
Optimal Control in Partially Observable Complex Social Systems
Fan Yang

University at Buffalo
Buffalo, New York

fyang24@buffalo.edu

Bruno Lepri
FBK

Trento, Italy
lepri@fbk.eu

Wen Dong
University at Buffalo
Buffalo, New York

wendong@buffalo.edu

ABSTRACT
We live in a world full of complex social systems. Achieving opti-
mal control in a complex social system is challenging due to the
difficulty in modeling and optimization. To capture the complex
social system dynamics accurately and succinctly, we model the
decision-making problem as a partially observable discrete event
decision process. To withstand the curse of dimensionality in high-
dimensional belief state spaces and to optimize the problem in an
amenable searching space, we investigate the connections between
the value function of a partially observable decision process and
that in the corresponding fully-observable scenario, and reduce the
optimal control of a partially observable discrete event decision
process to a policy optimization with a specially formed fully ob-
servable decision process and a belief state estimation. When tested
in real-world transportation scenarios, in comparison with other
state-of-the-art approaches, our proposed algorithm leads to the
least average time on-road, the largest number of vehicles at work
during work hours and the fewest training epochs to converge to
the highest total rewards per episode.
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1 INTRODUCTION
Organizations, cities, and more in general human societies are all
examples of complex social systems, containing a large number of
components that interact with each other and trigger the change of
the system state [20]. For example, the transportation system is a
complex one where different traffic conditions are formed through
the movements and the interactions of each vehicle. An epidemic
can be described as a complex system where a disease is spread
through social face-to-face and proximity interactions among dif-
ferent people.

However, achieving optimal control in complex social systems re-
mains a difficult problem, mainly due to two reasons: the difficulties
inmodeling and the difficulties in optimization. First, complex social
systems usually contain a high-dimensional state space, complex
state transitions, and only partial observability. It is still a challenge
on how to accurately and succinctly modeling the dynamics of
complex social systems. Second, complex social systems usually
have sophisticated spatial-temporal dependencies, where different
components could affect each other, and early decisions may have
huge effects in the future. For example, in a transportation system,
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traffic congestion is formed when multiple vehicles simultaneously
are choosing the same road, which will delay the driving time for
others driving on the congested road, and which may take hours to
dissipate. Due to the complicated spatial-temporal dependencies,
it is not easy to optimize a complex social system optimal control
problem.

In the literature, there are mainly two kinds of approaches to
solve decision-making problems for complex social systems [12].
One kind is the simulation-based methods which reproduce the mi-
croscopic interactions through a simulationmodel, and use sampling-
based algorithms to optimize the decision making process [17, 23,
25, 29]. These approaches generally can model the system dynamics
with high fidelity but have difficulty in optimization due to the high
variance. The other kind is the analytical-based methods, which
depict the macroscopic dynamics of the system analytically, and
use constrained optimization methods to solve the problem [7, 16].
However, when the system becomes complicated, which is often
the case in real world, these methods often involve issues with
modeling errors. Recently, Yang, Liu, and Dong have combined
simulation and analytical approaches to propose a discrete event
decision process (DEDP) which exhibits promising results in a real-
world transportation scenario [32]. This is a great attempt, however,
their approach assumes a decision making process able to acquire
a full observation of the entire system.

To model the complex social system succinctly and accurately,
we take inspiration from the work of Yang, Liu, and Dong [32],
but we formulate the decision-making process in a social system
as a partially observable discrete event decision process (POD-
EDP). Intuitively, their DEDP solution assumes perfect information,
so it never performs information-gathering actions, and thus the
policy heuristic formed with their solution is sub-optimal by act-
ing overoptimistic in a PODEDP environment such the one of a
real-world social system (e.g. a real-world transportation scenario).
Moreover, compared with a partially observable Markov decision
process (POMDP), a PODEDP describes the system transition dy-
namics more succinctly and accurately through a discrete event
model [4, 14, 30] that captures the dynamics using a simulation
process over microscopic interaction events of its components. We
demonstrate this improvement through a comparison with an ana-
lytical approach based on a POMDP in the domain of transportation
optimal control.

Directly solving a PODEDP in a complex social system is prohib-
itive due to the exploding state action spaces. To solve a PODEDP
efficiently, we establish a connection between the value function
in a PODEDP and that in a specially formed DEDP (SDEDP). With
this connection, we split the process of optimizing the policy pa-
rameters, and the procedure of gathering information from partial
observations and reduce the optimal control of a PODEDP to a
SDEDP policy optimization and belief state estimation. To optimize
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the SDEDP policy parameters with formidable state space, we ap-
ply Taylor approximation to simplify the trajectory distribution,
using a duality theorem [32] to recast optimal control as parameter
learning, and introducing an approximate inference algorithm with
marginal transition kernel. To track the belief state in complex social
systems with exploding state space, we apply variational inference
and maximize the variational lower bound [28]. We demonstrate
that our method leads to a less-variance and a higher-performance
solution in benchmarking with other simulation approaches in
experimenting with traffic control problems.

This paper makes the following contributions: first of all, we
model the complex social system dynamics succinctly and accu-
rately with a PODEDP. Second, we develop a tractable solution to
the PODEDP through a SDEDP policy optimization and a belief
state estimation. Finally, we evaluate our proposed framework on a
real-world transportation scenario and we demonstrate that POD-
EDP achieves higher system expected rewards, faster convergence,
and lower variance of value function when compared with other
state-of-the-art analytical and sampling approaches.

2 BACKGROUND
In this section, we review the discrete event model, the discrete
event decision process (DEDP), and the duality theorem.

2.1 Discrete Event Model
A discrete event model specifies the dynamics of complex social
systems through a sequence of stochastic events which individually
described the microscopic state transitions, and which aggregated
together described the macroscopic system state changes. The dis-
crete event model is used to specify the dynamics of engineered
systems (where it is known as a stochastic Petri-net [14]), of bio-
chemical networks (where it is known as a stochastic kinetic model
[30]), and of social networks (where it is known as discrete event
simulation [4]). The discrete event model is also used in machine
learning to infer the probability distribution of the latent state
[6, 19, 31, 33] and learn complex system dynamics from noisy ob-
servations [3, 27]. However, the potential of a discrete event model
has been only recently explored in optimizing the decision making
processes and interventions in complex social systems [32].

In the following, we introduce the stochastic kinetic formulation
of a discrete event model [30] as the foundation for formulating a
(partially observable) discrete event decision process. A stochastic
kinetic model is a biochemist’s tool for capturing the control in a bio-
logical network through a set of chemical reactions [1]. Specifically,
in a system with M species and V events, an event (chemical reac-
tion) 𝑣 is in the form of a production 𝛼𝑣,1X(1) + · · · + 𝛼𝑣,𝑀X(𝑀) 𝑐𝑣→
𝛽𝑣,1X(1) + · · · + 𝛽𝑣,𝑀X(𝑀) , where X = (X(1) , · · · ,X(𝑀) ) denotes
individuals belonging to the𝑀 species in the system. The produc-
tion is interpreted as having rate coefficient 𝑐𝑣 (probability per
unit time, as time goes to 0) as well as 𝛼𝑣,1 individuals of species
1, 𝛼𝑣,2 individuals of species 2, ..., 𝛼𝑣,𝑀 individuals of species 𝑀
interacting according to event 𝑣 , that results in their removal from
the system. At the same time, 𝛽𝑣,1 individuals of species 1, 𝛽𝑣,2
individuals of species 2, ..., 𝛽𝑣,𝑀 individuals of species𝑀 are intro-
duced into the system. As such, event 𝑣 changes the populations by
Δ𝑣 = (𝛽𝑣,1 −𝛼𝑣,1, · · · , 𝛽𝑣,𝑀 −𝛼𝑣,𝑀 ). In a typical system, each event

usually involves only a few species, i.e., most of 𝛼𝑣,1, 𝛽𝑣,1, ... are 0
for each 𝑣 , resulting in a sparse network of interactions.

2.2 Discrete Event Decision Process
Recently, Yang, Liu, and Dong has applied the discrete event model
in fully observed social system optimal control [32], where they for-
mulated the optimal control problem using a discrete event decision
process DEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩. In the above, 𝑆 and 𝐴 represents
the state and action spaces with states 𝑠𝑡 =

(
𝑠
(1)
𝑡 , ..., 𝑠

(𝑀)
𝑡

)
∈ 𝑆

and action 𝑎𝑡 =

(
𝑎
(1)
𝑡 , ..., 𝑎

(𝐷)
𝑡

)
∈ 𝐴. V = {∅, 1, ...,𝑉 } is the set

of events and 𝑣𝑡 ∈ V indicates the event taking at time 𝑡 which
changes system state by Δ𝑣𝑡 , 𝐶 is the function mapping event rate
coefficients to actions 𝒄 = (𝑐1, ..., 𝑐𝑉 ) = 𝐶 (𝑎𝑡 ). Using the stochastic
kinetic formulation of a discrete event model, the transition kernel
𝑃 specified by events 𝑣𝑡 ∈ V associated with event rate coefficients
𝑐𝑣 is defined as 𝑃 (𝑠𝑡+1, 𝑣𝑡 |𝑠𝑡 , 𝑎𝑡 ) = 𝑝 (𝑣𝑡 | 𝑠𝑡 , 𝑎𝑡 )𝛿𝑠𝑡+1=𝑠𝑡+△𝑣𝑡 , where
𝛿 is an indicator function, and event 𝑣𝑡 changes the system state by
Δ𝑣𝑡 . The probability of a event 𝑣𝑡 happened conditioned on state 𝑠𝑡
and action 𝑎𝑡 could be represented as

