
Learning and Testing Resilience in Cooperative
Multi-Agent Systems

Thomy Phan
Thomas Gabor

Andreas Sedlmeier
Fabian Ritz
LMU Munich

thomy.phan@ifi.lmu.de

Bernhard Kempter
Cornel Klein
Horst Sauer

Reiner Schmid
Jan Wieghardt
Marc Zeller
Siemens AG

Claudia Linnhoff-Popien
LMU Munich

ABSTRACT
State-of-the-art multi-agent reinforcement learning has achieved
remarkable success in recent years. The success has been mainly
based on the assumption that all teammates perfectly cooperate
to optimize a global objective in order to achieve a common goal.
While this may be true in the ideal case, these approaches could
fail in practice, since in multi-agent systems (MAS), all agents
may be a potential source of failure. In this paper, we focus on
resilience in cooperative MAS and propose an Antagonist-Ratio

Training Scheme (ARTS) by reformulating the original target MAS
as a mixed cooperative-competitive game between a group of pro-
tagonists which represent agents of the target MAS and a group of
antagonists which represent failures in the MAS. While the protag-
onists can learn robust policies to ensure resilience against failures,
the antagonists can learn malicious behavior to provide an adequate
test suite for other MAS. We empirically evaluate ARTS in a cyber
physical production domain and show the effectiveness of ARTS
w.r.t. resilience and testing capabilities.

KEYWORDS
multi-agent learning; adversarial learning; learning and testing
ACM Reference Format:
Thomy Phan, Thomas Gabor, Andreas Sedlmeier, Fabian Ritz, Bernhard
Kempter, Cornel Klein, Horst Sauer, Reiner Schmid, Jan Wieghardt, Marc
Zeller, and Claudia Linnhoff-Popien. 2020. Learning and Testing Resilience
in CooperativeMulti-Agent Systems. In Proc. of the 19th International Confer-
ence on Autonomous Agents andMultiagent Systems (AAMAS 2020), Auckland,

New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Distributed systems need to be resilient such that they can reliably
provide a service, while single components may fail due to hard-
ware failures, software flaws, or malicious attacks [38]. To preserve
resilience in such systems, various counter mechanisms like repli-
cation or decentralization of functions are implemented to prepare
such systems for worst-case scenarios of arbitrary failure.

Multi-agent reinforcement learning (MARL) is a promising way to
realize distributed systems, where the components are represented
by autonomous agents in a cooperative multi-agent system (MAS)

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May

9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

[6, 24]. Although state-of-the-art MARL has achieved remarkable
success in recent years [14, 42], they have mainly relied on the
assumption that all teammates perfectly cooperate to achieve a
common goal [6, 21, 28, 33]. While this may be true in the ideal case,
these approaches could fail in practice, since in MAS, all agents may
be a potential source of failure due to hardware or software flaws,
or malicious attacks [38]. This is a critical limitation of current
MARL, which can lead to catastrophic failures that could be severe
in industrial and safety-critical domains [15, 40].

Current approaches to learning resilience in autonomous sys-
tems are based on adversarial learning, where the training envi-
ronment is modeled as an adversary which further challenges the
agent by forcing it to develop robust strategies. A majority of these
works focus on single-agent systems and adversarial changes to a
static environment. However in MAS, agents themselves could fail
in an arbitrary fashion during runtime, which may harm the system
due to changes in the team dynamics which could differ signifi-
cantly from the dynamics encountered during training. Preparing
each agent for all possible worst-case scenarios (e.g., different team
compositions) is an intractable problem and requires more scalable
solutions to generalize across different scenarios [14, 40, 42].

Besides learning resilience via adequate training, testing of ex-
isting systems to uncover flaws is an important aspect. In classical
software engineering (SE), testing is already an integral part and
typically requires 50% of the total development costs which moti-
vates automation [1, 5]. While systematic methods are available in
SE to uncover flaws in software systems, such methods and tools
are still lacking for reinforcement learning (RL) systems due to the
unstructured and complex nature of methods and problems [3, 40].

There are adversarial approaches to detect flaws in existing RL
systems [29, 40], but they are very specialized to a particular system
and have to be retrained from scratch, when encountering a new
system. In cases of system updates or modifications, general test
suites are needed to check any system (configuration) for flaws.

In this paper, we address both learning and testing of resilience
in cooperative MAS. For that, we propose anAntagonist-Ratio Train-
ing Scheme (ARTS) by reformulating the original target MAS as a
mixed cooperative-competitive game between a group of protag-
onists which represent agents of the target MAS and a group of
antagonists which represent failures in the MAS. While training
the protagonists can improve resilience in the target MAS, training
the antagonists can provide an adequate test suite for other MAS.

Our main contributions are as follows:

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1055

• We propose a scalable adversarial training scheme for MARL
to simultaneously train agents, which exhibit robust behav-
ior in the presence of failures and malicious agents, which
can be used as a test suite for other MAS. The proposed
scheme can also be used for black box testing of other MAS.
• For the special case of only one functional agent, we propose
QMixMax as a scalable approximation of Minimax-Q [19],
where we exploit the monotonicity constraint of QMIX [28]
to compute the minimax term with linear time complexity.
QMixMax can be considered as an instantiation of ARTS,
and thus is trained with all concepts proposed in ARTS.
• We empirically evaluate ARTS andQMixMax in a cyber phys-
ical production domain and show the effectiveness of our
adversarial training scheme w.r.t. resilience against failures
and testing capabilities.

2 BACKGROUND
2.1 Problem Formulation
General MAS problems can be formulated as stochastic game𝑀SG =

⟨D,S,A,P,R,Z,Ω⟩, where D = {1, ..., 𝑁 } is a set of agents,
S is a set of states 𝑠𝑡 , A = A1 × ... × A𝑁 is the set of joint
actions 𝑎𝑡 = ⟨𝑎𝑡,1, ..., 𝑎𝑡,𝑁 ⟩, P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) is the transition prob-
ability, 𝑟𝑡,𝑖 = R𝑖 (𝑠𝑡 , 𝑎𝑡) is the reward of agent 𝑖 ∈ D, Z is a
set of local observations 𝑧𝑡,𝑖 for each agent 𝑖 , and Ω(𝑠𝑡 , 𝑎𝑡) =

𝑧𝑡+1 = ⟨𝑧𝑡+1,1, ..., 𝑧𝑡+1,𝑁 ⟩ ∈ Z𝑁 is the joint observation function.
The behavior of a MAS is defined by the (stochastic) joint policy
𝜋 (𝑎𝑡 |𝑧𝑡) = ⟨𝜋1 (𝑎𝑡,1 |𝑧𝑡,1), ..., 𝜋𝑁 (𝑎𝑡,𝑁 |𝑧𝑡,𝑁)⟩, where 𝜋𝑖 (𝑎𝑡,𝑖 |𝑧𝑡,𝑖) is
the local policy or decentralized policy of agent 𝑖 .

