linspace(1-delta, 1+delta, N)’; % ensemble parameter

PN = 0.0001; % noise levels

% initialize

S(:,:,1) = start;

% iterate!

for t = 2:length(T)

S(:,:,t) = ApplyControlLaw(S(:,:,t-1),goals(:,:,t),eps,...

PN,PN,PN,PN,true);

end

% plot trajectories

figure(1)

for j = 1:N

x = zeros(timesteps,1);

y = zeros(timesteps,1);

x(:) = S(j,1,:);

y(:) = S(j,2,:);

plot(x,y,’.’); hold on

plot(x(1),y(1),’go’);

plot(x(end),y(end),’rx’);

end

axis equal; hold off

title(’Trajectory Following’);

% plot error

figure(2);

x = zeros(N,length(T));

y = zeros(N,length(T));

x(:,:) = (S(:,1,:)-goals(:,1,:)).^2;

y(:,:) = (S(:,2,:)-goals(:,2,:)).^2;

error = sum(x + y)./N;

plot(T,error,’Color’,’r’,’LineWidth’,1);

56

title(’Trajectory Following Error’);

end

%%%

% Bidirectional vs Unidirectional Inputs

%%%

if unidirectional

% set up the simulation

timesteps = 20000;

[start, goals] = roboticsIL(timesteps);

N = size(start,1); % number of robots

T = 1:size(goals,3); % time

S = zeros(size(goals)); % state of robots

delta = 0.5; % spread of ensemble wheel sizes

eps = linspace(1-delta, 1+delta, N)’; % ensemble parameter

PN = 0.000; % noise levels

% initialize bidirectional

S(:,:,1) = start;

% iterate!

for t = 2:length(T)

S(:,:,t) = ApplyControlLaw(S(:,:,t-1),goals(:,:,t),eps,...

PN,PN,PN,PN,true);

end

% plot error

figure(3);

x = zeros(N,length(T));

y = zeros(N,length(T));

x(:,:) = (S(:,1,:)-goals(:,1,:)).^2;

y(:,:) = (S(:,2,:)-goals(:,2,:)).^2;

error = sum(x + y)./N;

semilogy(T,error,’Color’,’r’,’LineWidth’,1);

hold on

% unidirectional

S(:,:,1) = start;

57

% iterate!

for t = 2:length(T)

S(:,:,t) = ApplyControlLawUni(S(:,:,t-1),goals(:,:,t),...

eps,PN,PN,PN,PN);

end

% plot unidirectional error

x = zeros(N,length(T));

y = zeros(N,length(T));

x(:,:) = (S(:,1,:)-goals(:,1,:)).^2;

y(:,:) = (S(:,2,:)-goals(:,2,:)).^2;

error = sum(x + y)./N;

semilogy(T,error,’Color’,’b’,’LineWidth’,1);

hold off

xlabel(’Step’)

ylabel(’Error’)

title(’Bidirectional vs Unidirectional inputs’)

legend({’bidirectional’,’Unidirectional’},’Location’,...

’NorthEastOutside’)

% plot start and end configurations

figure(4);

plot(start(:,1,1),-start(:,2,1),’go’); hold on; axis equal;

plot(S(:,1,end),-S(:,2,end),’rx’);

hold off;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Vary Noise with different wheel sizes

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if varynoise

% system parameters and variables

timesteps = 10000;

[start, goals] = roboticsIL(timesteps);

N = size(start,1); % number of robots

T = 1:size(goals,3); % time

S = zeros(size(goals)); % state of robots

58

delta = 0.5; % spread of ensemble wheel sizes

eps = linspace(1-delta, 1+delta, N)’; % ensemble parameter

noise=[1,0.1,0.01,0.005,0.001,0.0001,0]; % noise levels

% plotting parameters

colors = distinguishable_colors(length(noise));%[’b’,’g’,...

’r’,’m’,’c’,’y’,’k’];

l = cell(length(noise),1);

% show start and end configurations

% figure(5);

% plot(start(:,1,1),-start(:,2,1),’go’); hold on; axis equal;

% plot(goals(:,1,end),-goals(:,2,end),’rx’);

% hold off;

% plot noise levels for different robots

for j = 1:length(noise)

PN = noise(j);

display([’Simulating for Noise level: ’ num2str(PN)]);

% initialize robots

S(:,:,1) = start;

% iterate!

for t = 2:length(T)

S(:,:,t) = ApplyControlLaw(S(:,:,t-1),goals(:,:,t),...

eps,PN,PN,PN,PN,true);

end

% plot error

figure(6);

x = zeros(N,length(T));

y = zeros(N,length(T));

x(:,:) = (S(:,1,:)-goals(:,1,:)).^2;

y(:,:) = (S(:,2,:)-goals(:,2,:)).^2;

error = sum(x + y)./N;

semilogy(T,error,’Color’,colors(j,:),’LineWidth’,1);

hold on

59

l{j} = num2str(noise(j));

end

hold off

xlabel(’Step’)

ylabel(’Error’)

title(’Different Wheels Sizes at Various Noise Levels’)

legend(l,’Location’,’NorthEastOutside’)

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Vary Noise with identical robots

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if varynoiseIdentical

% system parameters and variables

timesteps = 10000;

[start, goals] = roboticsIL(timesteps);

N = size(start,1); % number of robots

T = 1:size(goals,3); % time

S = zeros(size(goals)); % state of robots

delta = 0; % spread of ensemble wheel sizes

eps = linspace(1-delta, 1+delta, N)’; % ensemble parameter

noise=[1,0.1,0.01,0.005,0.001,0.0001,0]; % noise levels

% plotting parameters

colors = distinguishable_colors(length(noise));

l = cell(length(noise),1);

% show start and end configurations

% figure(5);

% plot(start(:,1,1),-start(:,2,1),’go’); hold on; axis equal;

% plot(goals(:,1,end),-goals(:,2,end),’rx’);

% hold off;

% plot noise levels for different robots

for j = 1:length(noise)

60

PN = noise(j);

display([’Simulating for Noise level: ’ num2str(PN)]);

% initialize robots

S(:,:,1) = start;

% iterate!

for t = 2:length(T)

S(:,:,t) = ApplyControlLaw(S(:,:,t-1),goals(:,:,t),...

eps,PN,PN,PN,PN,true);

end

% plot error

figure(7);

x = zeros(N,length(T));

y = zeros(N,length(T));

x(:,:) = (S(:,1,:)-goals(:,1,:)).^2;

y(:,:) = (S(:,2,:)-goals(:,2,:)).^2;

error = sum(x + y)./N;

semilogy(T,error,’Color’,colors(j,:),’LineWidth’,1);

hold on

l{j} = num2str(noise(j));

end

hold off

xlabel(’Step’)

ylabel(’Error’)

title(’Identical Robots at Various Noise Levels’)

legend(l,’Location’,’NorthEastOutside’)

end

%%

% Vary \alpha_1 (rotational noise) w/ identical robots

%%

if varya1Identical

% Plot change in rotation error vs translation error for

% identical robots

timesteps = 10000;

61

[start, goals] = roboticsIL(timesteps);

N = size(start,1); % number of robots

T = 1:size(goals,3); % time

S = zeros(size(goals)); % state of robots

delta = 0; % spread of ensemble wheel sizes

eps = linspace(1-delta, 1+delta, N)’; % ensemble parameter

a1s=[1,0.1,0.01,0.005,0];%0.01,0.005,0.001,0.0001,0]; % noise

PN = 0.001;

% plotting parameters

colors = distinguishable_colors(length(a1s));%[’b’,’g’,’r’,...

’m’,’c’,’y’,’k’];

l = cell(length(a1s),1);

for j = 1:length(a1s)

a1 = a1s(j);

display([’Simulating for a1 = ’ num2str(a1)]);

% initialize robots

S(:,:,1) = start;

% iterate!

for t = 2:length(T)

S(:,:,t) = ApplyControlLaw(S(:,:,t-1),goals(:,:,t),...

eps,a1,PN,PN,PN,true);

end

% plot error

figure(8);

x = zeros(N,length(T));

y = zeros(N,length(T));

x(:,:) = (S(:,1,:)-goals(:,1,:)).^2;

y(:,:) = (S(:,2,:)-goals(:,2,:)).^2;

error = sum(x + y)./N;

semilogy(T,error,’Color’,colors(j,:),’LineWidth’,1);

hold on

l{j} = num2str(a1s(j));

end

hold off

62

xlabel(’Step’)

ylabel(’Error’)

title({[’Vary \alpha_1 with \alpha_2 = \alpha_3 = ...

\alpha_4 = ’ num2str(PN)]; ’with identical robots’})

legend(l,’Location’,’NorthEastOutside’)

end

toc

end

function S = ApplyControlLaw(S,G,eps,a1,a2,a3,a4, invEps)

% Control Law with noise

% Each action consists of a turn, a move, and another turn

% We have two actions: turn and move forward

% a1: rotation->rotation

% a2: translation->rotation

% a3: translation->translation

% a4: rotation->translation

% invEps: whether to add the 1/eps term or not

N = size(S,1); % number of robots

% First action: turn, assume we want to try to turn pi/2

r1 = pi/2; % how much we want to turn for the first turn

%trans = 0; % no translation or 2nd rotation

%r2 = 0;

% apply r1 with noise

%u2 = r1*ones(N,1) - sample(a1*r1^2 + a2*trans^2,N);

u2 = r1*ones(N,1) - sqrt(a1*r1^2)*randn(N,1);

S(:,3) = S(:,3) + eps.*u2; % theta

% apply trans with noise

%u1 = trans*ones(N,1) - sample(a3*trans^2 + a4*r1^2 + ...