𝑝 (𝑣𝑡 | 𝑠𝑡 , 𝑎𝑡 ) =
{
ℎ𝑣 (𝑠𝑡 , 𝑐𝑣) if 𝑣𝑡 ≠ ∅
1 − ∑𝑉

𝑣=1 ℎ𝑣 (𝑠𝑡 , 𝑐𝑣) if 𝑣𝑡 = ∅
where ℎ𝑣 (𝑠𝑡 , 𝑐𝑣) = 𝑐𝑣

∏𝑀
𝑚=1 𝑔

(𝑚)
𝑣 (𝑠 (𝑚)

𝑡 )

In the above, the event rate ℎ𝑣 (𝑠𝑡 , 𝑐𝑣) is computed as the proba-
bility of one single event happens (event rate coefficient) 𝑐𝑣 times
a total of

∏𝑀
𝑚=1 𝑔

(𝑚)
𝑣 (𝑠 (𝑚)

𝑡 ) ways for different individuals to meet.
𝑅 represents the reward function 𝑅(𝑠𝑡 ) =

∑𝑀
𝑚=1 𝑅

(𝑚)
𝑡 (𝑠 (𝑚)

𝑡 ), and
𝛾 is the discount factor. A policy is defined deterministically as
𝑎𝑡 = 𝜇 (𝑠𝑡 ;𝜃 ) or stochastically as 𝜋 = 𝑝 (𝑎𝑡 |𝑠𝑡 ;𝜃 ). For a deterministic
policy, the probability measure to a sample path is

𝑝 (𝜉𝑇 ) = 𝑝 (𝑠0)
∏𝑇−1

𝑡=0

(
𝑝 (𝑣𝑡 | 𝑠𝑡 , 𝜇 (𝑠𝑡 ))𝛿𝑠𝑡+1=𝑠𝑡+Δ𝑣𝑡

)
2.3 Duality Theorem
To cope with the high-dimensional state-action spaces, [32] devel-
oped a convex conjugate duality theorem between the log value
(expected future reward) and the entropy of a proposal distribution.
Specifically, in a DEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩, let𝑇 be a discrete time,𝑚
the component index, H the entropy function, and 𝑟 (𝑇,𝑚, 𝜉𝑇 ;𝜋) =
𝛾𝑇 𝑃 (𝜉𝑇 ;𝜋)𝑅 (𝑚)

𝑇
(𝑠 (𝑚)
𝑇

) the reward-weighted trajectory induced by
policy 𝜋 ; define a proposal distribution 𝑞(𝑇,𝑚, 𝜉𝑇 ) over the trajec-
tories, then the following duality theorem is established.

𝑻𝒉𝒆𝒐𝒓𝒆𝒎 1.

log𝑉 𝜋 (𝑟 ) = sup
𝑞

©«
∑

𝑇 ,𝑚,𝜉𝑇

𝑞 (𝑇,𝑚, 𝜉𝑇 ) log 𝑟 (𝑇,𝑚, 𝜉𝑇 ;𝜋 ) + H (𝑞)ª®¬
Theorem 1 reduces the policy evaluation and improvement in

a policy optimization procedure into probabilistic inference and
parameter learning [28]. With this Theorem, a DEDP could be
solved using a policy-iteration paradigm around the duality form:
solving the variational problem as policy evaluation and optimizing
the target over parameter 𝜃 with a known mixture of finite-length
trajectories as policy improvement.
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(b) POMDP

Figure 1: The two time-slice structure of a PODEDP (left) and
a POMDP (right). A PODEDP captures complex system dy-
namics by factoring complex interactions into a sequence
of elementary events 𝑣𝑡 (shaded node in the left panel)

3 METHODOLOGY
The two challenges for optimal control in complex social systems
are the difficulty in modeling the complex dynamics and the dif-
ficulty in optimization. In this section, we develop a partially ob-
servable discrete event decision process (PODEDP) which captures
the dynamics more succinctly and precisely than a POMDP. For
optimization, a PODEDP is difficult to solve directly due to the
formidable large searching spaces. We can neither solve a PODEDP
through a DEDP because the value function of a DEDP is an upper
bound of a PODEDP. Our method is to develop a specialy formed
DEDP (SDEDP), which is more simple to solve than a PODEDP, to
establish a connection between a PODEDP and a SDEDP, and to
solve a PODEDP through a SDEDP policy optimization (Algorithm
1) and a PODEDP belief state estimation (Algorithm 2).

3.1 Partially Observable Discrete Event
Decision Process

To capture non-linear and high-dimensional state transition dynam-
ics as well as the partial observability of the system states, we formu-
late the real-world complex social system decision-making process
as a PODEDP. Formally, a PODEDP (as shown in the left panel of Fig-
ure 1) is defined as a tuple PODEDP⟨𝑆,𝐴,Ω,V,𝐶, 𝑃,𝑂, 𝑅,𝛾⟩, where
𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾 has the samemeaning as in aDEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,

𝛾⟩. The only additions to a DEDP are the observation space Ω and
the associated observation function 𝑂 .Ω is the observation space
and 𝑜𝑡 ∈ Ω the observation received at time t. 𝑂 is the observa-
tion probability such as 𝑃 (𝑜𝑡 |𝑠𝑡 ). We further define a belief state
𝑏𝑡 = 𝑝 (𝑠𝑡 | 𝑜0:𝑡 ) as the hidden state distribution conditioned on
observation history, and a policy 𝜋 parameterized by 𝜃 as a dis-
tribution of actions conditioned on belief state 𝜋 = 𝑝 (𝑎𝑡 |𝑏𝑡 ;𝜃 ).
The policy can be parameterized in any form, such as a neural
network with the weights being 𝜃 . Solving a PODEDP involves
optimizing the policy 𝜋 through maximizing the expected future re-
ward E𝜉 (

∑
𝑡 𝛾

𝑡𝑅𝑡 ). In the above, 𝑅𝑡 =
∑
𝑠𝑡 𝑏𝑡 (𝑠𝑡 )𝑅(𝑠𝑡 ) is the reward

associated with a belief state, and 𝜉𝑇 = (𝑠0:𝑇 , 𝑎0:𝑇 , 𝑣0:𝑇 , 𝑏0:𝑇 , 𝑜0:𝑇 )

is a length-𝑇 trajectory of a PODEDP with probabilistic measure
𝑝 (𝜉𝑇 )=𝑝 (𝑠0,𝑜0 )

∏
𝑡

(
𝛿𝑏𝑡 =𝑝 (𝑠𝑡 |𝑜0:𝑡 )𝑝 (𝑎𝑡 |𝑏𝑡 )𝑝 (𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )𝛿𝑠𝑡+1=𝑠𝑡 +Δ𝑣𝑡 𝑝 (𝑜𝑡+1 |𝑠𝑡+1 )

)
, where

𝛿 is an indicator function.
A PODEDP makes a tractable expression of a complex social sys-

tem through representing the transition kernel using microscopic
events which could represent the macroscopic state changes when
aggregated together, and the number of which grows linearly with
the number of events. As a comparison, a POMDP represents the
kernel with 𝑝 (𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ), which grows exponentially with the
number of state-action variables, and which becomes intractable in
complex social systems. Through introducing events, a PODEDP
describes the dynamics of a complex social system more succinctly
and accurately. In the experiments, we demonstrate this improve-
ment through a comparison with a POMDP solver.

Comparing to a DEDP, a PODEDP does not assume fully observ-
ability of the system. Instead, it introduces observation variables
and belief states to capture the partial observations and to infer the
possible latent system states. As a result, a PODEDP is a more real-
istic description of a real world system and, meanwhile, introduces
more complexity in solving it. For example, the Bellman Equation
of a PODEDP is:

𝑉★(𝑏) = max𝑎
[
𝑅(𝑎, 𝑏) + 𝛾 ∑

𝑏′ 𝑝 (𝑏 ′(𝑏, 𝑎, 𝑜) |𝑏, 𝑎)𝑉★(𝑏 ′(𝑏, 𝑎, 𝑜))
]
,

where 𝑝 (𝑏 ′(𝑏, 𝑎, 𝑜) |𝑏, 𝑎) is the transition of belief state:

𝑝 (𝑏 ′(𝑏, 𝑎, 𝑜) |𝑏, 𝑎) = 𝑝 (𝑜 |𝑠′) ∑𝑠,𝑣 𝑝 (𝑣 |𝑠,𝑎)𝛿𝑠′=𝑠+Δ𝑣𝑏 (𝑠)∑
𝑠′′

∑
𝑠,𝑣′ 𝑝 (𝑜 |𝑠′′)𝑝 (𝑣′ |𝑠,𝑎)𝛿𝑠′′=𝑠+Δ𝑣′𝑏 (𝑠)

.

The Bellman Equation of a DEDP is:

𝑉 ∗ (𝑠) = max𝑎
[∑

𝑠 𝑅(𝑎, 𝑠) + 𝛾
∑

𝑣,𝑠′ 𝑝 (𝑠 ′, 𝑣 |𝑠, 𝑎)𝑉 (𝑠 ′)
]
.

For a PODEDP⟨𝑆,𝐴,Ω,V,𝐶, 𝑃,𝑂, 𝑅,𝛾⟩, we refer to a DEDP⟨𝑆,𝐴,
V,𝐶, 𝑃, 𝑅,𝛾⟩ as the corresponding DEDP of this PODEDP if these
two decision processes share the same 𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾 and start
from the same initial state distribution 𝑝 (𝑠0). Note that in a PODEDP
the policy takes only the stochastic form 𝜋 = 𝑝 (𝑎𝑡 |𝑏𝑡 ;𝜃 ), but in a
DEDP the policy could be stochastic 𝜋 = 𝑝 (𝑎𝑡 |𝑠𝑡 ;𝜃 ) or deterministic
𝑎𝑡 = 𝜇 (𝑠𝑡 ;𝜃 ). In the following sections, to simplify the discussion,
we constrain our discussions on DEDP to a deterministic policy
𝑎𝑡 = 𝜇 (𝑠𝑡 ;𝜃 ).