𝜋𝑖 (𝑎𝑡,𝑖 |𝑧𝑡,𝑖) can be evaluated with a value function 𝑄𝜋
𝑖
(𝑠𝑡 , 𝑎𝑡) =

E𝜋 [𝐺𝑡,𝑖 |𝑠𝑡 , 𝑎𝑡], where𝐺𝑡,𝑖 =
∑∞
𝑘=0

𝛾𝑘R𝑖 (𝑠𝑡+𝑘 , 𝑎𝑡+𝑘) is the return of
agent 𝑖 , and 𝛾 ∈ [0, 1) is the discount factor. We denote the joint
actions, observations, and policies without agent 𝑖 by 𝑎𝑡,−𝑖 , 𝑧𝑡,−𝑖 and
𝜋−𝑖 respectively. The goal of each agent 𝑖 is to find a best response
𝜋𝑖 to the policies 𝜋−𝑖 of all other agents which maximizes 𝑄𝜋

𝑖
.

In this paper, we focus on two special cases of𝑀SG:
(1) Cooperative MAS 𝑀𝐶 = 𝑀SG, where all agents observe the

same reward 𝑟𝑡 = R𝑖 (𝑠𝑡 , 𝑎𝑡) = R 𝑗 (𝑠𝑡 , 𝑎𝑡) for all 𝑖, 𝑗 ∈ D to
maximize a common global objective. We use cooperative
MAS to model our original target system.

(2) Zero-sum games 𝑀𝑍 = 𝑀SG, where 𝑁 = 2 and R1 (𝑠𝑡 , 𝑎𝑡) =
−R2 (𝑠𝑡 , 𝑎𝑡). We use zero-sum games to model (worst-case)
failures in our target system.

2.2 Multi-Agent Reinforcement Learning
Multi-Agent Reinforcement Learning (MARL) is a popular approach
to learn best responses 𝜋𝑖 for each agent 𝑖 from experience 𝐸. Expe-
rience is generated from interaction with the environment, where a
global experience tuple is defined by 𝑒𝑡 = ⟨𝑠𝑡 , 𝑧𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑧𝑡+1⟩ ∈
𝐸. In this paper, we focus on value-based MARL, where the value
function𝑄𝜋

𝑖
(𝑠𝑡 , 𝑎𝑡) is approximated for each agent in order to derive

local policies 𝜋𝑖 . Independent Q-Learning (IQL) is a simple MARL ap-
proach, where 𝑄𝜋

𝑖
(𝑠𝑡 , 𝑎𝑡) is approximated with �̂�𝑖 (𝑧𝑡,𝑖 , 𝑎𝑡,𝑖), where

each agent 𝑖 is regarding all other agents as part of the environment
and applies the following learning rule [37]:

�̂�𝑖 (𝑧𝑡,𝑖 , 𝑎𝑡,𝑖) ← (1 − 𝛼)�̂�𝑖 (𝑧𝑡,𝑖 , 𝑎𝑡,𝑖) + 𝛼𝑉 (1)

where 𝑉 = 𝑟𝑡,𝑖 + 𝛾max𝑎𝑡+1,𝑖 ∈A𝑖
�̂�𝑖 (𝑧𝑡+1,𝑖 , 𝑎𝑡+1,𝑖) and 𝛼 is the learn-

ing rate. 𝜋𝑖 (𝑎𝑡,𝑖 |𝑧𝑡,𝑖) can be realized by sampling 𝑎𝑡,𝑖 according to
�̂�𝑖 (𝑧𝑡,𝑖 , 𝑎𝑡,𝑖) using e.g., 𝜖-greedy or Boltzmann exploration [17, 37].

IQL offers good scalability, since the maximization in 𝑉 is more
tractable for A𝑖 than for the joint action space A which scales
exponentially w.r.t. 𝑁 . However, IQL suffers from non-stationarity

caused by simultaneously learning agents [6, 19, 21, 28, 33].
For large-scale domains,𝑄𝜋

𝑖
can be approximated with a function

approximator �̂�𝑖,𝜃 with parameters 𝜃 which could be a deep neural
network like a Deep Q-Network (DQN) [17, 22, 36].

2.2.1 Cooperative MARL. In cooperativeMAS𝑀𝐶 = 𝑀SG, learn-
ing is based on a global reward 𝑟𝑡 = R(𝑠𝑡 , 𝑎𝑡) which makes the
deduction of individual agent contributions difficult [4, 44]. To mit-
igate this multi-agent credit assignment problem, factorization of
the global value function 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) has been proposed [28, 33, 34].
QMIX is a state-of-the-art MARL algorithm, which approximates
�̂�𝜃 ≈ 𝑄𝜋 and its decomposition into �̂�𝑖,𝜃𝑖 by minimizing the loss
L(𝜃) w.r.t. 𝜃 and 𝑏 randomly sampled tuples from previous experi-
ences 𝐸 using stochastic gradient descent (SGD) [28]:

L(𝜃) = 1

𝑏

𝑏∑
𝑘=1

[(𝑦𝑡,𝑘 − �̂�𝜃 (𝑠𝑡 , 𝑎𝑡))2] (2)

where 𝑦𝑡,𝑘 = 𝑟𝑡 + 𝛾max𝑎𝑡+1∈A�̂�𝜃− (𝑠𝑡+1, 𝑎𝑡+1). 𝜃− are the parame-
ters of a target network which are periodically set to 𝜃− ← 𝜃 after
𝐶 iterations to ensure stable learning [22].

QMIX enforces monotonicity of �̂�𝜃 in per-agent value �̂�𝑖,𝜃𝑖 such

that 𝛿�̂�𝜃

𝛿�̂�𝑖,𝜃𝑖

≥ 0 for all 𝑖 ∈ D [28]. This enables a tractable argmax-

approximation of �̂�𝜃 by using argmax on the local values �̂�𝑖,𝜃𝑖 with
linear complexity w.r.t. 𝑁 :

argmax𝑎𝑡 ∈A�̂�𝜃 =
©«
argmax𝑎𝑡,1∈A1

�̂�1,𝜃1

...

argmax𝑎𝑡,𝑁 ∈A𝑁
�̂�𝑁,𝜃𝑁

ª®®¬ (3)

A mixing network with non-negative weights, which are produced
by hypernetworks, is used to learn a non-linear decomposition of
�̂�𝜃 . QMIX adopts the paradigm of centralized training and decen-
tralized execution (CTDE), where learning usually takes place in a
laboratory or in a simulated environment. Thus, global information
can be integrated into the training process (e.g., into the hyper-
networks of QMIX) to learn coordinated policies for decentralized
execution in the locally observable world [6, 21, 28, 33].

2.2.2 Zero-Sum MARL. In zero-sum games𝑀𝑍 = 𝑀SG, where
two players or agents 𝑖 = 1 and 𝑗 = 2 have opposing goals, the
Q-Learning update from Eq. 1 can be modified for agent 𝑖 (and
analogously agent 𝑗) by adjusting the variable 𝑉 = 𝑉minimax [19]:

𝑉minimax = 𝑟𝑡,𝑖 +max𝜋𝑖min𝑎𝑡,𝑗 ∈A 𝑗

∑
𝑎𝑡,𝑖 ∈A𝑖

𝜋𝑖 (𝑎𝑡,𝑖 |𝑧𝑡,𝑖)�̂�𝑖 (𝑠𝑡 , 𝑎𝑡)

(4)
This algorithm, is called Minimax-Q. Note that �̂� 𝑗 = −�̂�𝑖 , thus
theoretically only one value function (𝑄𝜋

𝑖
or 𝑄𝜋

𝑗
) needs to be ap-

proximated. Also note, that global information like the state 𝑠𝑡 and
the joint action 𝑎𝑡 are required to compute 𝑉minimax in Eq. 4.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1056

3 RELATEDWORK
3.1 Adversarial Learning and Co-Evolution
Adversarial learning is typicallymodeled as a zero-sum game, where
two opponents are trained in a minimax fashion to improve each
other’s performance and robustness [11, 23, 26]. Generative adver-
sarial networks are a popular example, where a generator is trained
to produce data in order to fool a discriminator which in turn is
trained to distinguish between real and generated data [11]. The
generator can be trained with unsupervised learning or RL [9, 11].