% a4*r2^2,N);

u1 = -sqrt(a4*r1^2)*randn(N,1);

S(:,1) = S(:,1) + u1.*eps.*cos(S(:,3)); % x

S(:,2) = S(:,2) + u1.*eps.*sin(S(:,3)); % y

% apply r2 with noise

63

%u3 = r2 - sample(a1*r2^2 + a2*trans^2, N);

%S(:,3) = S(:,3) + eps.*u3;

% Second action: Translation

% our requested translation is the amount that minimizes

% the average error, capped at magnitude 20. negative

% because error is negative

% trans = -sum(eps*(x*cos(theta) + y*sin(theta)))/unicycles,

% where x and y are the distance to each robot’s goal

%r1 = 0;

%r2 = 0;

if invEps

trans = -sum((eps.^-1).*((S(:,1)-G(:,1)).*cos(S(:,3)) +...

(S(:,2)-G(:,2)).*sin(S(:,3))))/N; % negative of error

else

trans = -sum(((S(:,1)-G(:,1)).*cos(S(:,3)) + ...

(S(:,2)-G(:,2)).*sin(S(:,3))))/N; % negative of error

end

% saturate input command to 20px

trans = sign(trans).*min(20,abs(trans));

% apply r1 with noise

%u2 = r1*ones(N,1) - sample(a1*r1^2 + a2*trans^2,N);

u2 = -sqrt(a2*trans^2)*randn(N,1);

S(:,3) = S(:,3) + eps.*u2; % theta

% apply trans with noise

%u1 = trans*ones(N,1) - sample(a3*trans^2 + a4*r1^2 +

% a4*r2^2,N);

u1 = trans*ones(N,1) - sqrt(a3*trans^2)*randn(N,1);

S(:,1) = S(:,1) + u1.*eps.*cos(S(:,3)); % x

S(:,2) = S(:,2) + u1.*eps.*sin(S(:,3)); % y

% apply r2 with noise

%u3 = r2 - sample(a1*r2^2 + a2*trans^2, N);

u3 = -sqrt(a2*trans^2)*randn(N,1); % optimized for speed

S(:,3) = S(:,3) + eps.*u3;

end

64

function S = ApplyControlLawUni(S,G,eps,a1,a2,a3,a4)

% *Unidirectional* Control Law with noise

% Each action consists of a turn, a move, and another turn

% We have two actions: turn and move forward

% a1: rotation->rotation

% a2: translation->rotation

% a3: translation->translation

% a4: rotation->translation

N = size(S,1); % number of robots

% First action: turn, assume we want to try to turn pi/2

r1 = pi/2; % how much we want to turn for the first turn

% apply r1 with noise

u2 = r1*ones(N,1) - sqrt(a1*r1^2)*randn(N,1);

S(:,3) = S(:,3) + eps.*u2; % theta

% apply trans with noise

u1 = -sqrt(a4*r1^2)*randn(N,1);

S(:,1) = S(:,1) + u1.*eps.*cos(S(:,3)); % x

S(:,2) = S(:,2) + u1.*eps.*sin(S(:,3)); % y

% Second action: Translation

% our requested translation is the amount that minimizes

% the average error, capped at magnitude 20. negative

% because error is negative

% trans = -sum(eps*(x*cos(theta) + y*sin(theta)))/unicycles,

% where x and y are the distance to each robot’s goal

trans = -sum((eps.^-1).*((S(:,1)-G(:,1)).*cos(S(:,3)) + ...

(S(:,2)-G(:,2)).*sin(S(:,3))))/N; % negative of error

trans = max(0,min(20,trans)); % saturate input command

% apply r1 with noise

u2 = -sqrt(a2*trans^2)*randn(N,1);

S(:,3) = S(:,3) + eps.*u2; % theta

% apply trans with noise

u1 = trans*ones(N,1) - sqrt(a3*trans^2)*randn(N,1);

S(:,1) = S(:,1) + u1.*eps.*cos(S(:,3)); % x

S(:,2) = S(:,2) + u1.*eps.*sin(S(:,3)); % y

65

% apply r2 with noise

u3 = -sqrt(a2*trans^2)*randn(N,1); % optimized for speed

S(:,3) = S(:,3) + eps.*u3;

end

function S = ApplyObstacleControlLaw(S,G,O,eps,a1,a2,a3,a4)

% Obstacle-Avoiding Control Law with noise

% Each action consists of a turn, a move, and another turn

% We have two actions: turn and move forward

% a1: rotation->rotation

% a2: translation->rotation

% a3: translation->translation

% a4: rotation->translation

N = size(S,1); % number of robots

nu = 20; % gain

Qs = 30; % max effective distance

% First action: turn, assume we want to try to turn pi/2

r1 = pi/2; % how much we want to turn for the first turn

% apply r1 with noise

u2 = r1*ones(N,1) - sqrt(a1*r1^2)*randn(N,1);

S(:,3) = S(:,3) + eps.*u2; % theta

% apply trans with noise

u1 = -sqrt(a4*r1^2)*randn(N,1);

S(:,1) = S(:,1) + u1.*eps.*cos(S(:,3)); % x

S(:,2) = S(:,2) + u1.*eps.*sin(S(:,3)); % y

% Second action: Translation

% our requested translation is the amount that minimizes

% the average error, capped at magnitude 20. negative

% because error is negative

% trans = -sum(eps*(x*cos(theta) + y*sin(theta)))/unicycles,

% where x and y are the distance to each robot’s goal

trans = -sum((eps.^-1).*((S(:,1)-G(:,1)).*cos(S(:,3)) + ...

(S(:,2)-G(:,2)).*sin(S(:,3))))/N; % negative of error

trans = sign(trans).*min(20,abs(trans)); % saturate input

66

% look at where we’d be if we evolved the system with no noise

Test = S;

Test(:,1) = S(:,1) + trans*eps.*cos(S(:,3)); % x

Test(:,2) = S(:,2) + trans*eps.*sin(S(:,3)); % y

% for each robot, calculate distance to closest obstacle

% and find repulsive fields of the evolved system

urep = zeros(N,1);

for r=1:N

xdist = O(:,1)-Test(r,1);

ydist = O(:,2)-Test(r,2);

a = cos(S(r,3) - atan2(ydist,xdist)); % angles to objects

% threshold to zero

obsdist = max(sqrt(xdist.^2 + ydist.^2) - O(:,3),0);

D = min(obsdist);

if D <= Qs

urep(r) = nu*a(find(obsdist == D,1))*(nu/D - nu/Qs)^2;

else

urep(r) = 0;

end

end

repulsion = mean(urep);

% saturate repulsive field to trans

repulsion = sign(repulsion)*min(abs(trans),abs(repulsion));

trans = trans - repulsion;

% if we can’t go anywhere (repulsive fields of inf and -inf)

if isnan(repulsion)

trans = 0;

end

% saturate input (again)

trans = sign(trans).*min(20,abs(trans));

% apply r1 with noise

u2 = -sqrt(a2*trans^2)*randn(N,1);

S(:,3) = S(:,3) + eps.*u2; % theta

% apply trans with noise

67

u1 = trans*ones(N,1) - sqrt(a3*trans^2)*randn(N,1);

S(:,1) = S(:,1) + u1.*eps.*cos(S(:,3)); % x

S(:,2) = S(:,2) + u1.*eps.*sin(S(:,3)); % y

% apply r2 with noise

u3 = -sqrt(a2*trans^2)*randn(N,1); % optimized for speed

S(:,3) = S(:,3) + eps.*u3;

end

A.1.3 Assembly Simulation

/*

* Aaron & Cem’s ensemble control of assemble

*/

#ifndef ASSEMBLE_H

#define ASSEMBLE_H

class Assemble : public Test

{

int subT; // timer to trigger next t

int t; // which timestep (in terms of goals) we’re on

// in a 2-step control policy, are we rotating or translating

int rotORtrans;

static const int numrobots = 6;

static const int timesteps = 5000;

public:

Assemble() {

subT = 0;

t = 0;

rotORtrans = 0;

m_controlState = WAIT; // wait

robot_mass = 0;

robot_inertia = 0;

// body for bounding box

b2BodyDef bd;

bd.position.Set(0.0f, 0.0f);

b2Body* body = m_world->CreateBody(&bd);

68

// define bounding box

b2Vec2 vs[4];

vs[0].Set(-40.0f, 0.0f);

vs[1].Set(40.0f, 0.0f);

vs[2].Set(40.0f, 80.0f);

vs[3].Set(-40.0f, 80.0f);

b2ChainShape loop;

loop.CreateLoop(vs, 4);

b2FixtureDef fd;

fd.shape = &loop;

fd.density = 0.0f;

fd.friction = 0.0f; // no friction

body->CreateFixture(&fd);

// make a friction joint between world and objects

b2FrictionJointDef frictionJointDef;

frictionJointDef.localAnchorA.SetZero();

frictionJointDef.localAnchorB.SetZero();

// body for friction joint

b2BodyDef bodyDef;

m_groundBody = m_world->CreateBody(&bodyDef);

frictionJointDef.bodyA = m_groundBody;

frictionJointDef.maxForce = FRICTION;

frictionJointDef.maxTorque = FRICTION;

frictionJointDef.collideConnected = true;

for (int i=0; i < 3; i++) {

b2Vec2 vs2[4];

vs2[0].Set(-5.0f, 0.0f);

vs2[1].Set(0.0f, -5.0/sqrt(3));

vs2[2].Set(5.0f, 0.0f);

vs2[3].Set(0.0f, 5.0/sqrt(3));

b2PolygonShape p;

p.Set(vs2, 4);

69

b2BodyDef bd2;

bd2.type = b2_dynamicBody;

bd2.position.Set(-30, 35+15*i);

bd2.angle = -PI/2;

bd2.gravityScale = 0.0f;

b2Body* body2 = m_world->CreateBody(&bd2);

frictionJointDef.bodyB = body2;

m_world->CreateJoint(&frictionJointDef);

body2->CreateFixture(&p, 0.2f);