3.2 Optimal Control of a PODEDP
To overcome the burden of dimensionality and to search in high-
dimensional belief state spaces in complex systems, we consider a
PODEDPwith policy parameterized by 𝑝 (𝑎𝑡 | 𝑏𝑡 ) =

∑
𝑠𝑡 𝑏𝑡 (𝑠𝑡 )𝛿𝑎𝑡=𝜇 (𝑠𝑡 ) ,

where 𝜇 (𝑠𝑡 ) is the deterministic policy for a DEDP. We solve a POD-
EDP by establishing the connections between the optimal value
function of a PODEDP and that in a specially formed corresponding
DEDP (SDEDP), and reducing the optimal control of a PODEDP to a
SDEDP policy optimization and a belief state estimation, assuming
a known initial belief state. All derivations and proofs are given in
the Appendix.

𝑻𝒉𝒆𝒐𝒓𝒆𝒎 2. The optimal value function𝑉★(𝑏) of a PODEDP⟨𝑆,𝐴,
Ω,V,𝐶, 𝑃,𝑂, 𝑅,𝛾⟩ is upper bounded by the expectation of the optimal
value function �̃�★(𝑠) of the corresponding DEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩
over the belief state 𝑏 (𝑠): 𝑉★(𝑏) ≤ ∑

𝑠 𝑏 (𝑠)�̃�★(𝑠)
Theorem 2 indicates that the optimum value function of a DEDP

is an upper bound of that of a corresponding PODEDP. However,
we can not solve a PODEDP through optimizing the value function
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of a DEDP, since maximizing an upper bound of does not provide
any performance guarantees to the original target function. To
establish a bridge between a PODEDP and a DEDP, we introduce a
specially formed DEDP.

A specially formed DEDP is defined as a tuple SDEDP⟨𝑆,𝐴,V,𝐶,

𝑃, 𝑅,𝛾⟩, where 𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾 has the samemeaning as in aDEDP⟨
𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩. The only difference is how the policy is defined.
Let the policy in a DEDP be 𝑎𝑡 = 𝜇 (𝑠𝑡 ;𝜃 ), the policy in a SDEDP is
defined as the mean effect of actions over the distribution of states
𝜋 (𝑎𝑡 ;𝜃 ) = ∑

𝑠𝑡 𝑝 (𝑠𝑡 )𝛿𝑎𝑡=𝜇 (𝑠𝑡 ;𝜃 ) . For a PODEDP⟨𝑆,𝐴,Ω,V,𝐶, 𝑃,𝑂,

𝑅,𝛾⟩, we refer to a SDEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩ as the corresponding
SDEDP of this PODEDP if these two decision processes share the
same 𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾 and start from the same initial state distribu-
tion 𝑝 (𝑠0).

Comparing to a DEDP, the action of a SDEDP is a mean effect
of actions over the distribution of states, which does not depend
on specific individual states. Comparing to a PODEDP, a SDEDP
has the same format of policy as in a PODEDP, but it directly
observes the full system states instead of inferring it from partial
observations. As a result, a SDEDP is a simplified version of a
PODEDP which marginalized out the observations. The following
theorem established the connection between a PODEDP and a
SDEDP:

𝑻𝒉𝒆𝒐𝒓𝒆𝒎 3. Let 𝑝 (𝑎𝑡 | 𝑏𝑡 ) and 𝑉 (𝑏) be the policy and value
function of a PODEDP⟨𝑆,𝐴,Ω,V,𝐶, 𝑃,𝑂, 𝑅,𝛾⟩ with policy param-
eterized by 𝑝 (𝑎𝑡 | 𝑏𝑡 ) =

∑
𝑠𝑡 𝑏𝑡 (𝑠𝑡 )𝛿𝑎𝑡=𝜇 (𝑠𝑡 ) , where 𝜇 (𝑠𝑡 ) be the

deterministic policy in the corresponding DEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩.
Let 𝜋 (𝑎𝑡 ;𝜃 ) =

∑
𝑠𝑡 𝑝 (𝑠𝑡 )𝛿𝑎𝑡=𝜇 (𝑠𝑡 ) and 𝑉 (𝑠) and be the policy and

value function of a corresponding SDEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩. Then
𝑉 (𝑏) is equivalent to the expected value function ∑

𝑠 𝑏 (𝑠)𝑉 (𝑠).
Theorem 3 shows that under a certain formulation of a PODEDP

policy 𝑝 (𝑎𝑡 | 𝑏𝑡 ) =
∑
𝑠𝑡 𝑏𝑡 (𝑠𝑡 )𝛿𝑎𝑡=𝜇 (𝑠𝑡 ) the value function of a

PODEDP is equivalent to that of a corresponding SDEDP. It provides
the foundation of our PODEDP solver — we solve a PODEDP by
training a SDEDP policy, estimating the belief state of the system
from historical observations, and constructing a belief state policy
satisfying the requirements of Theorem 2. The following corollary
provides justifications for our method:

𝑪𝒐𝒓𝒐𝒍 𝒍𝒂𝒓𝒚 1. In a PODEDP⟨𝑆,𝐴,Ω,V,𝐶, 𝑃,𝑂, 𝑅,𝛾⟩ with policy
parameterized by 𝜋 (𝑎𝑡 ;𝜃 ) =

∑
𝑠𝑡 𝑝 (𝑠𝑡 )𝛿𝑎𝑡=𝜇 (𝑠𝑡 ;𝜃 ) , let 𝜋∗ be the

optimal policy of this PODEDP and let 𝜋∗ be the optimal policy
of the corresponding SDEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩ where 𝜋∗ (𝑎𝑡 ;𝜃 ) =∑
𝑠𝑡 𝑝 (𝑠𝑡 )𝛿𝑎𝑡=𝜇∗ (𝑠𝑡 ;𝜃 ) , then the policy 𝜋∗ = 𝜋∗ is an optimal policy

of the PODEDP.
With Corollary 1, we reduce solving a PODEDP to a SDEDP pol-

icy optimization and a belief state estimation, which is equivalent
to optimizing the policy parameter 𝜃 under the mean effect of all
possible observations in training stage (SDEDP policy optimiza-
tion), and using specific observations 𝑜0:𝑡 to estimate the current
belief state 𝑏𝑡 and optimal policy 𝜋 at testing stage (belief state
estimation). Comparing to directly solving a PODEDP, our method
split the process of optimizing the policy parameters and gathering
the information from partial observations. Since we only use the
observations at the testing stage, our method greatly reduces the
variance introduced by partial observations during the training
stage and eases the computation.

3.3 SDEDP Policy Optimization
In this section, we derive the algorithm for policy optimization in a
SDEDPwhere the policy takes the form 𝑝 (𝑎𝑡 ;𝜃 ) = ∑

𝑠𝑡 𝑝 (𝑠𝑡 )𝛿𝑎𝑡=𝜇 (𝑠𝑡 ;𝜃 ) ,
and the state 𝑠𝑡 and action 𝑎𝑡 are continuous variables. To maintain
a tractable solution, we apply a Taylor approximation to simplify the
trajectory distribution, using a duality theorem to recasts optimal
control as parameter learning, and applying variational inference
and Bethe entropy approximation to reduce the exploding searching
space.

𝑻𝒉𝒆𝒐𝒓𝒆𝒎 4. In a SDEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩ with policy 𝑝 (𝑎𝑡 ;𝜃 ) =∑
𝑠𝑡 𝑝 (𝑠𝑡 )𝛿𝑎𝑡=𝜇 (𝑠𝑡 ;𝜃 ) where the state 𝑠𝑡 and action 𝑎𝑡 are continu-

ously variables and 𝑠𝑡 = E𝑠𝑡 [𝑠𝑡 ] is the expected state evaluated at
time 𝑡 , the first-order Taylor approximation of the trajectory distri-
bution takes the form

∑
𝑎0:𝑇 𝑝 (𝑠0:𝑇 , 𝑎0:𝑇 , 𝑣0:𝑇 ) ≈ 𝑝 (𝑠0)

∏𝑇−1
𝑡=0 𝑝 (𝑣𝑡 |

𝑠𝑡 , 𝜇 (𝑠𝑡 ;𝜃 ))𝛿𝑠𝑡+1=𝑠𝑡+Δ𝑣𝑡
.

Theorem 4 simplifies the trajectory distribution a SDEDP. With
Theorem 3, we denote a length-T trajectory 𝜉𝑇 as

𝑝 (𝜉𝑇 ) = 𝑝 (𝑠0)
∏𝑇−1

𝑡=0

(
𝛿𝑎𝑡=𝜇 (𝑠𝑡 ;𝜃 )𝑝 (𝑣𝑡 | 𝑠𝑡 , 𝜇 (𝑠𝑡 ;𝜃 ))𝛿𝑠𝑡+1=𝑠𝑡+Δ𝑣𝑡

)
= 𝑝 (𝑠0)

∏𝑇−1
𝑡=0 (𝑝 (𝑠𝑡+1, 𝑣𝑡 | 𝑠𝑡 , 𝜇 (𝑠𝑡 ;𝜃 )))

In the following, we derive a variational inference algorithm to
identify the optimal policy parameter 𝜃 of a DEDP with policy 𝑎𝑡 =
𝜇 (𝑠𝑡 ;𝜃 ), based on the convex conjugate duality between the log ex-
pected future reward function and the entropy function of a distribu-
tion over finite-length DEDP trajectories. Applying Theorem 1, we
have log𝑉 𝜋 (𝑟 ) = sup

𝑞

(∑
𝑇,𝑚,𝜉𝑇 𝑞(𝑇,𝑚, 𝜉𝑇 )log 𝑟 (𝑇,𝑚, 𝜉𝑇 ;𝜋) + H (𝑞)

)
,

where 𝑝 (𝜉𝑇 ) = 𝑝 (𝑠0)
∏𝑇−1

𝑡=0 (𝑝 (𝑠𝑡+1, 𝑣𝑡 | 𝑠𝑡 , 𝜇 (𝑠𝑡 ;𝜃 ))). We will solve
it using a EM paradigm: in policy evaluation we find a 𝑞 that best
approximate 𝑟 ; in policy improvement we find a parameter 𝜃 that
maximize the log value function log𝑉 𝜋 (𝑟 ).