Self-play RL is the most simple way of adversarial RL, where a
single agent is trained to play against itself [2, 26, 30–32, 39]. This
ensures an adequate difficulty level to improve steadily and can
lead to complex behavioral strategies emerging from simple rules.

In 𝐻∞ control, disturbances and errors in the training environ-
ment are modeled to implement robust controllers [45]. This con-
cept was adopted for model-based RL to confront the controller or
agent with adversarial disturbances or with difficult environment
settings in order to learn robust policies for the real world [23, 27].
Robust Adversarial RL (RARL) is a model-free approach, where the
training environment itself is modeled as an RL agent which is able
to manipulate forces to further challenge the original agent [26].

Co-evolution is another adversarial learning paradigm, where
the environment can be adversarially modified by a metaheuristic
search or optimization algorithm, which can provide a population of
challenging environment instances for the learning agent [7, 8, 43].

While adversarial learning forms the basis of our approach, we
focus on cooperative MAS, where arbitrary agent failures may occur.
Instead of the environment, we adversarially modify the team itself
to train robust policies for improved resilience in the target MAS.

3.2 Testing in Reinforcement Learning
Several machine learning approaches have been shown to be vul-
nerable to adversarial examples due to bias and insufficient gen-
eralization [3, 12, 35]. Some works propose search algorithms like
importance sampling to determine difficult settings for RL agents
to uncover flaws in learned policies [29, 40]. RL can also be used to
adversarially determine flaws in fixed RL agents [10, 41].

In contrast to these existing works which are very specialized
and focus on static settings of the environment (e.g., alignment of
obstacles or adversarial input), we focus on generalized testing of
the dynamic aspects in MAS, where all agents are a potential source
of failure. While failures are common in distributed systems, a
cooperative MAS should be resilient against such arbitrary failures.

3.3 Multi-Agent Reinforcement Learning
Minimax-Qwas proposed in [19] as an adaptation of Q-Learning for
zero-sum games. While guaranteeing convergence to safe policies
w.r.t. worst-case opponents, the minimization in Eq. 4 is expensive
if the action space A 𝑗 of the opponent 𝑗 is large [18].

Recently, deep learning approaches to MARL have been pro-
posed to tackle more complex games. A general CTDE framework
was proposed in [21], where 𝑄𝜋

𝑖
(𝑠𝑡 , 𝑎𝑡) is approximated for each

agent 𝑖 to learn best responses for each agent simultaneously in
a centralized fashion. That framework was extended for minimax

optimization, where the non-linear critic is approximated by a local
linear function to handle the expensive minimization in Eq. 4 [18].

Population-based training (PBT) has become a popular alternative
to the CTDE paradigm, where agents are trained independently
with different objectives which are learned or shaped dynamically
[14, 16, 20]. Training agents with a diverse population of potential
teammates or opponents can lead to robust policies that generalize
well across different MAS settings and team compositions [14, 42].

Our approach can be regarded as a combination of CTDE and
PBT. We integrate global information into our training process to
learn decentralized policies. To consider potential failures of each
agent, we maintain a pool representing the agents of the coopera-
tive target MAS and a pool of adversaries representing the "failed"
counterparts of each agent. During training, we sample different
team compositions to train each agent against a random mixture
of original and failed agents to ensure generalization of both pools
w.r.t. varying team compositions and failure scenarios. This way,
we can train resilient cooperative MAS and challenging test suites

represented by the adversary pool. In addition, we propose a spe-
cialized approach which approximates Minimax-Q in a scalable
way by exploiting the monotonicity constraint of QMIX (Eq. 3).

4 TRAINING AND TESTING RESILIENT MAS
4.1 Terminology
Our target system is a cooperative MAS 𝑀𝐶 = 𝑀SG, where all 𝑁
agents maximize a common global objective.

For learning and testing, we formulate a mixed cooperative-

competitive game 𝑀𝑋 [21] with two competing agent teams D𝑋 =

Dpro ∪ Dant with Dpro ∩ Dant = ∅ and |D𝑋 | = 𝑁 . The protago-
nists 𝑖 ∈ Dpro = {1, ..., 𝑁pro} represent functional agents, which
maximize the original objective, while the antagonists 𝑗 ∈ Dant =

{1, ..., 𝑁ant} represent malicious agents, which attempt to minimize
that objective. Thus,𝑀𝑋 = 𝑀𝑍 can be regarded as a zero-sum game
between a team of protagonistsDpro and a team of antagonistsDant,
while the teams themselves are internally cooperative since all pro-
tagonists or antagonists share a common goal respectively. While
all protagonists 𝑖 observe a common reward of 𝑟𝑡,𝑖 = R𝑖 (𝑠𝑡 , 𝑎𝑡), all
antagonists 𝑗 observe a common reward of 𝑟𝑡, 𝑗 = R 𝑗 (𝑠𝑡 , 𝑎𝑡) = −𝑟𝑡,𝑖
which is the negative of the protagonist reward. Therefore, we only
regard the protagonist reward 𝑟𝑡,𝑖 = 𝑟𝑡 = R(𝑠𝑡 , 𝑎𝑡) of𝑀𝐶 .

4.2 Antagonist-Ratio Training Scheme (ARTS)
Our goal is to simultaneously train robust protagonists for resilient
cooperative MAS and antagonists as a challenging test suite.

In practice, all 𝑁 agents in a MAS are a potential source of failure
due to hardware or software flaws, or malicious attacks. Given a
fixed antagonist-ratio

1 𝑅ant =
𝑁ant

𝑁
, we would theoretically need(𝑁−1

𝑁 ·𝑅ant

)
antagonist teams per agent 𝑖 ∈ D = {1, ..., 𝑁 } to robustly

train each of the 𝑁 agents against all possible failure compositions.
To alleviate this scalability issue, we assume different observation

setsZ𝑋 = Zpro ∪Zant withZpro ∩Zant = ∅, where the protago-
nists are unable to explicitly distinguish between protagonists and
antagonists, while the antagonists are able to do so. When using
1A variable antagonist-ratio during training would be useful for curriculum learning
and generalization [14, 16]. However, a systematic evaluation as proposed in this paper
would be much harder, thus we defer an analysis with variable 𝑅ant to future work.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1057

Episode 1:

Episode 2:

Episode T:

...