}

// create the goals

// Phase 1 - move left

int phase1 = 300;

int phase2 = 800;

int phase3 = 3000;

int phase4 = 4500;

for (int j = 0; j < timesteps; j++) {

for(int i = 0; i < numrobots; i++) {

float32 s;

if (j < phase1) {

s = (float) j/phase1;

robGoals[i][0][j] = s*-35;

robGoals[i][1][j] = 3+3*i;

} else if (j < phase2) {

s = (float) (j-phase1)/(phase2-phase1);

robGoals[i][0][j] = -35;

robGoals[i][1][j] =

(1-s)*robGoals[i][1][phase1-1] +

s*(32 + 6*i + (i/2)*3);

} else if (j < phase3) {

s = (float) (j-phase2)/(phase3-phase2);

robGoals[i][0][j] = robGoals[i][0][phase2-1] +

s*25;

robGoals[i][1][j] = robGoals[i][1][phase2-1];

} else if (j < phase4) {

70

s = (float) (j-phase3)/(phase4-phase3);

if (i == 0) {

robGoals[i][0][j] = robGoals[i][0][phase3-1] +

18*cos(-PI/2+s*PI/2.1);

robGoals[i][1][j] = robGoals[i][1][phase3-1] +

18*sin(-PI/2+s*PI/2.1) + 18;

}

if (i == 1) {

robGoals[i][0][j] = robGoals[i][0][phase3-1] +

12*cos(-PI/2+s*PI/2.5);

robGoals[i][1][j] = robGoals[i][1][phase3-1] +

12*sin(-PI/2+s*PI/2.5) + 11;

}

if (i == 2) {

robGoals[i][0][j] = robGoals[i][0][phase3-1] +

s*8;

robGoals[i][1][j] = robGoals[i][1][phase3-1];

}

if (i == 3) {

robGoals[i][0][j] = robGoals[i][0][phase3-1] +

s*8;

robGoals[i][1][j] = robGoals[i][1][phase3-1];

}

if (i == 4) {

robGoals[i][0][j] = robGoals[i][0][phase3-1] +

12*cos(-PI/2+s*PI/2.5);

robGoals[i][1][j] = robGoals[i][1][phase3-1] -

12*sin(-PI/2+s*PI/2.5) - 11;

}

if (i == 5) {

robGoals[i][0][j] = robGoals[i][0][phase3-1] +

18*cos(-PI/2+s*PI/2.1);

robGoals[i][1][j] = robGoals[i][1][phase3-1] -

18*sin(-PI/2+s*PI/2.1) - 18;

}

} else {

robGoals[i][0][j] = robGoals[i][0][j-1];

71

robGoals[i][1][j] = robGoals[i][1][j-1];

}

}

}

// make all our robots and their targets

for(int i =0; i<numrobots; i++) {

float32 e = 1-DELTA + 2*DELTA*i/numrobots + DELTA/numrobots;

float32 x_start = -6+2*i;

float32 y_start = 3;

// make each robot

m_Robot[i] = new Robot(m_world,e,i,x_start,y_start);

// connect robot to world friction

b2Body* body = m_Robot[i]->m_body;

frictionJointDef.bodyB = body;

m_world->CreateJoint(&frictionJointDef);

// draw kinematic bodies for trajectories/goals

m_Target[i] = new Target(m_world,robGoals[i][0][0],

robGoals[i][1][0]);

}

// assume all robots have same mass

if (numrobots > 0) {

robot_mass = m_Robot[0]->m_body->GetMass();

robot_inertia = m_Robot[0]->m_body->GetInertia();

}

}

void Keyboard(unsigned char key) {

switch (key) {

case ’a’ : m_controlState |= ROBOT_LEFT; break;

case ’d’ : m_controlState |= ROBOT_RIGHT; break;

case ’w’ : m_controlState |= ROBOT_FWD; break;

72

case ’s’ : m_controlState |= ROBOT_BWD; break;

case ’g’ : m_controlState &= ~WAIT; break;

default: Test::Keyboard(key);

}

}

void KeyboardUp(unsigned char key) {

switch (key) {

case ’a’ : m_controlState &= ~ROBOT_LEFT; break;

case ’d’ : m_controlState &= ~ROBOT_RIGHT; break;

case ’w’ : m_controlState &= ~ROBOT_FWD; break;

case ’s’ : m_controlState &= ~ROBOT_BWD; break;

default: Test::Keyboard(key);

}

}

void Step(Settings* settings) {

static float desired_dist = 0.0f;

static float impulse = 0.0f;

static float tf = 0.0f;

if (m_controlState &= WAIT) // wait for keypress

return;

subT += 1;

if(subT >= (settings->hz)*tf) { // this waits one second

subT = 0; // reset subsecond counter

if (t < timesteps-1) // increment as long as we’re in range

t += 1;

// Set the control to be applied

if(rotORtrans == CONTROL_ROT) {

// If turning, apply impulse to turn robots

m_controlState |= IMPULSE_ROT;

impulse = sqrt(PI*FRICTION*robot_inertia);

73

tf = (1+DELTA)*impulse/FRICTION;

} else {

// Else, apply Control Law on linear velocity

m_controlState |= IMPULSE_TRANS;

// calculate control law

desired_dist = 0.0f;

for(int i =0; i<numrobots; i++) {

float32 ang = m_Robot[i]->m_body->GetAngle();

b2Vec2 pos = m_Robot[i]->m_body->GetPosition();

float32 eps = m_Robot[i]->epsilon;

desired_dist += -1/eps*((pos.x -

robGoals[i][0][t])*cos(ang)

+

(pos.y - robGoals[i][1][t])*sin(ang));

}

desired_dist /= numrobots;

impulse = SIGN(desired_dist)*sqrt(2*ABS(desired_dist)

*0.8*FRICTION*robot_mass);

tf = (1+DELTA)*impulse/FRICTION;

}

rotORtrans ^= 1; // switch from rotating to translating

} else {

m_controlState &= ~(IMPULSE_ROT|IMPULSE_TRANS);

}

//show some useful info

//m_debugDraw.DrawString(5, m_textLine,

// "Press w/a/s/d to control the robots");

//m_textLine += 15;

char mystr[30];

/*sprintf(mystr, "time = %i,(%f,%f)",

t,robGoals[0][0][t],robGoals[0][1][t]);*/

sprintf(mystr, "time = %i, d = %4.2f",t, desired_dist);

m_debugDraw.DrawString(5, m_textLine, mystr);

//TODO temporary manual-only mode

//m_controlState &= ~(IMPULSE_ROT|IMPULSE_TRANS);

74

// apply the control policy to all robots

for(int i =0; i<numrobots; i++) {

m_Robot[i]->update(m_controlState, impulse);

m_Target[i]->update(robGoals[i][0][t],robGoals[i][1][t]);

}

// parent step function

Test::Step(settings);

}

static Test* Create()

{

return new Assemble;

}

int m_controlState;

Robot* m_Robot[numrobots];

Target* m_Target[numrobots];

float32 robGoals[numrobots][2][timesteps];

float32 robot_mass;

float32 robot_inertia;

};

#endif

A.2 Hardware Experiments

This code was used in the experiments in Chapter 4.

A.2.1 Matlab Program

function EOHtrackAndCommandRobots()

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Robot Demo

75

% Aaron Becker & Cem Onyuksel

% February 2012

%

% This program is designed to control an ensemble of segbots.

%

% This code loads UDP code to get robot pose from OptiTrack,

% sets up and

uses serial connections to each robot, enables

% manual or automatic control

% of the robots, and stores data from each run to a unique file

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

scoms = {’com1’,’com15’,’com14’,’com17’};

import java.io.*

import java.net.DatagramSocket

import java.net.DatagramPacket

import java.net.InetAddress

format compact

running = 1;

%% Open a data file to store data runs

fid = fopen([’RobotRuns\Robot-’,datestr(now, ...

’yyyy-mm-dd-HH-MM-SS’),’.txt’], ’w’);

% runs optiTrack UDP server in background

system(’motrack_udp_MultiRB_one_client.py&’);

% Open socket

port = 3500;

timeout = 500;

packetLength = 200;

try

socket = DatagramSocket(port);

socket.setSoTimeout(timeout);

socket.setReuseAddress(1);

packet = DatagramPacket(zeros(1,packetLength,’int8’),...

packetLength);

76

catch Error

display(Error);

display(Error.message);

try

socket.close;

catch Error

display(Error.message);

end

end % try

%%%%%%%%%%%%%%%%%%%%% OPEN SERIAL CONNECTIONS %%%%%%%%%%%%%%%%%

ncoms = numel(scoms);

serials = cell(ncoms,1);

closeopenserial %clean up serial connections

for k = 1:ncoms

serials{k} = serial(scoms{k},’Baudrate’,57600, ...

’DataBits’,8, ’StopBits’,1,’Timeout’,0.3);

fopen(serials{k});

fprintf(serials{k},’’);

end

%%%

%%% Initialize a joystick %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear JoyMEX

JoyMEX(’init’,1);

%%%

tic; %start a timer

% Create figure for displaying the robots w/ close function

mycolor = [’y’,’r’,’b’,’k’,’g’,’c’,’m’];

nRobots = ncoms;

Epsilon = ones(nRobots,1); % variation in forward speed.

EpsilonCal.Gain = 10/100; % Low pass filter

EpsilonCal.IS_ON = false;

EpsilonCal.cmddist = 0.0;

EpsilonCal.maxDist = 2.53; % Maximum distance

77

if EpsilonCal.IS_ON

EpsilonCal.fig = figure(3);

clf

set(EpsilonCal.fig,’CloseRequestFcn’,@onClose);

EpsilonCal.pHandles = zeros(nRobots,1);

for i = 1:nRobots

EpsilonCal.pHandles(i) = plot(0, Epsilon(i), ...