In policy evaluation, we apply variational inference and Bethe
entropy approximation to relax the intractable searching with a
exploding state space to a tractable one with mean field approxi-
mation of the state 𝑞(𝑠𝑡 |𝑇,𝑚) = ∏𝑀

�̂�=1 𝑞(𝑠
(�̂�)
𝑡 |𝑇,𝑚). Applying the

approximation, we average the effects of all other components into
a projected marginal kernel 𝑝 (𝑠 (�̂�)

𝑡 , 𝑣𝑡 |𝑠 (�̂�)
𝑡−1 , 𝜇 (𝑠𝑡−1;𝜃 )). We further

introduce a forward message 𝛼 (�̂�)
𝑡 (𝑠 (�̂�)

𝑡 ) and a backward message
𝛽
(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 ), and get a forward-backward algorithm.

𝛼
(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 )∝∑
𝑠
(�̂�)
𝑡−1 ,𝑣𝑡−1

𝛼
(�̂�)
𝑡−1 (𝑠 (�̂�)

𝑡−1 ) ·𝑝 (𝑠 (�̂�)
𝑡 ,𝑣𝑡−1 |𝑠 (�̂�)

𝑡−1 ,𝜇 (𝑠𝑡−1;𝜃 )) (1)

𝛽
(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 )=∑𝑚 𝑞 (𝑡,𝑚)𝛽 (�̂�)
𝑡 |𝑡,𝑚 (𝑠 (�̂�)

𝑡 )

+∑
𝑠
(�̂�)
𝑡+1 ,𝑣𝑡

𝑝 (𝑠 (�̂�)
𝑡+1 ,𝑣𝑡 |𝑠 (�̂�)

𝑡 ,𝜇 (𝑠𝑡−1;𝜃 ))𝛽 (�̂�)
𝑡+1 (𝑠 (�̂�)

𝑡+1 ) (2)

In policy improvement, we maximize the log value function
log𝑉 𝜋 (𝑟 ) with respect to parameter 𝜃 , using the forward backward
messages inferred from the policy evaluation.

𝜕log𝑉𝜋 (𝑟 )
𝜕𝜃

=
∑
𝑡,𝑠𝑡

∏
�̂� 𝛼

(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 ,𝑣𝑡 =𝑣)𝛽
(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 ,𝑣𝑡 =𝑣)
𝑐𝑣

𝜕𝑐𝑣
𝜕𝜃

(3)

− ∑
𝑡,𝑠𝑡

∏
�̂� 𝛼

(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 ,𝑣𝑡 =∅)𝛽
(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 ,𝑣𝑡 =∅) ·
∏
𝑚 𝑔𝑚𝑣 (𝑠 (𝑚)

𝑡 )

1−∑𝑉
𝑣=1 𝑐𝑣 ·

∏
𝑚 𝑔𝑚𝑣 (𝑠 (𝑚)

𝑡 )
𝜕𝑐𝑣
𝜕𝜃

To summarize, the SDEDP policy optimization is as in Algorithm
1.
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Algorithm 1 SDEDP Policy Optimization

Input: SDEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩, initial policy parameter 𝜃
Output: Optimal policy parameter 𝜃 for 𝜇 (𝑠𝑡 ;𝜃 )
Procedure:

for 𝑖 = 0, 1, 2, ... do
for 𝑢 = 0, 1, 2, ... do

update the forward messages with Eq. (1).
update backward messages with Eq. (2).

end for
Update parameter 𝜃 with the gradient computed in Eq. (3).

end for

3.4 Belief State Estimation
To estimate the belief state 𝑏𝑡 (𝑠𝑡 ) = 𝑝 (𝑠𝑡 | 𝑜0:𝑡 ), we essentially infer
the state distribution in a PODEDP from past observations up to
now 𝑜0:𝑡 . Exact inference in a complex social system is intractable
due to the formidable state space. As such, we estimate the posterior
distribution 𝑝 (𝑠0:𝑇 , 𝑎0:𝑇 , 𝑣0:𝑇 | 𝑜0:𝑇 ) using an approximate distribu-
tion 𝑞(𝑠0:𝑇 , 𝑎0:𝑇 , 𝑣0:𝑇 ), and apply the Bethe entropy approximation
𝑞(𝑠𝑡 ) =

∏𝑀
�̂�=1 𝑞(𝑠

(�̂�)
𝑡 ), where 𝑞(𝑠 (�̂�)

𝑡 ) is the one-slice marginal
involving only component �̂�. The variational lower bound admits:

ELBO
= E𝑞 (𝑠0:𝑇 ,𝑎0:𝑇 ,𝑣0:𝑇 ) log (𝑝 (𝑠0:𝑇 , 𝑎0:𝑇 , 𝑣0:𝑇 , 𝑜0:𝑇 ) − 𝑞(𝑠0:𝑇 , 𝑎0:𝑇 , 𝑣0:𝑇 ))

=
∑
𝑠0:𝑇 ,𝑎0:𝑇 ,𝑣0:𝑇 log

©«
𝑇−1∏
𝑡=1

𝑝 (𝑠𝑡 ,𝑎𝑡−1,𝑣𝑡−1,𝑜𝑡 |𝑠𝑡−1;𝜃 )
𝑇∏
𝑡=1

𝑞 (𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1)

ª®®¬
+∑

𝑠0:𝑇 ,𝑣0:𝑇 log
(
𝑇−1∏
𝑡=1

∏
�̂� 𝑞(𝑠 (�̂�)

𝑡 )
)

=
𝑇−1∑
𝑡=1

∑
�̂�

∑
𝑠
(�̂�)
𝑡

𝑞(𝑠 (�̂�)
𝑡 )log𝑞(𝑠 (�̂�)

𝑡 )

−
𝑇−1∑
𝑡=1

∑
𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1

𝑞 (𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1) log
(

𝑞 (𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1 )
𝑝 (𝑠𝑡 ,𝑎𝑡−1,𝑣𝑡−1,𝑜𝑡 |𝑠𝑡−1;𝜃 )

)
Incorporating the consistency constraint of the approximate

distribution 𝑞, the problem becomes
min over 𝑞 (𝑠 (�̂�)

𝑡 ), 𝑞 (𝑠𝑡−1,𝑡 , 𝑎𝑡−1, 𝑣𝑡−1) ∀𝑡 ≤ 𝑇,𝑚

𝑇−1∑
𝑡=1

∑
�̂�

∑
𝑠
(�̂�)
𝑡

𝑞 (𝑠 (�̂�)
𝑡 ) log𝑞 (𝑠 (�̂�)

𝑡 )

−
𝑇−1∑
𝑡=1

∑
𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1

𝑞 (𝑠𝑡−1,𝑡 , 𝑎𝑡−1, 𝑣𝑡−1) log
(

𝑞 (𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1 )
𝑝 (𝑠𝑡 ,𝑎𝑡−1,𝑣𝑡−1,𝑜𝑡 |𝑠𝑡−1 ;𝜃 )

)
subject to:∑

𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1\𝑠
(�̂�)
𝑡

𝑞 (𝑠𝑡−1,𝑡 , 𝑎𝑡−1, 𝑣𝑡−1) = 𝑞 (𝑠 (�̂�)
𝑡 )

The inference algorithm finds the proposal distribution 𝑞 that
maximizes the variational lower bound. Applying Bethe entropy ap-
proximation and solving an optimization problem with the method
of Lagrange multipliers, the belief state can be estimated as follows:

𝑏𝑡 (𝑠𝑡 ) =
𝑀∏

�̂�=1
𝛼
(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 ), (4)

where 𝛼
(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 )∝∑
𝑠
(�̂�)
𝑡−1 ,𝑎𝑡−1,𝑣𝑡−1

𝛼
(�̂�)
𝑡−1 (𝑠 (�̂�)

𝑡−1 )𝑝 (𝑠 (�̂�)
𝑡 ,𝑜

(�̂�)
𝑡 𝑎𝑡−1,𝑣𝑡−1 |𝑠 (�̂�)

𝑡−1 ;𝜃 ) is the for-

ward message.

Algorithm 2 Optimal Control of a PODEDP

Input: PODEDP⟨𝑆,𝐴,Ω,V,𝐶, 𝑃,𝑂, 𝑅,𝛾⟩
Output: Optimal policy 𝜋∗ (𝑎𝑡 | 𝑏𝑡 )
Procedure:
- Optimize SDEDP policy 𝜇∗ (𝑠𝑡 ) according to Algorithm 1.
- Estimate the belief state 𝑏𝑡 (𝑠𝑡 ) according to Eq. (4).
- Construct the PODEDP optimal policy
𝜋∗ (𝑎𝑡 |𝑏𝑡 ) =

∑
𝑠𝑡

𝑏𝑡 (𝑠𝑡 )𝛿𝑎𝑡=𝜇∗ (𝑠𝑡 )

To summarize, we solve a PODEDP by optimizing the corre-
sponding SDEDP policies 𝜋 (𝑎𝑡 ;𝜃 ) =

∑
𝑠𝑡 𝑝 (𝑠𝑡 )𝛿𝑎𝑡=𝜇 (𝑠𝑡 ;𝜃 ) using

Algorithm 1, estimating the belief state 𝑏𝑡 (𝑠𝑡 ) using Eq. (4), and
constructing the belief state policy 𝜋 (𝑎𝑡 | 𝑏𝑡 ) according to Theorem
3. We give the optimal control of a PODEDP as Algorithm 2.