Protagonists Antagonists

Sample

with

Run T mixed-game episodes

with randomly sampled

}Train policies
or evaluate
test results

Figure 1: Overview of the components and an example pro-
cess of ARTS with 𝑅ant = 0.5 and 𝑁 = 4.

function approximation (e.g., deep learning), the antagonists should
be able to generalize across different protagonist settings, while
the protagonists have to learn strategies that are robust against
varying team compositions without "blindly trusting" each other,
in contrast to prior works. Thus, given our cooperative target MAS
𝑀𝐶 with 𝑁 protagonists 𝑖 ∈ D = {1, ..., 𝑁 }, we additionally train
one corresponding antagonist for each protagonist 𝑖 , requiring us
only to train 2𝑁 agents in total as shown in Fig. 1.

ARTS combines CTDE and PBT: The value function 𝑄𝜋 is ap-
proximated in a centralized fashion with global information to learn
decentralized protagonist and antagonist policies. The correspond-
ing joint policies can be regarded as pools 𝜋𝜃pro and 𝜋𝜃ant . In each
iteration, a mixed game𝑀𝑋 is created by defining 𝜋 consisting of
a protagonist part of 𝑁 (1 − 𝑅ant) policies sampled from 𝜋𝜃pro and
an antagonist part of 𝑁 · 𝑅ant policies sampled from 𝜋𝜃ant . 𝜋 may
only contain 𝜋𝑖,𝜃𝑝𝑟𝑜,𝑖 and 𝜋 𝑗,𝜃𝑎𝑛𝑡,𝑗 , if 𝑖 ≠ 𝑗 for all 𝑖, 𝑗 ∈ D (Fig. 1).

The𝑀𝑋 is then runwith 𝜋 in one episodewhich consists ofℎ time
steps to generate experience samples 𝑒𝑡 = ⟨𝑠𝑡 , 𝑧𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑧𝑡+1⟩,
which are stored in a central experience buffer 𝐸. Note that the
joint action 𝑎𝑡 consists of the protagonist joint action 𝑎𝑡,pro and
the antagonist joint action 𝑎𝑡,ant. After the episode, a function
approximator �̂�𝜔 ≈ 𝑄𝜋 with parameters 𝜔 is updated for each
𝑒𝑡 ∈ 𝐸 by minimizing the following loss w.r.t. 𝜔 :

L(𝜔) = 1

ℎ

ℎ∑
𝑡=1

[(𝑦𝑡 − �̂�𝜔 (𝑠𝑡 , 𝑎𝑡))2] (5)

where𝑦𝑡 = 𝑟𝑡 +𝛾�̂�𝜔− (𝑠𝑡+1, 𝑎𝑡+1) and 𝑎𝑡+1 ∼ 𝜋 (𝑎𝑡+1 |𝑧𝑡+1). Similarly
to QMIX, a target network with parameters 𝜔− is used [22, 28].

With 𝐸, the protagonist and the antagonist pool can be updated
via general cooperative MARL methods Ψpro and Ψant respectively
by regarding their respective joint action parts and the correct sign
of 𝑟𝑡 and �̂�𝜔 . �̂�𝜔 can be used as target network for value-based
methods [28, 33], or as critic for policy gradient methods [6, 21].

CTDE approaches to cooperative MARL typically require the
joint action of all agents to approximate a global value function (e.g.,
Eq. 2) [6, 21, 28, 33]. Since only a sampled fraction of the protagonist
or antagonist pool participated in the episode, we use the current
local policies of the respective "unused" agents to estimate the joint
action but do not perform an update on these "unused" policies
(e.g., by setting the corresponding gradients to zero).

The complete formulation of ARTS is given in Algorithm 1,
where D is the set of agents in the cooperative target MAS 𝑀𝐶 ,
𝑁 is the number of agents in 𝑀𝐶 , Ψpro is the protagonist MARL
algorithm, 𝜋𝜃𝑝𝑟𝑜 is the approximator of the protagonist joint pol-
icy (the target joint policy for 𝑀𝐶), Ψant is the antagonist MARL
algorithm, 𝜋𝜃𝑎𝑛𝑡 is the approximator of the antagonist joint policy
(the failure representation for 𝑀𝐶), �̂�𝜔 is the global value function
approximator, Tr = 1 if ARTS is used for training (otherwise for
testing), and 𝑅𝑎𝑛𝑡 ∈ [0, 1) is the antagonist-ratio. ARTS returns a
statistic Δwhich can contain domain relevant data (e.g., the average
return or domain specific violations), and the (trained) parameters
𝜃pro, 𝜃ant, and 𝜔 of the respective function approximators.

Algorithm 1 Antagonist-Ratio Training Scheme (ARTS)

1: procedure ARTS(D, 𝑁 ,Ψ𝑝𝑟𝑜 , 𝜋𝜃𝑝𝑟𝑜 ,Ψ𝑎𝑛𝑡 , 𝜋𝜃𝑎𝑛𝑡 , �̂�𝜔 ,𝑇𝑟, 𝑅𝑎𝑛𝑡)
2: Initialize 𝜃pro for 𝜋𝜃pro , 𝜃ant for 𝜋𝜃ant , and 𝜔 for �̂�𝜔

3: Create statistic Δ
4: for 𝑥 = 1,𝑇 do
5: Create Dant: randomly draw 𝑁 · 𝑅ant agents from D
6: Create Dpro: select {𝑖 ∈ D|𝑖 ∉ Dant}
7: for 𝑖 = 1, 𝑁 do ⊲ Create𝑀𝑋 with D𝑋 = Dpro ∪ Dant

8: if 𝑖 ∈ Dant then 𝜋𝑖 ← 𝜋𝑖,𝜃𝑎𝑛𝑡,𝑖

9: if 𝑖 ∈ Dpro then 𝜋𝑖 ← 𝜋𝑖,𝜃𝑝𝑟𝑜,𝑖

10: 𝜋 ← ⟨𝜋1, ..., 𝜋𝑁 ⟩
11: Run one𝑀𝑋 episode with joint policy 𝜋

12: Store all experiences 𝑒𝑡 = ⟨𝑠𝑡 , 𝑧𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑧𝑡+1⟩ in 𝐸

13: Update statistic Δ w.r.t. 𝐸
14: if Tr = 1 then
15: Update 𝜔 w.r.t. Eq. 5
16: Update 𝜃pro with Ψ𝑝𝑟𝑜 (𝜃pro, 𝐸,Dpro) w.r.t. �̂�𝜔

17: Update 𝜃ant with Ψ𝑎𝑛𝑡 (𝜃ant, 𝐸,Dant) w.r.t. −�̂�𝜔
return ⟨Δ, 𝜃pro, 𝜃ant, 𝜔⟩

ARTS is strongly inspired by RARL [26] which was devised for
single-agent problems. The main difference is that ARTS focuses on
training resilient MAS, where arbitrary parts of the MAS themselves
can act adversarially. For that, we maintain two pools of agents from
which we sample a MAS setting which mixes protagonists and
antagonists in an arbitrary way. While the protagonists have to
learn robust policies to ensure resilience against failures in the
target MAS, the antagonists have to generalize their adversarial
strategies which can be used as test suites of other MAS. Also unlike
RARL which trains both parties alternatingly, we train protagonists
and antagonists simultaneously and try to synchronize trainingwith
a global value function �̂�𝜔 . We also regard the testing capabilities
of ARTS w.r.t. existing systems as described in Section 4.4.