’color’,mycolor(i));

hold on

end

xlabel(’time (s)’)

ylabel(’Epsilon values’)

title(’Online Calibration of \epsilon’)

end

% initialize robots and workspace

robots = zeros(nRobots,3);

RobOutlineY = [0,-2.375,-2.375,-2.75,-2.75,-3,-3,-2.75, ...

-2.75,-2.375,-2.375,2.375, 2.375, 2.75, 2.75, 3, 3, ...

2.75, 2.75, 2.375, 2.375, 0,0,-1,-1,-2,0,2,1,1,0]/12;

RobOutlineX = [-1,-1,0,0,-2,-2,2,2,0,0,5.5, 5.5,0,0, 2, ...

2,-2,-2,0,0, -1,-1, 0,0,3,3,5,3,3,0,0]/12;

hRobots = zeros(nRobots,1);

hRobotsDes = zeros(nRobots,1);

hTargets= zeros(nRobots,1);

f1 = figure(1);

clf;

set(f1,’CloseRequestFcn’,@onClose);

xLim = 12; yLim = 16;% Set the size of the robot arena

plot([-xLim, xLim, xLim, -xLim, -xLim]/2,[yLim, yLim, ...

-yLim, -yLim, yLim]/2,’r’,’linewidth’,2)

hold on

% starting goal positions

thTargets = 0:pi/8:2*pi;

78

ctrTargets = [-1 2 -1 2;0 0 3 3]’;

radTargets = 1/2;

for i = 1:nRobots

% draw targets and make them draggable

hTargets(i)= patch(ctrTargets(i,1)+ ...

radTargets*cos(thTargets),ctrTargets(i,2)+ ...

radTargets*sin(thTargets),mycolor(i));

set(hTargets(i),’LineWidth’,1,’EdgeColor’,mycolor(i));

draggable(hTargets(i),’none’, ...

[-xLim/2,xLim/2,-yLim/2,yLim/2]);

end

f1Title = title(’Robot position’);

for i =1:nRobots

% draw robot locations and the desired locations

th = robots(i,3);

rx = cos(th)*RobOutlineX -sin(th)*RobOutlineY+ robots(i,1);

ry = sin(th)*RobOutlineX +cos(th)*RobOutlineY+ robots(i,2);

hRobotsDes(i) = plot(rx,ry,mycolor(i));hold on

hRobots(i) = patch(rx,ry,mycolor(i));

if(mycolor(i) == ’k’)

set(hRobots(i),’EdgeColor’,[0.2,0.2,0.2]);

end

end

axis equal

% Force update of plot

drawnow

% Create figure to graph error/get user input w/ close function

S.f2 = figure(2);

set(S.f2,’CloseRequestFcn’,@onClose);

clf;

tlast = toc;

S.hErrors = zeros(nRobots+1,1);

S.hErrors(1) = plot(tlast,sum(sum((robots(:,1:2) - ...

ctrTargets).^2)),’-r’,’linewidth’,2); hold on

79

for i =1:nRobots

% draw robot locations and the desired robot locations

S.hErrors(i+1) = plot(tlast,sum((robots(i,1:2) - ...

ctrTargets(i,1:2)).^2),’-’,’color’ ,mycolor(i));

end

xlabel(’Time (s)’)

ylabel(’Distance Error^2 (ft^2)’)

S.title = title(’Error Plot’);

S.manualMode = 1;

S.pp = uicontrol(’style’,’pop’,...

’unit’,’pix’,...

’position’,[70 410 120 10],...

’backgroundc’,get(S.f2,’color’),...

’fontsize’,12,’fontweight’,’bold’,...

’string’,{’Manual’;’Automatic’;’Calibrate’},...

’value’,S.manualMode);

set(S.pp, ’callback’,{@pp_call,S}); % Set the callback.

function [] = pp_call(varargin)

% Callback for popupmenu.

S = varargin{3}; % Get the structure.

S.manualMode = get(S.pp,’val’); % Get the users choice

end

S.pb = uicontrol(’style’,’push’,...

’units’,’pix’,...

’position’,[420 390 90 30],...

’fontsize’,12,...

’string’,’Reset’,...

’callback’,{@pb_call,S});

set(S.pb, ’callback’,{@pb_call,S}); % Set the callback.

function [] = pb_call(varargin)

% Callback for ’reset’ button

S = varargin{3}; % Get the structure.

for ic =1:numel(S.hErrors)

80

% draw robot locations and the desired robot locations

set(S.hErrors(ic),’Xdata’,[],’Ydata’,[]);

end

end

% Set control state.

CL.turnwait = 3.0; % seconds to wait after a turn command.

CL.state = 1; % 1 = go straight, 2 = turn, 3 = wait for turn

CL.start = toc;

% state does not switch from drive straight to turn until this

CL.dThresh = 1/12;

CL.sendcontrol = 0;

CL.straightwait = 3.0; % seconds to wait after a straight

CL.straightcounter = 0;

CL.CAL.state = 0;

CL.CAL.wait = 2.5; %seconds

ft2rev = 1; %540 ticks per revolution

oneTurn = 1; %2/12 radius wheel wheelbase = 5.5/12

%%%

%%%%%%%%%%%%%%% MAIN LOOP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

while(running)

try %read the data from OptiTrack

socket.receive(packet);

UDPmssg = packet.getData;

UDPmssg = UDPmssg(1:packet.getLength);

Pose = reshape(typecast(UDPmssg,’single’),9,[])’;

EA = SpinCalc(’QtoEA213’,Pose(:,5:8),1e-4,0);

%display([Pose(:,[1,2,3,4]),EA(:,1)])

data(1:size(Pose,1),:) = [Pose(:,[1,2,4]) ,EA(:,1)];

data(:,2) = data(:,2)*3.2808399; %convert from m to ft

data(:,3) = -data(:,3)*3.2808399; %convert from m to ft

data(:,4) = (90+data(:,4))*pi/180;%convert to radians

81

for i = 1:size(data,1)

id = data(i,1);

if id > 0 && id<=nRobots && ...

abs(data(i,2)) < xLim && abs(data(i,3)) < yLim

robots(id,:) = data(i,2:4); %update position

end

end

reDrawRobotPos(hRobots, robots, 0,0,RobOutlineX, ...

RobOutlineY);

catch Error

end % try

tcurr = toc; % read current time

if (tcurr > tlast + 0.5)

tlast = tcurr;

for i =1:nRobots %compute the target locations

ctrTargets(i,:) = [mean(get(hTargets(i),’Xdata’));

mean(get(hTargets(i),’Ydata’))];

end

% update error graph

xdata = [get(S.hErrors(1),’Xdata’),tlast];

totalErr = sum(sum((robots(:,1:2) - ctrTargets).^2));

set(S.hErrors(1),’Ydata’, [get(S.hErrors(1), ...

’Ydata’), totalErr],’Xdata’, xdata) % total error

set(S.title, ’string’,[’Total Error = ’, ...

num2str(totalErr,’%.2f’),’, Time = ’, ...

num2str(xdata(end)-xdata(1),’%.1f’)]);

set(f1Title, ’string’,[’Total Error = ’, ...

num2str(totalErr,’%.2f’),’, Time = ’, ...

num2str(xdata(end)-xdata(1),’%.1f’)]);

for i =1:nRobots % update graph of robot position error

set(S.hErrors(i+1),’Ydata’, [get(S.hErrors(i+1),...

’Ydata’), sum((robots(i,1:2) - ...

ctrTargets(i,1:2)).^2)],’Xdata’, xdata);

end

end

82

% save the robot position and goal

fprintf(fid,[sprintf(’%5.3f, ’,toc), ...

num2str(S.manualMode),’, ’,sprintf(’%5.3f, ...

’,[robots,ctrTargets,Epsilon]),’\n’]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CONTROLLER %%%%%%%%%

if S.manualMode == 1

[~, ab] = JoyMEX(1); % Query button state of joystick 1

CL.cur = toc;

if CL.cur > CL.start + 0.2

if sum(ab(1:4)) % if a button is pressed

CL.start = CL.cur;

dpos =(+ab(4) - ab(2)); %bt 4 and 2 fwd/bwd

dth = (+ab(1) - ab(3)); %bt 1 and 3 turning

reDrawRobotPos(hRobotsDes, robots, dth, ...

dpos,RobOutlineX,RobOutlineY);

Fs = [ft2rev*dpos, oneTurn*dth];

sendCommand(Fs,serials,ncoms);

end

end

elseif S.manualMode == 2 %automatic control

% Control law: send fw/bw command every .5 second

% mag < dThresh, then switch and send turn

% command to turn pi/2. Wait then switch

% to turn command

if CL.state == 0 %wait afer a straight command

CL.cur = toc;

if CL.cur > CL.start + CL.straightwait

CL.state = 2;

if EpsilonCal.IS_ON && ...

abs(EpsilonCal.cmddist) > 0.084

% Low Pass filter: Eps(k+1) = Eps(k) +

% Gain*(MeasEps(k) - Eps(k))

MeasEps = (sum((robots(:,1:2)- ...

83

EpsilonCal.startpos).^2, 2).^.5)/...

abs(EpsilonCal.cmddist);

Epsilon = Epsilon +EpsilonCal.Gain*...

(abs(EpsilonCal.cmddist)/...

EpsilonCal.maxDist)*...

(MeasEps - Epsilon);

%Plot the new Epsilon values

xdata = [get(EpsilonCal.pHandles(1), ...

’Xdata’),tlast];

for i = 1:nRobots

ydata = [get(EpsilonCal.pHandles(i),...