One of the limitations of our approach is that it requires knowing
the events that are used to specify the system dynamics. As future
work, we plan to investigate how to learn the events from scratch.

4 EXPERIMENTS
We benchmark our algorithm against other state-of-the-art algo-
rithms in complex transportation system [32] control problems,
which contains a SynthTown (inset figure in Fig. 2) and a Berlin
scenario. The SynthTown consists of a synthesized network from
MATSIM [10] with one home facility, one work facility, 23 road
links, and 50 individuals. The Berlin contains a real-world network
with 1530 locations and 9178 individuals. The goal is to find an
optimal control of the movement of vehicles such that all vehicles
spend less time on roads, going to facilities on time, and staying in
facilities for enough amount of time.

Experimental Setup. The transportation system as a whole
is modeled as a PODEDP, where the different locations are the
components of the system, and the number of vehicles of each
location are the states. To be specific, in a transportation system
with 𝑀 locations, the optimal control problem is modeled as a
PODEDP⟨𝑆,𝐴,Ω,V,𝐶, 𝑃,𝑂, 𝑅,𝛾⟩. The states 𝑠𝑡 = (𝑠 (1)𝑡 , · · · , 𝑠 (𝑀)

𝑡 , 𝑡)
are the number of vehicles at𝑀 locations plus the current time 𝑡 .
We randomly select 10% vehicles as probe vehicles (in our experi-
ment, different percentage of partial observations does not have an
obvious influence on the obtained results). The observation vari-
ables 𝑜𝑡 = (𝑜 (1)𝑡 , · · · , 𝑜 (𝑀)

𝑡 , 𝑡) are the populations of these probe
vehicles at the𝑀 locations and the current time 𝑡 . The movement
of vehicles from one location to the other is represented as event
𝑝 ·𝑚1

𝑐𝑚1𝑚2→ 𝑝 ·𝑚2, where𝑚1 is the current location, and𝑚2 is the
next location, and 𝑐𝑚1𝑚2 is the event rate coefficient—the proba-
bility of one vehicle making the movement. The action variables
𝑎𝑡 are the event rate coefficients of choosing the downstream loca-
tions at a crossing center, and those of leaving or entering facilities.
To simulate different traffic conditions such as traffic congestion,
we implement the state transition 𝑝 (𝑠𝑡+1, 𝑣𝑡 | 𝑠𝑡 , 𝑎𝑡 ) following the
traffic flow diagram in MATSIM. The reward function 𝑅(𝑠𝑡 ) is im-
plemented following the Charypa-Nagel scoring function [10]. For
our algorithm (PODEDP), we implement a policy with the format
𝑝 (𝑎𝑡 | 𝑏𝑡 ;𝜃 ) = ∑

𝑠𝑡 𝑏𝑡 (𝑠𝑡 )𝛿𝑎𝑡=𝜇 (𝑠𝑡 ;𝜃 ) , where 𝜇 (𝑠𝑡 ;𝜃 ) is implemented
as a neural network with weight 𝜃 .
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Dataset SynthTown Berlin
Metrics TRPE EC TOR VOR VAW TRPE EC TOR VOR VAW

PODEDP 23.42 75 25.2 1.91 15.77 9.73 300 80.09 556.49 927.20
AC 15.19 200 35.4 2.69 13.22 -14.31 - 679.21 4288.05 203.34
PG 10.94 200 55.8 4.24 12.39 -18.29 - 792.96 4907.31 178.65
GPS 14.11 150 27 1.98 11.18 -9.92 - 497.72 3317.92 122.80
DEDP 24.05 75 23.5 1.79 15.83 10.94 200 81.12 588.26 1185.94

Table 1: Performance comparison of algorithms in the following five metrics: total reward per episode (TRPE), epochs to
converge (EC), average time (minutes) on road per vehicle (TOR), average number of vehicles on road per unit time (minutes)
(VOR), and average number of vehicles at work during work hours (VAW).

Figure 2: Training process on SynthTown
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Figure 3: Average number of vehicles with trained poli-
cies

We benchmark our algorithm against other analytical and simu-
lation methods. For the simulation method, we benchmark against a
policy gradient (PG) [23] and an actor-critic (AC) [13] that sampling
the actions and next states to reproduce the population flow. For the
analytical method, we benchmark against a guided policy search
(GPS) [17] that models the dynamics as a POMDP, approximating
the transition dynamics with differential equations and solving the
local policies analytically. All these algorithms implement the pol-
icy as a neural network with the historical inputs as observations.
We further benchmark against an optimal control algorithm with a
fully observed discrete event decision process (DEDP) [32].

Experimental Result. The comparison results in Table 1 indi-
cates that our algorithm (PODEDP) performs best among all partial
observation algorithms in almost all evaluation metrics for both
SynthTown and Berlin scenario, such as the least average time on
road, the largest number of vehicles at work during work hours, and
the fewest training epochs to converge to the highest total rewards
per episode (TRPE). For the Berlin scenario, the other algorithms
did not converge in a reasonable number of epochs.

The optimal control under full observations (DEDP) obtains
slightly higher TRPE than our algorithm (PODEDP). The DEDP
assumes perfect information which does not perform information-
gathering actions. On the other hand, the PODEDP assumes limited
observations and solve a PODEDP through solving a SDEDP and
tracking the belief state. The DEDP achieves slightly better TRPE
because as indicated by Theorem 1, the optimal value function of a

PODEDP is upper bounded by the expected optimal value function
of the corresponding DEDP. Moreover, the TRPE of PODEDP is
close to that of the DEDP, indicating our method learned a policy
with a value function that is close to its upper bound.

To better compare the empirical performance and convergence
ability of these algorithms, we look more deeply into the Synth-
Town scenario. As indicated in Figure 2, the TRPE-epoch curve of
PODEDP is higher with less variance than that of other algorithms.
Figure 3 presented the average number of vehicles of ten runs at
each locations for each algorithms using the learned policy, which
indicate how well each learned policies performed. As shown in
this Figure, the PODEDP leads to the smallest amount of vehicles on
roads, largest amount of vehicles at work during work hours (9 am
- 5 pm), and largest amount of vehicles at home during rest hours
(other hours), which indicates that the learned policy of our algo-
rithm best satisfied the needs. By combining the accurate modeling
of PODEDP with a tractable solution using variational inference,
our method achieve the best performance. For other analytical
method, GPS introduces modeling error when approximate the
state transitions with differential equations. For other simulation
methods, PG and AC introduce high variance in sampling.

In summary, for the complex traffic control problem, our algo-
rithm outperformed other partially observable decision-making
algorithms (GPS, PG, and AC), and achieved comparable perfor-
mance against fully observed optimal control algorithm (DEDP), in
both SynthTown and Berlin scenarios.
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5 RELATEDWORKS
A PODEDP is a special POMDP describing the dynamics of a com-
plex network using microscopic events. POMDP solvers generally
go into the following four categories: 1) iteratively applying Bell-
man optimality equation to get convex piece-wise linear value func-
tions of the belief state, 2) identifying a deterministic/stochastic
finite-state controller (FSC) through policy iteration, 3) invoking an
online algorithm based on Monte Carlo tree search to reduce the
exponential search space, or 4) designing a reinforcement learning
algorithm with a memory of the latent state.

In category (1), exact algorithms can only be applied to small
scenarios due to the exponential number of elements in the value
function [5]. Approximate algorithms that approximate the value
function for a subset of points in the belief state space suffer from
computation complexity issues [24]. Heuristic algorithms solving a
POMDP based on the corresponding MDP value functions do not
perform information gatherings [8].

In category (2), different FSC algorithms have been proposed
to solve a POMDP, including algorithms with no memory [11],
algorithms based on deterministic [9], and stochastic FSC [26].
However, in a complex social system, the exploding number of the
system states makes it infeasible for FSC algorithms to enumerate
all combinations of the components and prevents these algorithms
from performing fine-grained control.

in category (3), an online algorithm generally cooperates with
an offline algorithm to guide the search in the most promising
directions and to cut off after finite look-ahead steps [22]. A good
offline algorithm such as ours could potentially lessen the number of
look-ahead steps and better guide the search of an online algorithm.

In category (4), value-based and policy-based reinforcement
learning algorithms have been proposed to solve a POMDP [2,
15, 18]. However, these algorithms suffer from sample efficiency
issues [21].

In this paper, we develop a PODEDP solver through establishing
the connections between the optimal value function of a PODEDP
and a fully observable SDEDP, and reducing the optimal control of a
PODEDP to SDEDP policy optimization and belief state estimation.
To our best knowledge, this approach is novel.

6 CONCLUSIONS
In this paper, we developed a new framework to achieve optimal
control in complex social systems. To capture the dynamics pre-
cisely and succinctly, we developed PODEDP for modeling social
system decision-making processes. To optimize the problem with
amenable searching space, we established the connection between
the PODEDP value function and a SDEDP value function and re-
duced the optimal control of a PODEDP to SDEDP policy opti-
mization and belief state estimation. We tested our framework
in complex transportation scenarios against other state-of-the-art
methods and demonstrated that our algorithm outperformed its
competitors in multiple aspects.

