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ABSTRACT
Knowledge graphs are extremely useful resources for intelligent
applications but suffer from incompleteness. We notice that pre-
vious translative embedding models ignore the local connection
of the head entity which is important in predicting the tail entity
in the triplet. In this paper, we propose a model named TransL,
which incorporates local connection into the translative embedding
model. We design a generic approach to combine all the entities in
the local connection which uses different weights to distinguish the
contribution degree of different relations. We evaluate our model on
link prediction and triplet classification. The experimental results
show that TransL is competitive to existing models.
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1 INTRODUCTION
Many knowledge graphs have been built which are used in intel-
ligent applications. A knowledge graph is a graph composed of
entities as nodes and relations as edges. It stores facts in the form
of triplets (head entity, relation, tail entity), denoted as (h, r, t). How-
ever, existing knowledge graphs are still far from complete. Thus,
much work has been devoted to enriching knowledge graphs.

Although existing translation-basedmodels have demonstrated a
strong ability to model knowledge graphs, we find that they usually
consider each triplet separately. In knowledge graphs, entity nodes
are naturally connected to many other entity nodes which can
provide important information for predicting the tail entity. For
example, if (Alice, place_of_birth, London) is true, we can predict
that (Alice, nationality, British) is likely to be true. This motivates
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Figure 1: Simple illustration of TransL.

us to explore a model which can make full use of the entities in the
local connection of a head entity. As illustrated in Figure 1 (a), the
red node is the head entity ℎ and the green node is the tail entity 𝑡 .
The yellow nodes (noted as 𝑒1, 𝑒2, 𝑒3 and 𝑒4) which are connected
to the head node should be leveraged to model triplet (h, r, t). We
describe our model named TransL in detail below.

2 METHOD
Given a triplet (h, r, t), TransL first obtains the embedding vector
𝐸𝑟 :ℎ of the local connections of entity ℎ. The process is shown in
Figure 1 (b). The local connections of entity ℎ are (𝑟1 : 𝑒1), (𝑟2 : 𝑒2),
(𝑟3 : 𝑒3) and (𝑟4 : 𝑒4). The embedding of entity 𝑒1 is denoted as
𝑉𝑒1 and the weight of entity 𝑒1 is denoted as 𝛼𝑟1−𝑟 . The notations
are same for other entities. We can obtain the vector 𝐸𝑟 :ℎ with
the following equation: 𝐸𝑟 :ℎ = 𝛼𝑟1−𝑟𝑉𝑒1 + 𝛼𝑟2−𝑟𝑉𝑒2 + 𝛼𝑟3−𝑟𝑉𝑒3 +
𝛼𝑟4−𝑟𝑉𝑒4 + 𝛼ℎ−𝑟𝑉ℎ . In general, we can obtain the embedding of
the local connections of the head entity h in relation r with the
following equation:

𝐸𝑟 :ℎ =
∑

(𝑖:𝑒) ∈𝐶ℎ

𝛼𝑖−𝑟𝑉𝑒 (1)

where 𝐶ℎ is the set of the local connections of entity h. For each
(𝑖 : 𝑒) ∈ 𝐶ℎ , 𝑖 is the relation which connects entity 𝑒 and head entity
ℎ.𝑉𝑒 is the embedding of entity 𝑒 . And𝛼𝑖−𝑟 indicates the importance
of relation 𝑖 to relation 𝑟 . More specifically, for relation r, each type
of relation i corresponds to a weight𝑤𝑖𝑟 . We normalize them across
all the local connections of ℎ using the softmax function:

𝛼𝑖−𝑟 =
𝑒𝑥𝑝 (𝑤𝑖𝑟 )∑

( 𝑗 :𝑒) ∈𝐶ℎ
𝑒𝑥𝑝 (𝑤 𝑗𝑟 )

(2)
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Following the success of translative embedding techniques [1,
5, 6, 10], TransL aims to achieve 𝐸𝑟 :ℎ + 𝑉𝑟 ≈ 𝑉𝑡 when the triplet
(h, r, t) holds. In other words, 𝑉𝑡 should be a near neighbor of
𝐸𝑟 :ℎ +𝑉𝑟 when (h, r, t) is correct, while 𝐸𝑟 :ℎ +𝑉𝑟 should be far away
from 𝑉𝑡 otherwise. Given a triplet (h, r, t), we compute a score to
indicate how likely that two entities (ℎ, 𝑡) are in relation 𝑟 . The
score function is defined as:

𝑓 (ℎ, 𝑟, 𝑡) = | |𝐸𝑟 :ℎ +𝑉𝑟 −𝑉𝑡 | |22 (3)

During the training phase, we want the score of a positive triplet
to be small while the score of negative triplet to be big. The loss
functions for the positive triplet and the negative triplet are given
by:

𝐿+ (ℎ, 𝑟, 𝑡) =𝑚𝑎𝑥 (0, 𝑓 (ℎ, 𝑟, 𝑡) − 𝛾𝑝𝑜𝑠 )
𝐿− (ℎ, 𝑟, 𝑡) =𝑚𝑎𝑥 (0, 𝛾𝑛𝑒𝑔 − 𝑓 (ℎ, 𝑟, 𝑡)) (4)

We minimize the loss function below over the training set:

𝐿(𝜃 ) =
∑

(ℎ,𝑟,𝑡 ) ∈𝑇+
𝐿+ (ℎ, 𝑟, 𝑡) +

∑
(ℎ,𝑟,𝑡 ) ∈𝑇−

𝐿− (ℎ, 𝑟, 𝑡) (5)

where 𝑇+ denotes the set of positive triplets and 𝑇− denotes the set
of negative triplets.