’Ydata’),Epsilon(i)];

set(EpsilonCal.pHandles(i),’Xdata’,...

xdata,’Ydata’,ydata);

end

end

end

elseif CL.state == 1 %straight command

dth = 0;

dpos = controlLaw(nRobots, robots, ...

ctrTargets,Epsilon);

if EpsilonCal.IS_ON

EpsilonCal.cmddist = min(EpsilonCal.maxDist,...

abs(dpos)); % record data for calibration

EpsilonCal.startpos = robots(:,1:2);

end

CL.state = 0;

CL.straightcounter = CL.straightcounter+1;

CL.start = toc;

CL.sendcontrol = 1;

display([’mode = 1,dist = ’,num2str(dpos)])

elseif CL.state == 2 %Turn command

dpos = 0;

dth = pi/2;

CL.state = 3;

CL.start = toc;

84

CL.sendcontrol = 1;

display([’mode = 2,turn = ’,num2str(dth)])

elseif CL.state == 3 %Wait during turn

CL.cur = toc;

if CL.cur > CL.start + CL.turnwait

CL.state = 1;

end

end

if CL.sendcontrol == 1

CL.sendcontrol = 0; %reset control law

reDrawRobotPos(hRobotsDes, robots, dth, dpos, ...

RobOutlineX,RobOutlineY);

Fs = [dpos*ft2rev, dth*oneTurn];

sendCommand(Fs,serials,ncoms);

end

elseif S.manualMode == 3

% Calibrate Mode:record position,command robots to move

% forward 1ft, record distance travelled,

% command robots to move

backwards 1ft,

%record distance travelled. Repeat, and save

% median value to Epsilon

if CL.CAL.state == 0 %initialize

CL.CAL.state = 1;

CL.CAL.count = 0;

CL.CAL.dists = zeros(nRobots,10);

elseif CL.CAL.state == 1 %straight command

CL.CAL.count = CL.CAL.count+1;

dth = 0;

dpos = (-1)^CL.CAL.count;

CL.CAL.startpos = robots(:,1:2);

CL.CAL.start = toc;

CL.CAL.state = 2;

85

reDrawRobotPos(hRobotsDes, robots, dth, dpos,...

RobOutlineX,RobOutlineY);

Fs = [dpos*ft2rev, dth*oneTurn];

sendCommand(Fs,serials,ncoms);

elseif CL.CAL.state == 2 %Wait command

CL.CAL.cur = toc;

if CL.CAL.cur > CL.CAL.start + CL.CAL.wait

% record position change

CL.CAL.dists(:,CL.CAL.count) = ...

sum((robots(:,1:2)- ...

CL.CAL.startpos).^2, 2).^.5;

CL.CAL.state = 1;

if CL.CAL.count == 10

CL.CAL.state = 3;

end

end

elseif CL.CAL.state == 3 %set distances

Epsilon = median(CL.CAL.dists,2);

display(CL.CAL.dists)

display([’Num dists < 0.25 = ’, ...

num2str(sum(sum(CL.CAL.dists < 0.25))), ...

’ out of ’,num2str(numel(CL.CAL.dists))])

display(Epsilon)

CL.CAL.state = 0;

S.manualMode = 1;

set(S.pp, ’value’,S.manualMode);

end

end

% Force update of plot

drawnow %expose update

end %END MAIN WHILE LOOP

%CLEAN UP BEFORE CLOSING PROGRAM

%clear the serial ports

for k = 1:ncoms

fclose(serials{k});

delete(serials{k})

86

end

%close the file

fclose(fid);

%%%

%%%%%%%%%%%%%%%%%% FUNCTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%

function dist = controlLaw(nRobots, robots, ctrTargets,Epsilon)

F = sum((Epsilon.^(-1)).*(cos(robots(:,3)).* ...

(robots(:,1)-ctrTargets(:,1))+ ...

sin(robots(:,3)).*(robots(:,2)-ctrTargets(:,2))));

dist = -F/nRobots;

end

function sendCommand(Fs,serials,ncoms)

ByteArray = uint8(zeros(1,5));

ByteArray(1) = 253;

if Fs(1) > 0

ByteArray(2) = ’F’;

ByteArray(3) = min(252,round((Fs(1)*100)));

elseif Fs(1) < 0

ByteArray(2) = ’B’;

ByteArray(3) = min(252,round((abs(Fs(1))*100)));

elseif Fs(2) > 0

ByteArray(2) = ’L’;

ByteArray(3) = min(252,round((Fs(2)*100)));

else

ByteArray(2) = ’R’;

ByteArray(3) = min(252,round((abs(Fs(2))*100)));

end

ByteArray(4) = ByteArray(3);%ERROR cHECKING

ByteArray(5) = 255;

for kc = 1:ncoms

fwrite(serials{kc},ByteArray); %send to each robot

end

87

end

function onClose(src,evt) %#ok<INUSD>

% When user tries to close the figure, end the while loop

% Clear MEX-file to release joysticks

clear JoyMEX

% close UDP socket

try

socket.close;

catch Error

display(Error.message);

end

running = 0;

delete(src);

%close the python script

system(’taskkill /IM cmd.exe’);

%close all other figures

set(0,’ShowHiddenHandles’,’on’)

delete(get(0,’Children’))

end

end

function reDrawRobotPos(hRobots, robots, dth, dpos, ...

RobOutlineX,RobOutlineY)

for i =1:numel(hRobots) %redraw desired robot position

th = robots(i,3)+dth;

rx = cos(th)*RobOutlineX -sin(th)*RobOutlineY+ ...

robots(i,1)+dpos*cos(th);

ry = sin(th)*RobOutlineX +cos(th)*RobOutlineY+ ...

robots(i,2)+dpos*sin(th);

set(hRobots(i), ’XData’,rx, ’YData’,ry);

end

end

function closeopenserial()

% close any open ports

88

ins = instrfind;

for i=1:size(ins,2)

if(strcmp(’open’,ins(i).Status))

s = ins(i);

fprintf([’Closing: ’,s.Port,’\n’]);

fclose(s);

delete(s);

end

end

end

A.2.2 Optitrak Data Parsing

##

motrack_udp_MultiRB_one_client.py

Version motrack_udp_MultiRB_one_client.py is used to stream to a

MATLAB reader.

#

This code written to interface with Matlab Software

#

v1.0.0

written by Miles Johnson, Aaron Phelps, and Cem Onyuksel

#

reads 6-DOF on multiple trackables from a running Tracking

Tools (go to Streaming Pane and check the box for ’Broadcast

Frame Data’

in NaturalPoint Streaming Engine, For "Network

Interface Selection",

under "Local Interface" set to

<opti_ip>) and sends the data to

<drone_ip>, the IP of a

laptop.

#

#

Note that the order of IP addresses in drone_ip corresponds to

trackable numbers. These must match!

#

89

Copies of this code are found on the svn at

https://subversion.cs.illinois.edu/svn/ae483/trunk/

optitrack/motrack_udp_multi.py

Change Log:

#

#

###

import socket

import struct

import threading

import time

##

######## Configuration Options ###################################

##

Drone Computer IP’s - First IP responds to first trackable, etc.

To increase number of drones,

add IP’s (run ifconfig on Linux machines)

#drone_ip = "128.174.192.70" #Mechtronics PC, 2nd from end

drone_ip = socket.gethostbyname(socket.gethostname()) #Optitrack PC

Drone Computer UDP Port

drone_port = 3500

OptiTrack Computer IP address

[Start->type ’cmd’ in command window, type IPconfig]

opti_ip =socket.gethostbyname(socket.gethostname()) #This is the

#same address that the computer

uses to connect to the Internet.

Data Port (Set in Optitrack Streaming Properties)

opti_port = 1511

90

Multicast Interface (in Optitrack Streaming Properties)

multicastAdd = "239.255.42.99"

##

##

DO NOT EDIT ANYTHING BENEATH THIS LINE!!!!

##

##

class FMClientUDP(threading.Thread): #{{{1

def __init__(self,address=(’localhost’,drone_port)):

threading.Thread.__init__(self)

self.setDaemon(True)

self.address = address

self.sock = None

self.lock = threading.Lock()

def start(self):

threading.Thread.start(self)

def stop(self):

if self.sock:

self.sock.close()

def sendMessage(self, msg):

self.lock.acquire()

data = msg

if self.sock:

try:

#print "sending msg = ",data

self.sock.sendto(data,self.address)

pass

except socket.error:

#print "socket error"

pass

self.lock.release()

def run(self):

91

try:

self.sock = socket.socket(socket.AF_INET,

socket.SOCK_DGRAM)

#print "ClientUDP connected"

except socket.error:

#print "ClientUDP socket error."

return

def unPack(data): #{{{1

trackableState = []

byteorder=’@’

PacketIn = data

major = 2

minor = 0

offset = 0

message ID, nBytes

messageID, nBytes = struct.unpack(byteorder+’hh’,

PacketIn[offset:offset+4])

offset += 4

print ’messageID=’,messageID,’ number of bytes=’,nBytes

if (messageID == 7):

frameNumber,nMarkerSets = struct.unpack(byteorder+’ii’,

PacketIn[offset:offset+8])

offset += 8

#print ’Markersets=’, nMarkerSets

i=nMarkerSets

while (i > 0):

ns = PacketIn[offset:offset+255]

szNamelen=ns.find(’\0’)

#print ns, szNamelen

szName = struct.unpack(byteorder+str(szNamelen)+’s’,

PacketIn[offset:offset+szNamelen])[0]

offset += szNamelen+1 # include the C zero char

#print ’Modelname=’,szName

markers

nMarkers = struct.unpack(byteorder+’i’,

92

PacketIn[offset:offset+4])[0]

offset += 4

#print ’Markercount=’,nMarkers

j=nMarkers

while (j>0):

x,y,z = struct.unpack(byteorder+’fff’,

PacketIn[offset:offset+12])

offset += 12

j=j-1

i=i-1

#unidentified markers

nUMarkers = struct.unpack(byteorder+’i’,

PacketIn[offset:offset+4])[0]

offset += 4

#print ’Unidentified Markercount=’,nUMarkers

i = nUMarkers

while (i > 0):

ux,uy,uz = struct.unpack(byteorder+’fff’,

PacketIn[offset:offset+12])

offset += 12

i=i-1

rigid bodies

nrigidBodies = struct.unpack(byteorder+’i’,

PacketIn[offset:offset+4])[0]

nr = nrigidBodies

print nr

offset += 4

#print ’Rigid bodies=’,nrigidBodies

while (nr > 0):