4.3 QMixMax
In addition to ARTS formulated in Section 4.2, we propose an ap-
proximated Minimax-Q scheme which we call QMixMax for the
special case of having 𝑁 − 1 antagonists in the system, which can
be considered themost extreme but theoretically still solvable worst-
case scenario in most MAS settings. QMixMax can be viewed as an
instantiation of ARTS and its structure is shown in Fig. 2.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1058

MLP MLP

MLP
Value Function

Single Protagonist

Antagonists

Trained with single-agent RL (e.g., Q-Learning)

Trained with QMIX () Maximize

to minimize

Output all Q-Values of the protagonist

to maximize

with one single forward pass

Figure 2: Structure and information flow between protag-
nists, antagonists, and value function �̂�𝜔 in QMixMax.

We propose to train the antagonists with Ψant = QMIX (Algo-
rithm 1) and approximate the minimization in Eq. 4, which requires
the argmax of �̂�ant,QMIX (which is the argmax of the local antag-
onist values �̂�ant,QMIX,𝑖 from Eq. 3) which can be computed with
linear complexity. This changes 𝑉minimax = 𝑉QMixMax of Eq. 4 to:

𝑉QMixMax = 𝑟𝑡,𝑖 +max𝑎𝑡,𝑖 ∈A𝑖
�̂�𝜔 (𝑠𝑡 , ⟨𝑎𝑡,𝑖 , 𝑎𝑡,−𝑖 ⟩) (6)

where 𝑎𝑡,−𝑖 = argmax𝑎𝑡,−𝑖 (�̂�ant,QMIX). �̂�ant,QMIX must not be con-
fused with �̂�𝜔 from Algorithm 1. �̂�ant,QMIX is the approximated
global value function of the antagonists and uses −�̂�𝜔 as a target
network and −𝑟𝑡 as reward (Fig. 2). With Eq. 6, the single protago-
nist 𝑖 (according to Algorithm 1, we need to train 𝑁 protagonists)
is able to approximate the Minimax-Q Learning rule in a scalable
way by using e.g., Ψpro = Q-Learning of Eq. 1 with 𝑉 = 𝑉QMixMax.

4.4 Testing Resilience in MAS
Since testing can also be modeled as an adversarial process [10, 29,
40, 41], we propose to use the ARTS formulation in Algorithm 1
for testing two given joint policies 𝜋𝜃𝑝𝑟𝑜 and 𝜋𝜃𝑎𝑛𝑡 , where 𝜋𝜃𝑝𝑟𝑜
represents the MAS to be tested and 𝜋𝜃𝑎𝑛𝑡 represents the test suite.
𝑅ant represents the test difficulty, which determines "how much
antagonism" 𝜋𝜃𝑝𝑟𝑜 will face during testing. To run the test process
Tr needs to be set to zero (Tr ≠ 1 according to Algorithm 1), to
avoid modification of 𝜋𝜃𝑝𝑟𝑜 and 𝜋𝜃𝑎𝑛𝑡 during testing. The statistic
Δ, which is returned at the end of ARTS, can be used to log the test
results (e.g., domain specific violations) for evaluation afterwards.

ARTS can be considered as a black box test approach, where
arbitrary failures are simulated by randomly replacing protagonists
of the target joint policy 𝜋𝜃𝑝𝑟𝑜 with antagonists from the test suite
𝜋𝜃𝑎𝑛𝑡 , without requiring further domain or system knowledge.

Note that ARTS cannot be used for verification, since the purpose
of testing is to detect flaws in a feasibleway. A good test suite should
be able to detect flaws (e.g., significant drops in performance or
domain specific violations) with high probability in faulty systems. If
the test fails to find any flaw, the tested system might still be faulty.
Thus, we consider a system to be resilient (rather than correct),
when it is able to pass a variety of test suites without failure.

(a) CPPS overview (b) bottom left corner of the CPPS

Figure 3: (a) Overview of the whole CPPS with 𝑁 = 4, a
blue entry on the left, and a blue exit on the right. The
green and white cylinders represent agents. The machines
are represented by the numbered boxes with each number
after the ’M’ stands for the machine type. The green agent
𝑖 has tasks𝑖 = [{5, 6}] with the corresponding machines be-
ing colored green. The black paths represent bidirectional
conveyor belts and the transparent boxes represent hubs. (b)
Zoomed view of the bottom left corner of the CPPS which is
marked by the red rectangle in Fig. 3a.

5 EXPERIMENTAL SETUP
5.1 Cyber Physical Production System (CPPS)
Our Cyber Physical Production System (CPPS) domain consists of
a 5 × 5 grid of machines as shown in Fig. 3 and 𝑁 agents with
each having a list of four random tasks tasks𝑖 organized in two
buckets. An example is shown in Fig. 3a. All agents start at the blue
entry on the left (Fig. 3a) and are able to enqueue at their current
machine, move north, south, west, east, or do nothing. At every
time step, each machine processes one agent in its queue. If a task
in its current bucket matches with the machine type, the task is
removed from the agent’s task list with a global reward of +1. An
agent 𝑖 is complete, if tasks𝑖 = ∅ and it reaches the blue exit on the
right (Fig. 3a), yielding another reward of +1. For each incomplete
agent, a global reward of -0.1 is given at every time step. All agents
only know their own tasks while being able to perceive each other’s
positions. All agents are only allowed to move along the black paths
which represent bidirectional conveyor belts and may only share
the same position at the transparent boxes which represent hubs.
Thus, all agents ideally have to coordinate to avoid conflicts or
collisions to ensure fast completion of all tasks.

5.2 Learning Algorithms
To evaluate ARTS, we implemented IQL (Eq. 1) with deep neural
networks, which we refer to as DQN, and QMIX as MARL algo-
rithms for Ψpro and Ψant in Algorithm 1. We experimented with
antagonist-ratios of 𝑅ant ∈ {0, 0.25, 0.5, 0.75}. If 𝑅ant = 0, then
ARTS is equivalent to the original cooperative MARL algorithm
Ψpro, since no antagonist will be sampled for training (Algorithm 1
and Fig. 1). We always put the antagonist-ratio used during training
in brackets e.g., DQN (0.5) is used for agents that were trained with
ARTS using 𝑅ant = 0.5 and Ψpro = Ψant = DQN (Algorithm 1).

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1059

For QMixMax, we use QMIX as Ψant and a single-agent DQN for
Ψpro to approximate Eq. 6 as suggested in Section 4.3. For compari-
son, we also implemented a Minimax-Q version using DQN as Ψant
instead of QMIX, which we simply callMinimax. All algorithms use
indpendent 𝜖-greedy exploration with a linear decay of 0.00002 per
training time step until a minimum value of 0.01 is reached.

5.3 Neural Network Architecture
We used deep neural networks to implement �̂�𝜔 , �̂�ant,QMIX for
QMIX (Section 4.3), and �̂�𝑖,𝜃𝑖 for each agent 𝑖 . An experience buffer
𝐸 was implemented to store the last 20,000 transitions and to sample
minibatches of size 64 to perform SGD using ADAMwith a learning
rate of 0.0005. We set 𝛾 = 0.95. We also used target networks, which
were updated every 𝐶 = 4, 000 SGD steps [22].