3 EXPERIMENTS
In the experiments, we compare TransL with previous models on
the tasks of link prediction and triplet classification.

Link Prediction On the task of link prediction, we compare
TransL with three state-of-the-art matrix factorization models, in-
cluding CP [4], DistMult [11] and ComplEx [9]. We also compare
TransL with HolE [7], a holographic embedding model as a baseline
method. Another baseline for link prediction is TransE [1] which is
a classic model for knowledge graph completion. In addition, we
also include R-GCN [8] and ConvE [2] in the comparison. Following
previous work, we use FB15k-237 as our evaluation dataset and
report both raw and filtered MRR and filtered Hits@1, Hits@3 and
Hits@10 for the evaluated models. The results of link prediction are
shown in Table 1. Here, “unif” and “bern” are two different strate-
gies of constructing negative triplets in the training phase which
are proposed in [10]. As demonstrated, TransL achieves higher
results than other models.

Triplet Classification Here, we compare TransL with other
translation-basedmodels, including TransE [1], TransH [10], TransR
[6] and TransD [5]. And we further compare to KG2E [3] which
learns the embeddings of entities and relations in Gaussian dis-
tributions. Following previous work, we use WN11 and FB13 as
our evaluation datasets. Table 2 shows the accuracy of each model.
On WN11, TransL outperforms all the other models by achieving
86.1% for the “unif” setting and 86.6% for the “bern” setting. On
FB13, the accuracy achieved by TransL is higher than TransE [1],
TransH [10], TransR [6] and KG2E [3]. And it is close to the optimal
accuracy achieved by TransD [5].

Here, we analyze the actual number of parameters of each model
in our experiments of triplet classification. TransL’s parameters to
be trained are all the entity embeddings, all the relation embed-
dings and a relation weight matrix. So, the total number of TransL’s
parameters is 𝑂 (𝑛𝑒𝑑𝑒 + 𝑛𝑟𝑑𝑟 + 𝑛𝑟𝑛𝑟 ) (𝑑𝑒 = 𝑑𝑟 ), where 𝑛𝑒 and 𝑛𝑟
represent the numbers of entities and relations respectively. 𝑑𝑒 is
the dimensionality of the entity embedding space and 𝑑𝑟 is the

Table 1: Evaluation results of link prediction on FB15k-237.

Model MRR Hits
Raw Filter @1 @3 @10

CP [4] 0.080 0.182 0.101 0.197 0.357
DistMult [11] 0.100 0.191 0.106 0.207 0.376
ComplEx [9] 0.109 0.201 0.112 0.213 0.388
HolE [7] 0.124 0.222 0.133 0.253 0.391
TransE [1] 0.144 0.233 0.147 0.263 0.398
R-GCN [8] 0.158 0.248 0.153 0.258 0.414
ConvE [2] - 0.316 0.239 0.350 0.491

TransL (unif) 0.227 0.342 0.244 0.379 0.535
TransL (bern) 0.248 0.355 0.260 0.389 0.551

Table 2: Evaluation results of triplet classification (%).

Model WN11 FB13
TransE (unif / bern) [1] 75.9 / 75.9 70.9 / 81.5
TransH (unif / bern) [10] 77.7 / 78.8 76.5 / 83.3
TransR (unif / bern) [6] 85.5 / 85.9 74.7 / 82.5
TransD (unif / bern) [5] 85.6 / 86.4 85.9 / 89.1
KG2E (unif / bern) [3] 83.6 / 85.4 76.4 / 85.3
TransL (unif / bern) 86.1 / 86.6 83.8 / 85.6

(a) WN11 (b) FB13

Figure 2: Number of parameters of each model.

dimensionality of the relation embedding space. The optimal con-
figurations of our model in the experiments are: 𝑑𝑒 = 𝑑𝑟 = 20 on
WN11; 𝑑𝑒 = 𝑑𝑟 = 50 on FB13. The actual number of parameters of
each model is shown in Figure 2. For WN11, the numbers of param-
eters of TransE, TransH and TransR are almost the same as TransL.
For FB13, the actual number of TransL’s parameters is smaller than
TransE, TransH and TransR. We can find that TransD and KG2E
require tremendous of parameters to achieve high performance.

4 CONCLUSION
In this paper, we present a model named TransL for knowledge
graph completion. The basic idea of TransL is to explicitly leverage
the local connection to learn entity and relation embeddings. The
results of experiments conducted on three widely-used benchmark
datasets show that TransL is competitive to existing models. Our
plans for future work is to further investigate the relationship
among entities and to further improve TransL’s performance.
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