ID = struct.unpack(byteorder+’i’,

PacketIn[offset:offset+4])[0]

offset += 4

rbx,rby,rbz = struct.unpack(byteorder+’fff’,

PacketIn[offset:offset+12])

offset += 12

rbqx,rbqy,rbqz,rbqw = struct.unpack(byteorder+’ffff’,

93

PacketIn[offset:offset+16])

offset += 16

trackableState.extend([ID,frameNumber, rbx, rby, rbz,

rbqx, rbqy, rbqz, rbqw])

print ’\nID=’,ID

print ’pos:’,rbx,rby,rbz

print ’ori:’,rbqx,rbqy,rbqz,rbqw

associated marker positions

nRigidMarkers = struct.unpack(byteorder+’i’,

PacketIn[offset:offset+4])[0]

offset += 4

#print ’Marker count=’,nRigidMarkers

md = []

markerID = []

markersize = []

for i in range(0,nRigidMarkers):

md.extend(struct.unpack(byteorder+’fff’,

PacketIn[offset:offset+12]))

offset += 12

if major >= 2:

for i in range(0,nRigidMarkers):

markerID.append(struct.unpack(byteorder+’I’,

PacketIn[offset:offset+4])[0])

offset += 4

for i in range(0,nRigidMarkers):

markersize.append(struct.unpack(byteorder+’f’,

PacketIn[offset:offset+4])[0])

offset += 4

for i in range(0,nRigidMarkers):

pass

else:

for i in range(0,nRigidMarkers):

pass

marker errors

if major >= 2:

94

markerError = struct.unpack(byteorder+’f’,

PacketIn[offset:offset+4])[0]

offset += 4

#print ’Mean marker error=’,markerError

nr = nr-1 # next rigid body

return nrigidBodies, trackableState

if __name__ == ’__main__’: #{{{1

Initialize Multicast Socket

mreq = struct.pack(’4sl’,socket.inet_aton(multicastAdd),

socket.INADDR_ANY)

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR,1)

s.bind((opti_ip, opti_port))

s.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, mreq)

create data sender

clientaddress = (drone_ip,drone_port)

client = FMClientUDP(address=clientaddress)

client.start()

Receive data

print "begin recv’ing"

frame_counter = 1.

while (True):

data, addr = s.recvfrom(20240)

if data:

#print "FRAME NUMBER ", frame_counter,

#print

95

numRB, state = unPack(data)

#print ’There are ’,numRB,’ rigid bodies detected!’

#time.sleep(2)

msg = ’’

for rb in range(numRB):

ID = state.pop(0)

fn = state.pop(0)

x = state.pop(0)

y = state.pop(0)

z = state.pop(0)

q0 = state.pop(0)

q1 = state.pop(0)

q2 = state.pop(0)

q3 = state.pop(0)

msg_rb = struct.pack(’fffffffff’,ID,x,y,z,

q0,q1,q2,q3,frame_counter)

#x == 0 and y == 0 and z == 0 and

if q0 == 0 and q1 == 0 and q2 == 0 and q3 ==0 :

pass

else:

msg = msg+msg_rb

I’d like to just send ID, x,y,theta, framecounter

#print msg

client.sendMessage(msg)

#print

#else:

#print "NO MORE TRACKABLES DETECTED"

#print

frame_counter = frame_counter + 1

96

A.2.3 Differential-Drive Robot Program

/***

user_mainEOH.c

MSP430F2272

Aaron and Cem

Turns 2 wheel robot into RC car

College of Engineering Control Systems Lab

University of Illinois at Urbana-Champaign

***/

// need to make sure

// theta is between -pi and pi.

#include "msp430x22x2.h"

#include "UART.h"

#include "LS7266.h"

#define PI 3.141592654

#define FWD 0x4

#define REV 0x1

#define LEFT 0x2

#define RIGHT 0x8

//////// FUNCTION PROTOTYPES ///////////////////////////////////

void Init_PWM(void);

//void Motor_PWM(char motor,float u);

void MotorPI(float vref, float tref, float *DISTpos,

float *THETApos,

char zeroAllIntegrals);

//////// END FUNCTION PROTOTYPES //////////////////////////////

char newprint = 0;

unsigned long timecnt = 0;

97

char msgindex = 0, txindex = 0;

char started = 0, newmsg = 0;

char wireless_state = 0;

char wall_follow = 0, right_wall = 1;

unsigned state_counter = 0;

int rw_dist = 0, fw_dist = 0;

int ADC[3];

int rw_ref = 800, fw_near = 600, fw_far = 800, fw_ref = 900;

float Kp_fw = 0.005, Kp_rw = 0.003;

float vref = 0, tref = 0;

char WiFicmdFlag = 0; //0 == no move, 1 == straight move, 2 == turn

float cmdnum = 0;

float dist = 0;

float turn = 0;

float THETApos = 0;

float DISTpos = 0;

char zeroAllIntegrals = 0;

float ang_err = 0.0;

float distTOGO = 0.0;

void main(void) {

WDTCTL = WDTPW + WDTHOLD; // Stop WDT

if (CALBC1_16MHZ == 0xFF || CALDCO_16MHZ == 0xFF)

while (1)

;

DCOCTL = CALDCO_16MHZ; // Set uC to run at approximately 16 Mhz

BCSCTL1 = CALBC1_16MHZ;

P1DIR |= 0x1; // Default LED output

// Timer A Config

98

TACCTL0 = CCIE; // Enable interrupt

TACCR0 = 20000; // period = 5ms

TACTL = TASSEL_2 + MC_1 + ID_2; // source SMCLK, up mode

// ADC10 Config

ADC10CTL0 = SREF_0 + ADC10SHT_1 + ADC10ON + ADC10IE + MSC;

// Ref-(V+=Vcc,V-=GND), SHT=8xADC10CLk, enable interrupt,

// multiple sample/convert

ADC10CTL1 = INCH_2 + CONSEQ_1 + ADC10SSEL_0 + SHS_0;

// Start at A2, sequence of channels, source ADC10OSC,

// use SC bit for trigger

ADC10DTC0 = 0;

ADC10DTC1 = 3; // Number of conversions in a block

ADC10SA = (unsigned int) ADC; // Start address pointer for DTC

ADC10AE0 = 0x5; // Disable port pin buffers for A0,A2

// Inputs from wireless keyfob

P3SEL &= ~0xF; // DI/O on P3.0-3.3

P3DIR &= ~0xF; // Input Direction

P3REN &= ~0xF; // Disable internal pull-up/dn resistors

Init_UART(57600, 1); // Initialize UART for 57600 baud serial

Init_Encoders(); // Initialize encoders

Init_PWM(); // Set up Timer B for PWM output on TB1 and TB2

// Wireless modem control pins

P2SEL &= ~0xC0; // Digital I/O

P2OUT |= 0x80; // CMD/Data pin high for data

P2DIR |= 0x80; // Output direction for CMD/data pin (P2.7)

P2DIR &= ~0x40; // Input direction for CTS pin (P2.6)

ADC10CTL0 |= ENC; // Enable ADC conversions

_BIS_SR(GIE);

// Enable global interrupt

while (1) {

99

if (newmsg) {

//read position and theta set point

my_scanf(rxbuff, &dist, &turn);

THETApos = 0.0;

DISTpos = 0.0;

if (dist != 0.0F)

{ WiFicmdFlag = 1;}

else if(turn != 0.0F)

{ WiFicmdFlag = 2;}

newmsg = 0;

}

if (newprint) {

P1OUT ^= 0x1;

UART_send(3,(float)DISTpos,

(float)THETApos,(float)cmdnum);

newprint = 0;

}

}

}

// Timer A0 interrupt service routine

#pragma vector=TIMERA0_VECTOR

__interrupt void Timer_A(void) {

timecnt++; // Keep track of time for main while loop.

if ((timecnt % 10) == 0) { // 50ms sample rate

zeroAllIntegrals = 0; //reset

if (1 == WiFicmdFlag) // go the prescribed distance

{

tref = 0.0;

distTOGO = (dist - DISTpos);

if (fabsf(distTOGO) < 0.025) //0.05 ~ 1/2 inch

{ //declare success

vref = 0.0F;

100

WiFicmdFlag = 0; //reset the flag

zeroAllIntegrals = 1; // we have PID controller

} else {

vref = distTOGO;

}

} else if (2 == WiFicmdFlag) // turn the prescribed angle

{

//no sign problems since THETApos never wraps around pi

ang_err = (turn - THETApos);

if (fabsf(ang_err) < 0.05) { //declare success

WiFicmdFlag = 0;

tref = 0.0F;

zeroAllIntegrals = 1;

} else {

tref = 0.35 * ang_err;

} //was 0.5, but overshot, 0.25 undershot

vref = 0.0F;

} else { // no command -- don’t move

tref = 0.0F;

vref = 0.0F;

zeroAllIntegrals = 1;

}

MotorPI(vref, tref, &DISTpos, &THETApos, zeroAllIntegrals);

}

if ((timecnt % 20) == 0) { // 100 ms

newprint = 1; // .5 seconds passed

}

ADC10CTL0 |= ADC10SC; // Trigger ADC every 5ms

}

// ADC 10 ISR - Called when conversions (A7-A0) have completed

#pragma vector=ADC10_VECTOR

__interrupt void ADC10_ISR(void) {

rw_dist = 1023 - ADC[2]; // Channel A0 results

101

fw_dist = 1023 - ADC[0]; // Channel A2 results

// re-initialize DTC block start address

ADC10SA = (unsigned int) ADC;