Since CPPS is a gridworld, the states and local observations are
encoded as multi-channel image as proposed in [13, 25]. We imple-
mented all networks as multilayer perceptron (MLP) and flattened
the multi-channel images before feeding them into the networks.
�̂�𝑖,𝜃𝑖 for DQN and QMIX has two hidden layers of 64 units. The
output of �̂�𝑖,𝜃𝑖 has one linear unit per local action. The mixing
network of QMIX has a single hidden layer of 64 units and a single
linear output unit. �̂�𝜔 has two input streams for 𝑠𝑡 and 𝑎𝑡 with
each having a hidden layer of 128 units which are concatenated
and fed into a common MLP with one hidden layer of 256, another
hidden layer of 128 units, and a single linear output unit (|A𝑖 | = 6

units for QMixMax, Fig. 2). All hidden layers use ELU activation.

6 RESULTS
We conducted various CPPS experiments with 𝑁 = 4, 8 agents and
ARTS using different MARL algorithms and 𝑅ant. An episode is reset
after ℎ = 50 time steps or when all protagonists are complete. A
training run of each setting according to Algorithm 1 consists of
𝑇 = 5, 000 episodes and is repeated 50 times.

Measuring performance with the return 𝐺𝑡 =
∑∞
𝑘=0

𝛾𝑘𝑟𝑡 is not
sufficient to evaluate generalization and to compare between differ-
ent ARTS settings, since fully cooperative MAS without any antag-
onism (𝑅ant = 0) would always achieve a higher return than MAS
with 𝑅ant > 0. Thus, we use the average completion rate of the pro-
tagonists 𝑅

complete
= E[𝑁pro,complete

𝑁pro

], where 𝑁pro = 𝑁 (1−𝑅ant) is the
total number of protagonists in𝑀𝑋 and 𝑁

pro,complete
is the number

of complete protagonists after an episode. The testing performance
is measured with the average flaw probability 𝑃

flaw
= 1 − 𝑅

complete
,

which is the chance of preventing faulty protagonists from com-
pleting. Both are recorded in Δ (Algorithm 1).

6.1 ARTS w.r.t. the Antagonist-Ratio
Weanalyzed the effect of different values of𝑅ant ∈ {0, 0.25, 0.5, 0.75}
in ARTS using DQN or QMIX for Ψpro = Ψant for training (Tr = 1

in Algorithm 1). We also trained ARTS in extreme scenarios with
only one protagonist and 𝑁 − 1 antagonists using Minimax with
Ψant = DQN and QMixMax with Ψant = QMIX, where the protago-
nists were trained with Ψpro = DQN to approximate Eq. 6.

The learning progress of the protagonists trained with ARTS
using 𝑅ant ∈ {0, 0.75} with DQN or QMIX as well as Minimax

and QMixMax is shown in Fig. 4. In the 4-agent setting, DQN (0.75),

(a) training with 4 agents (b) training with 8 agents

Figure 4: Learning progress of 50 runs of DQN and QMIX
using ARTS with 𝑅ant ∈ {0, 0.75}, Minimax, and QMixMax.
Shaded areas show the 95 % confidence interval.

QMIX (0), and QMIX (0.75) progress similarly well, with each protag-
onist converging to a completion rate𝑅

complete
close to 1, whileDQN

(0) progresses much slower. In the first 1,000 episodes, Minimax

and QMixMax progress slightly faster than the other approaches,
but their performance significantly detoriates after 3,000 episodes.
The 8-agent settings show a similar trend, with DQN (0) failing to
complete any protagonist during training.

The generalization and resilience of each DQN and QMIX setting
w.r.t. 𝑅ant for 𝑁 = 4, 8 agents was tested by randomly drawing 50
protagonist joint policies 𝜋𝜃𝑝𝑟𝑜 for each setting from their 50 train-
ing runs (Section 6) and tested them against antagonist joint policies
𝜋𝜃𝑎𝑛𝑡 which were also drawn randomly from their corresponding
runs. With each drawn ⟨𝜋𝜃𝑝𝑟𝑜 , 𝜋𝜃𝑎𝑛𝑡 ⟩-pair, we ran 𝑇 = 100 random
episodes using ARTS for testing (Tr = 0 in Algorithm 1) with the
antagonist-ratio 𝑅ant used for training 𝜋𝜃𝑎𝑛𝑡 to compute 𝑅

complete
.

For example, if 𝜋𝜃𝑝𝑟𝑜 of DQN (0.25) was sampled against 𝜋𝜃𝑎𝑛𝑡
of DQN (0.75), then 𝑅ant = 0.75 was used for testing. If 𝜋𝜃𝑎𝑛𝑡 was
trained with DQN (0) or Random (see Section 6.2), then 𝜋𝜃𝑝𝑟𝑜 was
tested against the protagonists of the other setting with a 50:50
mixture. Even if 𝜋𝜃𝑝𝑟𝑜 and 𝜋𝜃𝑎𝑛𝑡 were both trained with DQN (0),
the joint policies would likely originate from different training runs.

The results are shown in Fig. 5. We only tested fully trained

policies and did not update them further as described in Section
4.4. The protagonists of Minimax and QMixMax perform poorly
in all settings. Protagonists trained with QMIX always achieve a
completion rate of 𝑅

complete
> 0.5, when tested with 𝑅ant ≤ 0.5

(Fig. 5b & 5d). The protagonists of QMIX (0.5) and QMIX (0.75)

also show relatively high resilience when being tested with 𝑅ant >

0.5. Protagonists trained with DQN are more resilient towards the
antagonistic settings, the larger 𝑅ant was during training in the
4-agent setting (Fig. 5a). In the 8-agent setting, DQN (0) fails to
complete any protagonist. All other DQN settings perform rather
poorly when being tested with 𝑅ant < 0.5. Protagonists of DQN
(0.75) show the highest resilience towards tests with 𝑅ant ≥ 0.5,
where they achieve a completion rate of 𝑅

complete
> 0.6 (Fig. 5c).

6.2 ARTS w.r.t. different MAS
To further evaluate the generalization and resilience of each setting
trained in Section 6.1, we conducted a cross-validation between
protagonist-antagonist setups of a random baseline (Random), DQN
(0), QMIX (0), DQN (0.75), QMIX (0.75), Minimax, and QMixMax.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1060

(a) DQN (4 agents) (b) QMIX (4 agents)

(c) DQN (8 agents) (d) QMIX (8 agents)

Figure 5: Cross-validation of protagonists and antagonists trained with different 𝑅ant using ARTS with DQN or QMIX. The
protagonists were tested against 𝑁 · 𝑅ant antagonists, where 𝑅ant for testing with ARTS (Tr = 0 in Algorithm 1) is the ratio
originally used for training the antagonists. The numbers in the grid cells represent the average completion rates 𝑅complete of
50 randomly drawn protagonist-antagonist pairs, which each being tested in 𝑇 = 100 random episodes.