7 APPENDIX
7.1 Proof of Theorems and Corollaries

Proof of 𝑻𝒉𝒆𝒐𝒓𝒆𝒎 2. . We use Bellman optimality equation.

𝑉★ (𝑏) =max𝑎 [𝑅 (𝑎,𝑏)+𝛾 ∑
𝑏′ 𝑝 (𝑏′ (𝑏,𝑎,𝑜) |𝑏,𝑎)𝑉★ (𝑏′ (𝑏,𝑎,𝑜))]

=max𝑎 [∑𝑠 𝑅 (𝑎,𝑠)𝑏 (𝑠)+𝛾
∑

𝑜 𝑝 (𝑜 |𝑏,𝑎)𝑉★ (𝑏′ (𝑏,𝑎,𝑜))]
≤max𝑎 [

∑
𝑠 𝑅 (𝑎,𝑠)𝑏 (𝑠)+𝛾

∑
𝑜 𝑝 (𝑜 |𝑏,𝑎)

∑
𝑠′ (𝑏′ (𝑏,𝑎,𝑜)) (𝑠′)𝑉 (𝑠′) ]

=max𝑎
[∑

𝑠 𝑅 (𝑎,𝑠)𝑏 (𝑠)+𝛾
∑

𝑜 𝑝 (𝑜 |𝑏,𝑎)
∑

𝑠′
𝑝 (𝑠′,𝑜 |𝑏,𝑎)
𝑝 (𝑜 |𝑏,𝑎) 𝑉 (𝑠′)

]
=max𝑎 [

∑
𝑠 𝑅 (𝑎,𝑠)𝑏 (𝑠)+𝛾

∑
𝑠′ 𝑝 (𝑠′ |𝑏,𝑎)𝑉 (𝑠′) ]

=max𝑎 [∑𝑠 𝑅 (𝑎,𝑠)𝑏 (𝑠)+𝛾
∑

𝑠′,𝑠 𝑝 (𝑠′ |𝑠,𝑎)𝑏 (𝑠)𝑉 (𝑠′)]
≤∑

𝑠 𝑏 (𝑠) max𝑎 [
∑

𝑠 𝑅 (𝑎,𝑠)+𝛾
∑

𝑠′ 𝑝 (𝑠′ |𝑠,𝑎)𝑉 (𝑠′) ]
≤∑

𝑠 𝑏 (𝑠)�̃�★ (𝑠) .

The third step in the previous proof is due to that the value
function of a belief state PODEDP is a convex function. The 8th
step is due to the definition of 𝑉★ for DEDP. In the second and
fourth steps, 𝑏 ′ is a deterministic function of 𝑏, 𝑎 and 𝑦, and the
probability of 𝑏 ′ is the probability of observing 𝑦.

𝑳𝒆𝒎𝒎𝒂 1. Let 𝜋 (𝑎𝑡 | 𝑏𝑡 ) be the policy of a PODEDP⟨𝑆,𝐴,Ω,V,

𝐶, 𝑃,𝑂, 𝑅,𝛾⟩, and 𝜋 be the policy of the corresponding SDEDP⟨𝑆,𝐴,
V,𝐶, 𝑃, 𝑅,𝛾⟩ where 𝜋 (𝑎𝑡 ) = 𝜋 (𝑎𝑡 | 𝑏𝑡 ). We further define 𝑝 (𝑠𝑡 | 𝜋)
as the state distribution at time 𝑡 following the policy 𝜋 in a PODEDP,
and 𝑝 (𝑠𝑡 | 𝜋) as the state distribution at time 𝑡 following the policy
𝜋 in the SDEDP. If 𝜋 (𝑎𝑡 | 𝑏𝑡 ) = 𝜋 (𝑎𝑡 ), then the state distribution
following the PODEDP policy is equivalent to the state distribution
following the SDEDP policy 𝑝 (𝑠𝑡 | 𝜋) = 𝑝 (𝑠𝑡 | 𝜋).

Proof of 𝑳𝒆𝒎𝒎𝒂 1.. We prove this lemma using mathematical
induction.

Since the DEDP is the corresponding DEDP of the PODEDP,
these two decision processes start from the same initial distribution:
𝑝 (𝑠0 | 𝜋) = 𝑝 (𝑠0 | 𝜋)

Suppose 𝑝 (𝑠𝑡 | 𝜋) = 𝑝 (𝑠𝑡 | 𝜋), then:
𝑝 (𝑠𝑡+1 |𝜋 )
=
∑

𝑏𝑡 ,𝑎𝑡 ,𝑣𝑡 ,𝑠𝑡
𝑝 (𝑠𝑡 |𝜋 )𝜋 (𝑎𝑡 |𝑏𝑡 )𝑝 (𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )𝛿𝑠𝑡+1=𝑠𝑡 +Δ𝑣𝑡 𝛿𝑏𝑡 =𝑝 (𝑠𝑡 |𝑜0:𝑡 )

=
∑

𝑏𝑡 ,𝑎𝑡 ,𝑣𝑡 ,𝑠𝑡
𝑝 (𝑠𝑡 |𝜋 )𝜋 (𝑎𝑡 |𝑏𝑡 )𝑝 (𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )𝛿𝑠𝑡+1=𝑠𝑡 +Δ𝑣𝑡 𝛿𝑏𝑡−1=𝑝 (𝑠𝑡−1 |𝜋 )

=
∑

𝑏𝑡 ,𝑎𝑡 ,𝑣𝑡 ,𝑠𝑡
𝑝 (𝑠𝑡 |𝜋 )𝜋 (𝑎𝑡 |𝑏𝑡 )𝑝 (𝑠𝑡+1,𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )𝛿𝑏𝑡−1=𝑝 (𝑠𝑡−1 |𝜋 )

=
∑

𝑏𝑡 ,𝑎𝑡 ,𝑣𝑡 ,𝑠𝑡
𝑝 (𝑠𝑡 |𝜋 )𝜋 (𝑎𝑡 )𝑝 (𝑠𝑡+1,𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )𝛿𝑏𝑡−1=𝑝 (𝑠𝑡−1 |𝜋 )

=
∑

𝑎𝑡 ,𝑣𝑡 ,𝑠𝑡
𝑝 (𝑠𝑡 |𝜋 )𝜋 (𝑎𝑡 )𝑝 (𝑠𝑡+1,𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )

=𝑝 (𝑠𝑡+1 |𝜋 ) .

As such, this Lemma is proved.

Proof of 𝑻𝒉𝒆𝒐𝒓𝒆𝒎 3.. Using Lemma 1, we have:

𝑉 (𝑏) =
∑

𝑡 𝛾
𝑡E𝑏𝑡 ,𝑜0:𝑡 𝑅 (𝑏𝑡 )

=
∑

𝑡 𝛾
𝑡
∑

𝑏𝑡 ,𝑜0:𝑡 𝑝 (𝑜0:𝑡 |𝜋 )𝛿𝑏𝑡 =𝑝 (𝑠𝑡 |𝑜0:𝑡 )𝑅 (𝑏𝑡 )
=
∑

𝑡 𝛾
𝑡
∑

𝑏𝑡 ,𝑜0:𝑡 𝑝 (𝑜0:𝑡 |𝜋 )𝛿𝑏𝑡 =𝑝 (𝑠𝑡 |𝑜0:𝑡 )
∑

𝑠𝑡
𝑅 (𝑠𝑡 )𝑏 (𝑠𝑡 )

=
∑

𝑡 𝛾
𝑡
∑

𝑜0:𝑡 𝑝 (𝑜0:𝑡 |𝜋 )
∑

𝑠𝑡
𝑝 (𝑠𝑡 |𝑜0:𝑡 )𝑅 (𝑠𝑡 )

=
∑

𝑡 𝛾
𝑡
∑

𝑠𝑡
𝑝 (𝑠𝑡 |𝜋 )𝑅 (𝑠𝑡 )

=
∑

𝑡 𝛾
𝑡
∑

𝑠𝑡
𝑝 (𝑠𝑡 |𝜋 )𝑅 (𝑠𝑡 )

=E𝑠∼𝑝 (𝑠 |𝜋 )�̂� (𝑠)
=
∑

𝑠 𝑏 (𝑠)�̂� (𝑠),

where 𝑝 (𝑜0:𝑡 | 𝜋) is the observation history distribution starting
from initial until time 𝑡 following policy 𝜋 in a PODEDP, 𝑝 (𝑠𝑡 | 𝜋)
is the state distribution at time 𝑡 following policy 𝜋 in the PODEDP,
and 𝑝 (𝑠𝑡 | 𝜋) is the state distribution at time 𝑡 following policy 𝜋

in the corresponding DEDP.

Proof of 𝑪𝒐𝒓𝒐𝒍 𝒍𝒂𝒓𝒚 1.. Let𝑉 ∗ (𝑏) be the value function for𝜋∗ (𝑎𝑡 |
𝑏𝑡 ) in a PODEDP⟨𝑆,𝐴,Ω,V,𝐶, 𝑃,𝑂, 𝑅,𝛾⟩, 𝑉𝑜𝑝𝑡 (𝑏) be the optimal
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PODEDP value function, 𝑉 ∗ (𝑠) be the optimal value function in-
duced by 𝜋∗ (𝑎𝑡 | 𝑠𝑡 ) in the corresponding DEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩,
where 𝜋∗ (𝑎𝑡 | 𝑏𝑡 ) =

∑
𝑠𝑡 𝜋

∗ (𝑎𝑡 | 𝑠𝑡 )𝑏𝑡 (𝑠𝑡 ). In the following, we will
prove 𝑉 ∗ (𝑏) = 𝑉𝑜𝑝𝑡 (𝑏).