}

// USCI Transmit ISR - Called when TXBUF is empty

#pragma vector=USCIAB0TX_VECTOR

__interrupt void USCI0TX_ISR(void) {

if (IFG2 & UCA0TXIFG) { // USCI_A0 requested TX interrupt

if (printf_flag) {

if (currentindex == txcount) {

senddone = 1;

printf_flag = 0;

IFG2 &= ~UCA0TXIFG;

} else {

UCA0TXBUF = printbuff[currentindex];

currentindex++;

}

} else if (UART_flag) {

if (!donesending) {

UCA0TXBUF = txbuff[txindex];

if (txbuff[txindex] == 255) {

donesending = 1;

txindex = 0;

} else

txindex++;

}

}

IFG2 &= ~UCA0TXIFG;

}

if (IFG2 & UCB0TXIFG) { // USCI_B0 requested TX interrupt

IFG2 &= ~UCB0TXIFG; // clear IFG

}

102

}

// USCI Receive ISR - Called when shift register has been

// transferred to RXBUF

// Indicates completion of TX/RX operation

#pragma vector=USCIAB0RX_VECTOR

__interrupt void USCI0RX_ISR(void) {

if (IFG2 & UCB0RXIFG) { // USCI_B0 requested RX interrupt

IFG2 &= ~UCB0RXIFG; // clear IFG

}

if (IFG2 & UCA0RXIFG) { // USCI_A0 requested RX interrupt

if (!started) { // Haven’t started a message yet

if (UCA0RXBUF == 253 || UCA0RXBUF == 126) {

started = 1;

newmsg = 0;

}

} else { // In process of receiving a message

if ((UCA0RXBUF != 255) &&

(msgindex < (MAX_NUM_FLOATS * 5))) {

rxbuff[msgindex] = UCA0RXBUF;

msgindex++;

} else { // Stop char received or too much data

if (UCA0RXBUF == 255) { // Message completed

newmsg = 1;

rxbuff[msgindex] = 255; // "Null"

}

started = 0;

msgindex = 0;

}

}

IFG2 &= ~UCA0RXIFG;

}

}

103

/* control.c

*

* Cem Onyuksel and Aaron Becker 2012

*/

#include "msp430x22x2.h"

#include "LS7266.h"

// initializes Timer B for PWM output at 20kHz

// initial duty cycle is 0% for both channels

void Init_PWM(void) {

TBCTL = TBSSEL_2 + MC_1; // Source SMCLK, Up Mode

TBCCR0 = 800; // Set up PWM freq. of 20kHz

TBCCTL0 = 0; // No interrupt, no output

TBCCR1 = 0; // Initialize TB1 duty cycle (0%)

TBCCTL1 = CLLD_1 + OUTMOD_7; // Update CCR1 on TB=0, set mode

TBCCR2 = 0; // Initialize TB2 duty cycle (0%)

TBCCTL2 = CLLD_1 + OUTMOD_7; // Update CCR2 on TB=0, set mode

P4SEL |= 0x06; // Enable TB1 & TB2

P4DIR |= 0x06; // Output TB1 & TB2 to P4.1 & P4.2

P4SEL &= ~0x1; P4DIR |= 0x1; // Phase 1 - P4.0

P2SEL &= ~0x20; P2DIR |= 0x20; // Phase 2 - P2.5

}

void Motor_PWM(char motor, float u) {

signed char dir = 0;

if((motor!=1) && (motor!=2)) return;

// Saturation control

if(u > 10) u = 10;

if(u < -10) u = -10;

if(u >= 0) dir = 1;

104

if(u < 0) dir = -1;

u = fabsf(u);

if(motor == 1) {

if(dir == 1) P4OUT |= 0x1;

else P4OUT &= ~0x1;

TBCCR1 = (unsigned int)(TBCCR0*((10.0-u)/10.0) + 0.5);

}

else {

if(dir == 1) P2OUT |= 0x20;

else P2OUT &= ~0x20;

TBCCR2 = (unsigned int)(TBCCR0*((10.0-u)/10.0) + 0.5);

}

}

float Kp=2.08, Ki = 7.32, Ka = 1, Kp_turn = 4; Ki_turn = 1.0;

float enc1 = 0, enc2 = 0;

float I1 = 0, I2 = 0, v1 = 0, v2 = 0, e1 = 0, e2 = 0;

const float cpos = 0.2198, vpos = 2.424;

const float cneg = -0.386, vneg = 2.177;

float u1 = 0, u2 = 0;

float olde1 = 0, olde2 = 0, e_turn = 0, v1temp = 0, v2temp = 0;

float oldenc1 = 0, oldenc2 = 0;

float Iturn = 0.0, olde_turn = 0.0;

// vref and tref are the angular velocity and turn rate

// (difference in angular velocities) setpoints in rad/s.

// MotorPI changes the duty cycle of the 2

// motors according to a PI control law

void MotorPI(float vref, float tref,float *DISTpos,

float *THETApos, char zeroAllIntegrals) {

if(zeroAllIntegrals)

{I1 =0.0; I2 = 0.0; Iturn = 0.0;}

105

oldenc1 = enc1; oldenc2 = enc2; //Store previous velocity calc

enc1 = Read_Enc_Counter(0); // Read encoder 1 count

enc2 = Read_Enc_Counter(1); // Read encoder 2 count

v1temp = v1; v2temp = v2; // Store in case of rollover

// velocity (ft/s)

v1 = (((enc1-oldenc1)*(2.0*PI/564.0))/0.05)*(2.0/12.0);

v2 = -(((enc2-oldenc2)*(2.0*PI/564.0))/0.05)*(2.0/12.0);

if(fabsf(v1)>50) v1 = v1temp; // rollover protection

if(fabsf(v2)>50) v2 = v2temp; // rollover protection

*DISTpos = *DISTpos + (v1+v2)*0.025;

*THETApos = *THETApos- (v1-v2)* 0.10975;

// Store previous errors

olde1 = e1; olde2 = e2; olde_turn = e_turn; /

e_turn = tref - v2 + v1; // Steering error: v2-v1 -> tref

// Integrate e1 using trapezoid rule

Iturn += (e_turn+olde_turn)*0.10;

e1 = vref - v1 - Kp_turn*e_turn - Ki_turn*Iturn;

e2 = vref - v2 + Kp_turn*e_turn + Ki_turn*Iturn;

// Integrate using trapezoid rule

I1 += ((e1+olde1)/2.0)*0.05;

I2 += ((e2+olde2)/2.0)*0.05;

// Compute control effort (PI control)

u1 = Kp*e1 + Ki*I1;

u2 = Kp*e2 + Ki*I2;

// Friction compensation

if(v1 > 0) u1 += 0.6*(cpos + vpos*v1);

106

else if(v1 < 0) u1 += 0.6*(cneg + vneg*v1);

if(v2 > 0) u2 += 0.6*(cpos + vpos*v2);

else if(v2 < 0) u2 += 0.6*(cneg + vpos*v2);

// Handle saturation

if(u1 > 10) {

I1 *= 0.90;

//I1 -= Ka*(u1-10.0);

u1 = 10;

}

else if(u1 < -10) {

I1 *= 0.90;

//I1 -= Ka*(u1+10.0);

u1 = -10;

}

if(u2 > 10) {

I2 *= 0.90;

//I2 -= Ka*(u2-10.0);

u2 = 10;

}

else if(u2 < -10) {

I2 *= 0.90;

//I2 -= Ka*(u2+10.0);

u2 = -10;

}

Motor_PWM(1,u1);

Motor_PWM(2,-u2);

}

107

References

[1] A. Becker, C. Onyuksel, and T. Bretl, “Feedback control of many
differential-drive robots with uniform control inputs,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), 2012
(under review).

[2] G. E. Dullerud and F. G. Paganini, A Course in Robust
Control Theory: A Convex Approach. [Online]. Available:
http://www.loc.gov/catdir/enhancements/fy0816/99046358-d.html:
New York: Springer, 2000, vol. 36.

[3] K. Zhou and J. Doyle, Essentials of Robust Control. Prentice Hall Inc,
1998.

[4] R. M. DeSantis, “Modeling and path-tracking control of
a mobile wheeled robot with a differential drive,” Robot-
ica, vol. 13, no. 04, pp. 401–410, 1995. [Online]. Available:
http://dx.doi.org/10.1017/S026357470001883X

[5] Y. Chung, C. Park, and F. Harashima, “A position control differential
drive wheeled mobile robot,” Industrial Electronics, IEEE Transactions
on, vol. 48, no. 4, pp. 853 –863, Aug. 2001.

[6] P. Lucibello and G. Oriolo, “Robust stabilization via iterative state
steering with an application to chained-form systems,” Automatica,
vol. 37, pp. 71–79, 2001.

[7] M. Bowling and M. Veloso, “Motion control in dynamic multi-robot en-
vironments,” in Computational Intelligence in Robotics and Automation,
1999. CIRA ’99. Proceedings. 1999 IEEE International Symposium on,
1999, pp. 168 –173.

[8] M. Egerstedt and X. Hu, “Formation constrained multi-agent control,”
Robotics and Automation, IEEE Transactions on, vol. 17, no. 6, pp. 947
–951, Dec. 2001.

[9] Y. C. Tan and B. Bishop, “Evaluation of robot swarm control methods
for underwater mine countermeasures,” in System Theory, 2004. Pro-

108

ceedings of the Thirty-Sixth Southeastern Symposium on, 2004, pp. 294
– 298.

[10] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms
and theory,” Automatic Control, IEEE Transactions on, vol. 51, no. 3,
pp. 401 – 420, Mar. 2006.

[11] M. Erdmann and M. Mason, “An exploration of sensorless manipula-
tion,” IEEE J. Robot. Autom., vol. 4, no. 4, pp. 369–379, Aug. 1988.