The protagonists and antagonists were similarly picked as de-
scribed in Section 6.1 for Fig. 5 and the results are shown in Fig. 6.
In all protagonist settings, Random fails to complete, whileMinimax

and QMixMax perform poorly (although better than Random, Fig.
6). Protagonists of DQN (0) generalize relatively poorly - even in
fully cooperative settings with 𝑅ant = 0, in contrast to QMIX (0).
Both cooperatively trained protagonists never achieve a comple-
tion rate higher than 0.5, when being tested with 𝑅ant ≥ 0.75. The
protagonists of DQN (0.75) and QMIX (0.75) are highly resilient
against tests with 𝑅ant ≥ 0.75. However, both adversarially trained
protagonists have a lower completion rate when being tested with
fully cooperatively trained agents (Fig. 6b).

To quantify the ability of the antagonists of Random, DQN (0.75),
QMIX (0.75), Minimax, and QMixMax to detect flaws in different
protagonist settings, we averaged all𝑅

complete
-values in the columns

(Fig. 6, except of Random, since it was not trained with MARL)
of each corresponding antagonist setting and computed 𝑃

flaw
, as

shown in Fig. 7. The antagonists of Random have the lowest 𝑃
flaw

which is only greater than 50% in the 8-agent setting. All other
antagonists detect flaws with 𝑃

flaw
> 0.6 except for QMIX (0.75) in

the 4-agent setting. The antagonists of QMixMax have the highest
chance of detecting flaws with 𝑃

flaw
= 0.67 in the 4-agent setting,

while DQN (0.75) has the highest chance with 𝑃
flaw

= 0.71 in the
8-agent setting. While the antagonists of QMixMax always have a

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1061

(a) cross validation (4 agents) (b) cross validation (8 agents)

Figure 6: Cross-validation of protagonists and antagonists trained with different MARL algorithms using ARTS. The protag-
onists were tested against 𝑁 · 𝑅ant antagonists, where 𝑅ant for testing with ARTS is the ratio originally used for training the
antagonists. The numbers in the grid cells represent the average completion rates 𝑅complete of 50 randomly drawn protagonist-
antagonist pairs, which each being tested in 𝑇 = 100 random episodes. The green dotted rectangles are explained in Fig. 7.

(a) testing with 4 agents (b) testing with 8 agents

Figure 7: Test performance of different antagonists averaged
over the corresponding test settings in Fig. 6. For example,
𝑃flaw forDQN (0.75) (green bars)was computed for the values
in the corresponding green dotted rectangle in Fig. 6.

higher chance of detecting flaws than QMIX (0.75) in all settings,
DQN (0.75) has always a higher chance than Minimax.

7 DISCUSSION
In this paper, we proposed ARTS, a scalable adversarial training
and testing scheme for MARL. ARTS reformulates the target MAS
as a mixed cooperative-competitive game between a group of pro-
tagonist agents and a group of antagonist agents.

Our experiments show that standard MARL approaches without
any antagonism can fail in the presence of failures due to overfitting
to their teammate behavior and that the training progress itself
is not sufficient for resilience evaluation, since the performance
can significantly degrade when arbitrarily replacing agents (Fig. 5
and Fig. 6). Also, the training progress gives no insight about the

quality of the antagonists, since protagonists could also fail due to
the difficulty of the domain itself as indicated by DQN (0) in Fig. 4.

The results show that ARTS can improve resilience against fail-
ures in cooperative MAS, when training protagonists with a suffi-
cient antagonist-ratio. Although the adversarially trained protago-
nists show resilience against a high antagonist-ratio, they seem to
behave somewhat conservatively, since they cannot distinguish be-
tween protagonists and antagonists. Training robust agents, which
can safely adapt at runtime would be interesting for future work.

ARTS generates test suites, which are able to detect flaws more
reliably than simply replacing protagonists by random agents (Fig.
6). Analogously to the resilience case, it is much harder for test suites
to uncover flaws when the protagonists behave conservatively as
the antagonists try to approach the protagonists to block their paths,
while the protagonists try to avoid any other agent.WhileQMixMax

was unable to produce productive protagonists, it produced strong
antagonists which were able to detect flaws more reliably than
antagonists of QMIX and Minimax (Fig. 5 and Fig. 7).

Since the 8-agent CPPS is significantly more difficult than the
4-agent CPPS due to more potential conflicts and collisions, and due
to a more difficult multi-agent credit assignment, the protagonists
of DQN (0) fail to learn any meaningful policy. The protagonists of
QMIX (0) perform slightly worse in the 8-agent setting than in the
4-agent setting. Therefore, it is easier to detect flaws in the 8-agent
setting. This statement is supported in Fig. 7, where all antagonists
(especially Random) have a higher chance of uncovering flaws in the
8-agent setting, than in the 4-agent setting. Thus, we recommend
QMixMax for uncovering flaws in seemingly easy MAS settings.

ARTS could be further improved with adaptive sampling strate-
gies for protagonists and antagonists, and variable antagonist-ratios
during training based on episode outcomes or the value function.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1062

REFERENCES
[1] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,

Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil Mcminn, Antonia
Bertolino, et al. 2013. An Orchestrated Survey of Methodologies for Automated
Software Test Case Generation. Journal of Systems and Software 86, 8 (2013).

[2] Thomas Anthony, Zheng Tian, and David Barber. 2017. Thinking Fast and Slow
with Deep Learning and Tree Search. InAdvances in Neural Information Processing

Systems. 5360–5370.
[3] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated Gradients

Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.
In International Conference on Machine Learning. 274–283.

[4] Yu-Han Chang, Tracey Ho, and Leslie P Kaelbling. 2004. All Learning is Local:
Multi-Agent Learning in Global Reward Games. InAdvances in neural information

processing systems. 807–814.
[5] Jon EDVARDSSON. 1999. A Survey on Automatic Test Data Generation. In

Proceedings of the 2nd Conference on Computer Science and Engineering, Linkoping,

1999. 21–28.
[6] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. 2018. Counterfactual Multi-Agent Policy Gradients. In AAAI.
[7] Thomas Gabor, Andreas Sedlmeier, Marie Kiermeier, Thomy Phan, Marcel Hen-

rich, Monika Pichlmair, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner
Schmid, and Jan Wieghardt. 2019. Scenario Co-evolution for Reinforcement
Learning on a Grid World Smart Factory Domain. In Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO ’19). ACM, New York, NY,
USA, 898–906. https://doi.org/10.1145/3321707.3321831

[8] Thomas Gabor, Andreas Sedlmeier, Thomy Phan, Fabian Ritz, Marie Kiermeier,
Lenz Belzner, Bernhard Kempter, Cornel Klein, Horst Sauer, Reiner Schmid,
Jan Wieghardt, Marc Zeller, and Claudia Linnhoff-Popien. 2020. The Scenario
Co-Evolution Paradigm: Adaptive Quality Assurance for Adaptive Systems. In-
ternational Journal on Software Tools and technology Transfer (2020).

[9] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SMAli Eslami, andOriol Vinyals.
2018. Synthesizing Programs for Images using Reinforced Adversarial Learning.
In International Conference on Machine Learning. 1652–1661.

[10] Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, Sergey Levine, and Stuart
Russell. 2019. Adversarial Policies: Attacking Deep Reinforcement Learning.
arXiv preprint arXiv:1905.10615 (2019).