Using Theorem 2 and 3, we have 𝑉𝑜𝑝𝑡 (𝑏) ≤ ∑
𝑠 𝑏 (𝑠)𝑉★(𝑠) =

𝑉 ∗ (𝑏). On the other hand, since 𝑉𝑜𝑝𝑡 (𝑏) is the optimal value func-
tion in the PODEDP, we have 𝑉𝑜𝑝𝑡 (𝑏) ≥ 𝑉 ∗ (𝑏). As such, 𝑉 ∗ (𝑏) =
𝑉𝑜𝑝𝑡 (𝑏).

Proof of 𝑻𝒉𝒆𝒐𝒓𝒆𝒎 4.. The probability of a trajectory in a specially
formed DEDP⟨𝑆,𝐴,V,𝐶, 𝑃, 𝑅,𝛾⟩ with policy 𝑝 (𝑎𝑡 ;𝜃 ) =

∑
𝑠𝑡 𝑝 (𝑠𝑡 )

𝛿𝑎𝑡=𝜇 (𝑠𝑡 ;𝜃 ) can be written as:
𝑝 (𝜉𝑇 ) =𝑝 (𝑠0)

∏𝑇−1
𝑡=0

(
𝑝 (𝑎𝑡 ;𝜃 )𝑝 (𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )𝛿𝑠𝑡+1=𝑠𝑡 +Δ𝑣𝑡

)
=𝑝 (𝑠0)

∏𝑇−1
𝑡=0

(∑
𝑠′𝑡

𝛿𝑎𝑡 =𝜇 (𝑠′𝑡 ;𝜃 )𝑝 (𝑠′𝑡 )𝑝 (𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )𝛿𝑠𝑡+1=𝑠𝑡 +Δ𝑣𝑡

)
.

Using the energy form
𝑝 (𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 ;𝜃 )= exp(𝑤 (𝑣𝑡 ,𝑠𝑡 ,𝑎𝑡 ;𝜃 ) )∑

𝑣′𝑡
exp(𝑤 (𝑣′𝑡 ,𝑠𝑡 ,𝑎𝑡 ;𝜃 )) =𝑓 (𝑣𝑡 ,𝑠𝑡 ,𝑎𝑡 ;𝜃 ) .

Let 𝑎𝑡 =
∑
𝑎𝑡 𝑝 (𝑎𝑡 )𝑎𝑡 , and use first-order Taylor expansion for 𝑓

at point (𝑣𝑡 , 𝑠𝑡 , 𝑎𝑡 ) then
E𝑎𝑡 𝑝 (𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )

=
∑

𝑎𝑡
𝑝 (𝑎𝑡 ) 𝑓 (𝑣𝑡 ,𝑠𝑡 ,𝑎𝑡 ;𝜃 )

≈ ∑
𝑎𝑡

𝑝 (𝑎𝑡 ) 𝑓 (𝑣𝑡 ,𝑠𝑡 ,𝑎𝑡 ;𝜃 )+∑𝑎𝑡
𝑝 (𝑎𝑡 ) 𝜕

𝜕𝑣𝑡
𝑓 (𝑣𝑡 ,𝑠𝑡 ,𝑎𝑡 ;𝜃 ) (𝑣𝑡−𝑣𝑡 )

+∑
𝑎𝑡

𝑝 (𝑎𝑡 ) 𝜕
𝜕𝑠𝑡

𝑓 (𝑣𝑡 ,𝑠𝑡 ,𝑎𝑡 ;𝜃 ) (𝑠𝑡−𝑠𝑡 )+
∑

𝑎𝑡
𝑝 (𝑎𝑡 ) 𝜕

𝜕𝑎𝑡
𝑓 (𝑣𝑡 ,𝑠𝑡 ,𝑎𝑡 ;𝜃 ) (𝑎𝑡−𝑎𝑡 )

=
∑

𝑎𝑡
𝑝 (𝑎𝑡 ) 𝑓 (𝑣𝑡 ,𝑠𝑡 ,𝑎𝑡 ;𝜃 )+ 𝜕

𝜕𝑎𝑡
𝑓 (𝑣𝑡 ,𝑠𝑡 ,𝑎𝑡 ;𝜃 ) ∑𝑎𝑡

𝑝 (𝑎𝑡 ) (𝑎𝑡−𝑎𝑡 )
= 𝑓 (𝑣𝑡 ,𝑠𝑡 ,𝑎𝑡 ;𝜃 )
= 𝑝 (𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 ) .

Let 𝑠𝑡 =
∑
𝑠𝑡 𝑝 (𝑠𝑡 )𝑠𝑡 , and use first-order Taylor expansion for 𝜇

at point 𝑠𝑡 then
𝑎𝑡 =

∑
𝑎𝑡

𝑎𝑡𝑝 (𝑎𝑡 )
=
∑

𝑎𝑡
𝑎𝑡

∑
𝑠𝑡

𝑝 (𝑠𝑡 )𝛿 (𝑎𝑡=𝜇 (𝑠𝑡 ))
=
∑

𝑠𝑡
𝑝 (𝑠𝑡 )𝜇 (𝑠𝑡 )

≈∑
𝑠𝑡

𝑝 (𝑠𝑡 )
(
𝜇 (𝑠𝑡 )+ 𝜕

𝜕𝑠𝑡
𝜇 (𝑠𝑡=𝑠𝑡 ) (𝑠𝑡−𝑠𝑡 )

)
=𝜇 (𝑠𝑡 ) .

As such, E𝑎𝑡 𝑝 (𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )≈𝑝 (𝑣𝑡 |𝑠𝑡 ,𝜇 (𝑠𝑡 )) .
Denoting the original MDP trajectory as 𝜉 ′

𝑇
= (𝑠0:𝑇 , 𝑎0:𝑇 , 𝑣0:𝑇 ),

and the trajectory marginalized over 𝑎0:𝑇 as 𝜉𝑇 = (𝑠0:𝑇 , 𝑣0:𝑇 ), the
probability of a MDP trajectory marginalized over 𝑎0:𝑇 becomes

𝑝 (𝜉𝑇 ) =
∑

𝑎0:𝑇 𝑝 (𝜉′
𝑇
)

=
∑

𝑎0:𝑇 𝑝 (𝑠0)
∏𝑇−1

𝑡=0

(
𝑝 (𝑎𝑡 ;𝜃 )𝑝 (𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )𝛿𝑠𝑡+1=𝑠𝑡 +Δ𝑣𝑡

)
=𝑝 (𝑠0)

∏𝑇−1
𝑡=0

(∑
𝑎𝑡

𝑝 (𝑎𝑡 ;𝜃 )𝑝 (𝑣𝑡 |𝑠𝑡 ,𝑎𝑡 )𝛿𝑠𝑡+1=𝑠𝑡 +Δ𝑣𝑡

)
=𝑝 (𝑠0)

∏𝑇−1
𝑡=0

(
𝑝 (𝑣𝑡 |𝑠𝑡 ,𝜇 (𝑠𝑡 ;𝜃 ))𝛿𝑠𝑡+1=𝑠𝑡 +Δ𝑣𝑡

)
.

7.2 Optimal Control of SDEDP
7.2.1 Derivation of Eq. (1) and Eq. (2). The derivation is similar

to the one in [32], but differs in that we use a transition kernel
𝑝 (𝑠𝑡+1, 𝑣𝑡 | 𝑠𝑡 , 𝜇 (𝑠𝑡 ;𝜃 )) instead of 𝑝 (𝑠𝑡+1, 𝑣𝑡 | 𝑠𝑡 ;𝜃 ). In the context
of a discret event model, this equals to having 𝑐𝑣 = 𝜇 (𝑠𝑡 ;𝜃 ) instead
of 𝑐𝑣 = 𝜃 . Rearranging the terms and applying the approximations
described in the main text, the target becomes the following:∑

𝑇

∑
𝑚

∑
𝜉𝑇

𝑞 (𝑇,𝑚,𝜉𝑇 ) log
(
𝛾𝑇 𝑃 (𝜉𝑇 ;𝜃 )𝑅 (𝑚)

𝑇

)
+H(𝑞 (𝑇,𝑚,𝜉𝑇 ))

=
∑
𝑇

∑
𝑚 (𝑞 (𝑇 ,𝑚) log

(
𝛾𝑇

𝑞 (𝑇 ,𝑚)

)
−
𝑇−1∑
𝑡=1

∑
𝑠𝑡−1,𝑡 ,𝑣𝑡−1 𝑞 (𝑇 ,𝑚,𝑠𝑡−1,𝑡 ) log

(
𝑞 (𝑠𝑡−1,𝑡 ,𝑣𝑡−1 |𝑇 ,𝑚)

𝑝 (𝑠𝑡 ,𝑣𝑡−1 |𝑠𝑡−1,𝜇 (𝑠𝑡−1;𝜃 ) )

)
−∑

𝑡

∑
𝑚

∑
𝑠𝑡−1,𝑡 ,𝑣𝑡−1 𝑞 (𝑇,𝑚,𝑠𝑡−1,𝑡 ) log

(
𝑞 (𝑠𝑡−1,𝑡 ,𝑣𝑡−1 |𝑇 ,𝑚)

𝑝 (𝑠𝑡 ,𝑣𝑡−1 |𝑠𝑡−1,𝜇 (𝑠𝑡−1;𝜃 ) )𝑅 (𝑚)
𝑡

)
+∑

𝑇 ,𝑚

𝑇−1∑
𝑡=1

∑
�̂�

∑
𝑠
(�̂�)
𝑡

𝑞 (𝑇,𝑚,𝑠
(�̂�)
𝑡 ) log𝑞 (𝑠 (�̂�)