[12] K. F. Böhringer, V. Bhatt, B. R. Donald, and K. Goldberg,
“Algorithms for sensorless manipulation using a vibrating surface,”
Algorithmica, vol. 26, no. 3, pp. 389–429, 2000. [Online]. Available:
http://dx.doi.org/10.1007/s004539910019

[13] S. Akella and M. T. Mason, “Orienting toleranced polygo-
nal parts,” The International Journal of Robotics Research,
vol. 19, no. 12, pp. 1147–1170, 2000. [Online]. Available:
http://ijr.sagepub.com/content/19/12/1147.abstract

[14] C. C. Cheah, C. Liu, and J. J. E. Slotine, “Adaptive tracking control for
robots with unknown kinematic and dynamic properties,” The Interna-
tional Journal of Robotics Research, vol. 25, no. 3, pp. 283–296, 2006.
[Online]. Available: http://ijr.sagepub.com/content/25/3/283.abstract

[15] W.-J. Mao, “Robust stabilization of uncertain time-varying
discrete systems and comments on “An improved approach
for constrained robust model predictive control,” Automatica,
vol. 39, no. 6, pp. 1109 – 1112, 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0005109803000694

[16] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, “Mobile robots,”
in Robotics: Modelling, Planning and Control, 2nd ed., ser. Advanced
Textbooks in Control and Signal Processing. Springer, 2009, ch. 11.

[17] R. W. Brockett and N. Khaneja, “On the stochastic control of quan-
tum ensembles,” in System Theory: Modeling, Analysis and Control,
T. Djaferis and I. Schick, Eds. Kluwer Academic Publishers, 1999.

[18] N. Khaneja, “Geometric control in classical and quantum systems,”
Ph.D. dissertation, Harvard University, 2000.

[19] J.-S. Li and N. Khaneja, “Ensemble controllability of the bloch equa-
tions,” in IEEE Conf. Dec. Cont., San Diego, CA, Dec. 2006, pp. 2483–
2487.

[20] J.-S. Li and N. Khaneja, “Control of inhomogeneous quantum ensem-
bles,” Physical Review A (Atomic, Molecular, and Optical Physics),
vol. 73, no. 3, p. 030302, 2006.

109

[21] S. Li, “A new perspective on control of uncertain complex systems,” in
IEEE Conf. Dec. Cont., Dec. 2009, pp. 708–713.

[22] J.-S. Li, “Control of inhomogeneous ensembles,” Ph.D. dissertation,
Harvard University, May 2006.

[23] J.-S. Li and N. Khaneja, “Ensemble control of bloch equations,” IEEE
Trans. Autom. Control, vol. 54, no. 3, pp. 528–536, Mar. 2009.

[24] J.-S. Li and N. Khaneja, “Ensemble control of linear systems,” in IEEE
Conf. Dec. Cont., New Orleans, LA, USA, Dec. 2007, pp. 3768–3773.

[25] J.-S. Li, “Ensemble control of finite-dimensional time-varying linear sys-
tems,” IEEE Trans. Autom. Control, vol. 56, no. 2, pp. 345–357, Feb.
2011.

[26] A. Becker and T. Bretl, “Motion planning under bounded uncertainty
using ensemble control,” in RSS, Zaragosa Spain, 2010.

[27] A. Becker and T. Bretl, “Approximate steering of a unicycle under
bounded model perturbation using ensemble control,” IEEE Trans.
Robot., vol. 28, no. 3, pp. 580–591, 2012.

[28] M. Spong, “The swing up control problem for the acrobot,” Control
Systems, IEEE, vol. 15, no. 1, pp. 49 –55, Feb. 1995.

[29] X. Xin and M. Kaneda, “A new solution to the swing up control problem
for the acrobot,” in SICE 2001. Proceedings of the 40th SICE Annual
Conference. International Session Papers, 2001, pp. 124 –129.

[30] G. Oriolo and Y. Nakamura, “Free-joint manipulators: motion control
under second-order nonholonomic constraints,” in Intelligent Robots and
Systems ’91. ’Intelligence for Mechanical Systems, Proceedings IROS
’91. IEEE/RSJ International Workshop on, Nov. 1991, pp. 1248 –1253
vol.3.

[31] K. Lynch, “Locally controllable manipulation by stable pushing,”
Robotics and Automation, IEEE Transactions on, vol. 15, no. 2, pp.
318 –327, Apr. 1999.

[32] P. Song and V. Kumar, “A potential field based approach to multi-robot
manipulation,” in Robotics and Automation, 2002. Proceedings. ICRA
’02. IEEE International Conference on, vol. 2, 2002, pp. 1217 –1222.

[33] J. Fink, M. Hsieh, and V. Kumar, “Multi-robot manipulation via caging
in environments with obstacles,” in Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on, May 2008, pp. 1471
–1476.

110

[34] P.-T. Chiang, J. Mielke, J. Godoy, J. M. Guerrero, L. B. Alemany, C. J.
Villagómez, A. Saywell, L. Grill, and J. M. Tour, “Toward a light-driven
motorized nanocar: Synthesis and initial imaging of single molecules,”
ACS Nano, vol. 6, no. 1, pp. 592–597, Feb. 2011.

[35] B. Donald, C. Levey, and I. Paprotny, “Planar microassembly by paral-
lel actuation of MEMS microrobots,” Microelectromechanical Systems,
Journal of, vol. 17, no. 4, pp. 789–808, Aug. 2008.

[36] D. Block, “The segbots (two-wheeled balancing robots),” 2012, Control
Systems Laboratory, University of Illinois, Urbana, IL. [Online].
Available: http://coecsl.ece.illinois.edu/projects.html

[37] Y. Shirai, A. J. Osgood, Y. Zhao, K. F. Kelly, and J. M. Tour, “Di-
rectional control in thermally driven single-molecule nanocars,” Nano
Letters, vol. 5, no. 11, pp. 2330–2334, Feb. 2005.

[38] B. Donald, C. Levey, C. McGray, I. Paprotny, and D. Rus, “An un-
tethered, electrostatic, globally controllable MEMS micro-robot,” J. of
MEMS, vol. 15, no. 1, pp. 1–15, Feb. 2006.

[39] S. Floyd, E. Diller, C. Pawashe, and M. Sitti, “Control methodologies
for a heterogeneous group of untethered magnetic micro-robots,” I. J.
Robotic Res., vol. 30, no. 13, pp. 1553–1565, Nov. 2011.

[40] E. Diller, S. Floyd, C. Pawashe, and M. Sitti, “Control of multiple het-
erogeneous magnetic microrobots in two dimensions on nonspecialized
surfaces,” IEEE Trans. Robot., vol. 28, no. 1, pp. 172–182, Feb. 2012.

[41] A. Sebastian and S. Salapaka, “Design methodologies for robust
nano-positioning,” Control Systems Technology, IEEE Transactions on,
vol. 13, no. 6, pp. 868 – 876, Nov. 2005.

[42] S. Bashash and N. Jalili, “Robust multiple frequency trajectory track-
ing control of piezoelectrically driven micro/nanopositioning systems,”
IEEE Trans. Control Syst. Technol., vol. 15, pp. 867 – 878, Sept. 2007.

[43] K.-F. Bohringer, K. Goldberg, M. Cohn, R. Howe, and A. Pisano, “Par-
allel microassembly with electrostatic force fields,” in Robotics and Au-
tomation, 1998. Proceedings. 1998 IEEE International Conference on,
vol. 2, May 1998, pp. 1204 –1211 vol.2.

[44] E. Schaler, M. Tellers, A. Gerratt, I. Penskiy, and S. Bergbreiter, “To-
ward fluidic microrobots using electrowetting,” in IEEE International
Conference on Robotics and Automation, May 2012.

[45] H.-W. Tung, D. R. Frutiger, S. Pan, and B. J. Nelson, “Polymer-based
wireless resonant magnetic microrobots,” in IEEE International Con-
ference on Robotics and Automation, May 2012.

111

[46] Y. Ou, D. H. Kim, P. Kim, M. J. Kim, and A. A. Julius, “Motion con-
trol of tetrahymena pyriformis cells with artificial magnetotaxis: Model
predictive control (mpc) approach,” in IEEE International Conference
on Robotics and Automation, May 2012.

[47] W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically
controlled bubble microrobots in saline solution,” in IEEE International
Conference on Robotics and Automation, May 2012.

[48] K. S. Ishii, W. Hu, and A. T. Ohta, “Cooperative micromanipulation
using optically controlled bubble microrobots,” in IEEE International
Conference on Robotics and Automation, May 2012.

[49] A. M. Lyapunov, translated and edited by A.T. Fuller, The General
Problem of the Stability of Motion. London: Tayor & Francis, 1992.

[50] K. Beauchard, J.-M. Coron, and P. Rouchon, “Time-periodic feedback
stabilization for an ensemble of half-spin systems,” in IFAC Sym. Non-
lin. Cont. Sys., Bologna: Italy, Sept. 2010.

[51] J. P. LaSalle, “Some extensions of Liapunov’s second method,” IRE
Transactions on Circuit Theory, vol. CT, no. 7, pp. 520–527, Dec. 1960.

[52] W. S. Levine, Ed., The Control Handbook. United States of Amer-
ica: CRC Press, Inc., 1996, ch. 25.3 Discrete-Time Linear Time-Varying
Systems, pp. 459–463.

[53] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, Sept. 2005.

[54] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion. The MIT Press,
2005.

[55] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in Proceedings of the IEEE
Conference on Robotics and Automation, April 1991, pp. 1398–1404.

[56] J. Borenstein and L. Feng, “Measurement and correction of systematic
odometry errors in mobile robots,” IEEE Trans. Robot. Autom., vol. 12,
no. 6, pp. 869–880, Dec. 1996.

[57] M. Sitti, “Survey of nanomanipulation systems,” in Proceedings of the
2001 1st IEEE Conference on Nanotechnology, 2001, pp. 75–80.

[58] M.-F. Yu, “Fundamental studies of nanoscale sensing and actua-
tion based on nanomanipulation and assembly,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2003, pp. 2365–2370.

112