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Advances in neural information processing systems. 2672–2680.

[12] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. ICLR 2015 (2015).

[13] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative
Multi-Agent Control using Deep Reinforcement Learning. In International Con-

ference on Autonomous Agents and Multiagent Systems. Springer, 66–83.
[14] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever,

Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos,
Avraham Ruderman, et al. 2019. Human-Level Performance in 3D Multiplayer
Games with Population-based Reinforcement Learning. Science 364, 6443 (2019).

[15] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Julien
Perolat, David Silver, Thore Graepel, et al. 2017. A Unified Game-Theoretic Ap-
proach to Multiagent Reinforcement Learning. In Advances in Neural Information

Processing Systems.
[16] Joel Z Leibo, Julien Perolat, Edward Hughes, Steven Wheelwright, Adam H

Marblestone, Edgar Duéñez-Guzmán, Peter Sunehag, Iain Dunning, and Thore
Graepel. 2019. Malthusian Reinforcement Learning. In Proceedings of the 18th In-

ternational Conference on Autonomous Agents and Multiagent Systems. IFAAMAS,
1099–1107.

[17] Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, JanuszMarecki, and Thore Graepel.
2017. Multi-Agent Reinforcement Learning in Sequential Social Dilemmas. In
Proceedings of the 16th Conference on Autonomous Agents and Multiagent Systems.
IFAAMAS.

[18] Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. 2019.
Robust Multi-Agent Reinforcement Learning via Minimax Deep Deterministic
Policy Gradient. In AAAI.

[19] Michael L Littman. 1994. Markov Games as a Framework for Multi-Agent Rein-
forcement Learning. In Machine learning proceedings 1994. Elsevier, 157–163.

[20] Siqi Liu, Guy Lever, Josh Merel, Saran Tunyasuvunakool, Nicolas Heess, and
Thore Graepel. 2019. Emergent Coordination through Competition. ICLR 2019

(2019).
[21] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.

Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. In
Advances in Neural Information Processing Systems. 6379–6390.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. 2015. Human-Level Control through Deep Reinforcement

Learning. Nature (2015).
[23] JunMorimoto and Kenji Doya. 2001. Robust Reinforcement Learning. InAdvances

in Neural Information Processing Systems. 1061–1067.
[24] Frans A Oliehoek and Christopher Amato. 2016. A Concise Introduction to Decen-

tralized POMDPs. Vol. 1. Springer.
[25] Thomy Phan, Lenz Belzner, Thomas Gabor, and Kyrill Schmid. 2018. Leveraging

Statistical Multi-Agent Online Planning with Emergent Value Function Approxi-
mation. In Proceedings of the 17th International Conference on Autonomous Agents

and Multiagent Systems. IFAAMAS, 730–738.
[26] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. 2017. Ro-

bust Adversarial Reinforcement Learning. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70. JMLR. org, 2817–2826.
[27] Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey Levine.

2017. EPOpt: Learning Robust Neural Network Policies using Model Ensembles.
ICLR 2017 .

[28] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value
Function Factorisation for Deep Multi-Agent Reinforcement Learning. In Inter-

national Conference on Machine Learning. 4292–4301.
[29] Avraham Ruderman, Richard Everett, Bristy Sikder, Hubert Soyer, Jonathan

Uesato, Ananya Kumar, Charlie Beattie, and Pushmeet Kohli. 2018. Uncovering
Surprising Behaviors in Reinforcement Learning via Worst-case Analysis. (2018).

[30] Arthur L Samuel. 1959. Some Studies in Machine Learning using the Game of
Checkers. IBM Journal of research and development 3, 3 (1959), 210–229.

[31] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the Game of Go with Deep Neural
Networks and Tree Search. Nature (2016).

[32] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the Game of Go without Human Knowledge. Nature 550,
7676 (2017), 354.

[33] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung
Yi. 2019. QTRAN: Learning to Factorize with Transformation for Cooperative
Multi-Agent Reinforcement Learning. In International Conference on Machine

Learning. 5887–5896.
[34] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-

cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2018. Value-decomposition networks for cooperative multi-agent
learning based on team reward. In Proceedings of the 17th International Conference

on Autonomous Agents and Multiagent Systems (Extended Abstract). IFAAMAS.
[35] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. 2013. Intriguing Properties of Neural Networks.
ICLR 2014 (2013).

[36] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus,
Juhan Aru, Jaan Aru, and Raul Vicente. 2017. Multiagent Cooperation and
Competition with Deep Reinforcement Learning. PloS one 12, 4 (2017), e0172395.

[37] Ming Tan. 1993. Multi-Agent Reinforcement Learning: Independent versus
Cooperative Agents. In Proceedings of the Tenth International Conference on In-

ternational Conference on Machine Learning. Morgan Kaufmann Publishers Inc.,
330–337.

[38] Andrew S Tanenbaum and Maarten Van Steen. 2007. Distributed Systems: Princi-

ples and Paradigms. Prentice-Hall.
[39] Gerald Tesauro. 1995. Temporal Difference Learning and TD-Gammon. Commun.

ACM 38, 3 (1995), 58–69.
[40] Jonathan Uesato, Ananya Kumar, Csaba Szepesvari, Tom Erez, Avraham Rud-

erman, Keith Anderson, Nicolas Heess, Pushmeet Kohli, et al. 2019. Rigorous
Agent Evaluation: An Adversarial Approach to Uncover Catastrophic Failures.
ICLR 2019.

[41] Jonathan Uesato, Brendan O’Donoghue, Pushmeet Kohli, and Aaron Oord. 2018.
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks. In Inter-

national Conference on Machine Learning. 5032–5041.
[42] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew

Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. 2019. Grandmaster Level in StarCraft II using Multi-Agent
Reinforcement Learning. Nature (2019), 1–5.

[43] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. 2019. POET: Open-
Ended Coevolution of Environments and their Optimized Solutions. In Proceedings
of the Genetic and Evolutionary Computation Conference. ACM, 142–151.

[44] David HWolpert and Kagan Tumer. 2002. Optimal Payoff Functions for Members
of Collectives. In Modeling complexity in economic and social systems. World
Scientific, 355–369.

[45] Kemin Zhou, John Comstock Doyle, Keith Glover, et al. 1996. Robust and Optimal

Control. Vol. 40. Prentice hall New Jersey.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1063

https://doi.org/10.1145/3321707.3321831

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Formulation
	2.2 Multi-Agent Reinforcement Learning

	3 Related Work
	3.1 Adversarial Learning and Co-Evolution
	3.2 Testing in Reinforcement Learning
	3.3 Multi-Agent Reinforcement Learning

	4 Training and Testing Resilient MAS
	4.1 Terminology
	4.2 Antagonist-Ratio Training Scheme (ARTS)
	4.3 QMixMax
	4.4 Testing Resilience in MAS

	5 Experimental Setup
	5.1 Cyber Physical Production System (CPPS)
	5.2 Learning Algorithms
	5.3 Neural Network Architecture

	6 Results
	6.1 ARTS w.r.t. the Antagonist-Ratio
	6.2 ARTS w.r.t. different MAS

	7 Discussion
	References