𝑡 |𝑇,𝑚)

We solve this maximization problem with the method of La-
grange multipliers. Taking derivative with respect to 𝑞 (𝑠𝑡−1,𝑡 ,𝑎𝑡 |𝑇,𝑚)

and 𝑞 (𝑠 (�̂�)
𝑡 |𝑇,𝑚), and setting it to zero, denoting exp

©«
𝛼
(�̂�)
𝑡,𝑠

(�̂�)
𝑡 ,𝑇 ,𝑚

𝑞 (𝑇 ,𝑚)
ª®®¬ as

𝛼
(�̂�)
𝑡 |𝑇 ,𝑚

(
𝑠
(�̂�)
𝑡

)
, exp

©«
𝛽
(�̂�)
𝑡,𝑠

(�̂�)
𝑡 ,𝑇 ,𝑚

𝑞 (𝑇 ,𝑚)
ª®®¬ as 𝛽

(�̂�)
𝑡 |𝑇 ,𝑚

(
𝑠
(�̂�)
𝑡

)
. We can compute 𝛼, 𝛽

through a forward-backward iterative approach:
forward: 𝑞 (𝑠 (�̂�)

𝑡 |𝑇,𝑚)=∑
𝑠
(�̂�)
𝑡−1 ,𝑣𝑡−1

𝑞 (𝑠 (�̂�)
𝑡−1,𝑡 ,𝑣𝑡−1 |𝑇,𝑚)

⇒ 𝛼
(�̂�)
𝑡 |𝑇 ,𝑚

(𝑠 (�̂�)
𝑡 )=𝑍

(�̂�)
𝑡
𝑍𝑡

∑
𝑠
(�̂�)
𝑡−1 ,𝑣𝑡−1

𝛼
(�̂�)
𝑡−1|𝑇 ,𝑚

(𝑠 (�̂�)
𝑡−1 ) ·𝑝 (𝑠 (�̂�)

𝑡 ,𝑣𝑡−1 |𝑠 (�̂�)
𝑡−1 ;𝜃 )

backward: 𝑞 (𝑠 (�̂�)
𝑡−1 |𝑇,𝑚)=∑

𝑠
(�̂�)
𝑡 ,𝑣𝑡−1

𝑞 (𝑠 (�̂�)
𝑡−1,𝑡 ,𝑣𝑡−1 |𝑇,𝑚)

⇒ 𝛽
(�̂�)
𝑡−1|𝑇 ,𝑚

(𝑠 (�̂�)
𝑡−1 )=𝑍

(�̂�)
𝑡
𝑍𝑡

∑
𝑠
(�̂�)
𝑡 ,𝑣𝑡−1

𝑝 (𝑠 (�̂�)
𝑡 ,𝑣𝑡−1 |𝑠 (�̂�)

𝑡−1 ;𝜃 ) ·𝛽 (�̂�)
𝑡 |𝑇 ,𝑚

(𝑠 (�̂�)
𝑡 )

for 𝑡=𝑇,�̂�=𝑚

𝛽
(�̂�)
𝑡−1|𝑇 ,𝑚

(𝑠 (�̂�)
𝑡−1 )=𝑍

(�̂�)
𝑡
𝑍𝑡

∑
𝑠
(�̂�)
𝑡 ,𝑣𝑡−1

𝑝 (𝑠 (�̂�)
𝑡 ,𝑣𝑡−1 |𝑠 (�̂�)

𝑡−1 ;𝜃 ) ·𝛽 (�̂�)
𝑡 |𝑇 ,𝑚

(𝑠 (�̂�)
𝑡 )𝑅 (𝑚)

𝑇

For policy improvement, we take the derivative of log𝑉 𝜋 over
the policy parameter 𝜃 , we get

𝜕log𝑉𝜋

𝜕𝜃
=

∑
𝑇 ,𝑚,𝑡,𝑣𝑡 ,𝑠𝑡

𝑞 (𝑇,𝑚,𝑣𝑡 ,𝑠𝑡 ) 𝜕log𝑃 (𝑣𝑡 |𝑠𝑡 ,𝜇 (𝑠𝑡 ;𝜃 ) )
𝜕𝑐𝑣𝑡

𝜕𝑐𝑣𝑡
𝜕𝜃

=
∑
𝑡,𝑠𝑡

∏
�̂� 𝛼

(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 ,𝑣𝑡 =𝑣)𝛽
(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 ,𝑣𝑡 =𝑣)
𝑐𝑣

𝜕𝑐𝑣
𝜕𝜃

− ∑
𝑡,𝑠𝑡

∏
�̂� 𝛼

(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 ,𝑣𝑡 =∅)𝛽
(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 ,𝑣𝑡 =∅) ·
∏
𝑚 𝑔𝑚𝑣 (𝑠 (𝑚)

𝑡 )

1−∑𝑉
𝑣=1 𝑐𝑣 ·

∏
𝑚 𝑔𝑚𝑣 (𝑠 (𝑚)

𝑡 )
𝜕𝑐𝑣
𝜕𝜃

7.3 Belief State Estimation
7.3.1 Derivation of Eq. (4). We solve this maximization problem

with the method of Lagrange multipliers.

𝐿 =
𝑇−1∑
𝑡=1

∑
�̂�

∑
𝑠
(�̂�)
𝑡

𝑞 (𝑠 (�̂�)
𝑡 ) log𝑞 (𝑠 (�̂�)

𝑡 )

−
𝑇−1∑
𝑡=1

∑
𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1

𝑞 (𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1) log
(

𝑞 (𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1 )
𝑝 (𝑠𝑡 ,𝑎𝑡−1,𝑣𝑡−1,𝑜𝑡 |𝑠𝑡−1;𝜃 )

)
+∑

𝑡,�̂�,𝑠
(�̂�)
𝑡−1

𝛼�̂�

𝑡−1,𝑠 (�̂�)
𝑡−1

(∑
𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1\𝑠

(�̂�)
𝑡−1

𝑞 (𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1)−𝑞 (𝑠 (�̂�)
𝑡−1 )

)
Taking the derivative and setting it to zero, we get

𝜕𝐿
𝜕𝑞 (𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1 )

=0 ⇒ for 𝑡=1,...𝑇−1

𝑞 (𝑠𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1)= 1
𝑍𝑡

exp

(∑
�̂� 𝛼

(�̂�)
𝑡−1,𝑠 (�̂�)

𝑡−1

)
·𝑝 (𝑠𝑡 ,𝑎𝑡−1,𝑣𝑡−1,𝑜𝑡 |𝑠𝑡−1;𝜃 )

𝜕𝐿

𝜕𝑞 (𝑠 (�̂�)
𝑡 )

=0 ⇒ 𝑞 (𝑠 (�̂�)
𝑡 )= 1

𝑍
(𝑚)
𝑇

exp

(∑
�̂� 𝛼

(�̂�)
𝑡−1,𝑠 (�̂�)

𝑡−1

)
Marginalizing over 𝑞(𝑠𝑡−1,𝑡 , 𝑎𝑡−1, 𝑣𝑡−1), we have
𝑞 (𝑠 (�̂�)

𝑡−1,𝑡 ,𝑎𝑡−1,𝑣𝑡−1)

= 1
𝑍𝑡

exp

(∑
�̂� 𝛼

(�̂�)
𝑡−1,𝑠 (�̂�)

𝑡−1

)∑
𝑠
(�̂�′)
𝑡−1,𝑡 ;�̂�′≠�̂�
exp

(∑
�̂�′ 𝛼 (�̂�′)

𝑡−1,𝑠 (�̂�
′)

𝑡−1

)
·𝑝 (𝑠𝑡 ,𝑎𝑡−1,𝑣𝑡−1,𝑜𝑡 |𝑠𝑡−1;𝜃 )

:= 1
𝑍𝑡

exp

(∑
�̂� 𝛼

(�̂�)
𝑡−1,𝑠 (�̂�)

𝑡−1

)
·𝑝 (𝑠 (�̂�)

𝑡 ,𝑎𝑡−1,𝑣𝑡−1,𝑜
(�̂�)
𝑡 |𝑠 (�̂�)

𝑡−1 ;𝜃 )

We denote exp
(
𝛼
(�̂�)
𝑡−1,𝑠 (�̂�)

𝑡−1

)
as 𝛼 (�̂�)

𝑡

(
𝑠
(�̂�)
𝑡

)
, and can compute 𝛼

through a forward approach:
𝑞 (𝑠 (�̂�)

𝑡 )=∑
𝑠
(�̂�)
𝑡−1 ,𝑎𝑡−1,𝑣𝑡−1

𝑞 (𝑠 (�̂�)
𝑡−1,𝑡 ,𝑣𝑡−1)

⇒ 𝛼
(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 )=𝑍
(�̂�)
𝑡
𝑍𝑡

∑
𝑠
(�̂�)
𝑡−1 ,𝑎𝑡−1,𝑣𝑡−1

𝛼
(�̂�)
𝑡−1 (𝑠 (�̂�)

𝑡−1 ) ·𝑝 (𝑠 (�̂�)
𝑡 ,𝑎𝑡−1,𝑣𝑡−1,𝑜

(�̂�)
𝑡 |𝑠 (�̂�)

𝑡−1 ;𝜃 )

The belief state can be estimated as follows:
𝑏𝑡 (𝑠𝑡 )=𝑝 (𝑠𝑡 |𝑜1:𝑡 )∝𝑞 (𝑠𝑡 )∝

∏𝑀
�̂�=1 𝛼

(�̂�)
𝑡 (𝑠 (�̂�)

𝑡 )
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