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ABSTRACT
Many developing countries frequently resort to disconnecting large
parts of their power grid from supply (i.e., load shedding), often due
to limitations in their generation capacity. Some homes suffer more
than others because fairness is not taken into due consideration
during load shedding. In this paper, we briefly discuss and evaluate a
number of solutions which mitigate against unfairness and improve
efficiency in load shedding.
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1 INTRODUCTION
Load shedding is common in many developing countries. This is
often so because they do not generate enough electricity to meet the
demand on their power systems.1 During load shedding, parts of the
power system are disconnected from supply in order to maintain
a balance between demand and supply. While this reduces the
strain on the system and prevents it from collapsing, it also leaves
homes within disconnected parts without electricity. Furthermore,
some homes bear the brunt of load shedding because standard load
shedding techniques do not focus on fairly allocating electricity
to homes, as much as they do on maintaining a demand-supply
balance.

Against this background, this paper presents a summary of the
household-level load shedding solutions in [6]. These solutions
consider the heterogeneous electricity needs of homes and uses
these to fairly connect homes to supply. They build on existing
1For example, Nigeria generates under 8 MW for a population of over 170 million
people [7].
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research in resource allocation,2 and assume the availability of
purpose-built (for developing countries) smart retrofits for different
kinds of electric meters [3]. They also rely on homes being modelled
as inactive agents (as summarised in Section 2), examples of which
represent price-taking buyers or sellers in marketplaces.

2 MODELLING HOUSEHOLD-LEVEL LOAD
SHEDDING FOR DEVELOPING COUNTRIES

The load shedding solutions herein are developed for homes. How-
ever, the benefit of these solutions are overarching, as the residential
sector constitutes a large percentage of the demand on the grid.
Such is the case in Nigeria (which we use as a case study), where
the residential sector accounts for 51.3% of grid demand [4].

2.1 Simulation of Household Consumption
Data

Due to the unavailability of a relevant real-world household-level
electricity consumption dataset for multiple homes in developing
countries, a verifiable, authenticated, readily available household
consumption data of homes in the USA was downloaded (from
Pecan Street Inc’s Dataport)3. This was then adapted into one rep-
resentative of Nigeria. Dataport was selected as a resource because
it contains desegregated (i.e., appliance-level) consumption data
for multiple homes over years, and for locations where the average
temperature during the warmest months are similar to those in
Nigeria. The dataset was adapted by collecting the consumption
data of appliances common in Nigeria during periods when the
external temperature is warmest, and aggregating these to make
up the electricity consumed in homes.

2.2 Modelling Homes as Agents
From the hourly consumption data for each home for up to four pre-
vious weeks4 (say𝐶𝑤=1

𝑖
to𝐶𝑤=4

𝑖
, where𝐶𝑤

𝑖
= (𝑐𝑡=1

𝑖
, . . . , 𝑐𝑡=168

𝑖
)), a

model of the consumption profile of each household 𝑖 is computed

2A resource allocation problem is a fair division problem whose solution involves
finding an allocation of limited resources between a number of interested entities,
subject to the availability of the resource and how interested the entities are in the
resource [1].
3Dataport is the largest provider of accessible disaggregated household energy con-
sumption data [8].
4We consider weekly periods because the consumption pattern of a typical home will
likely differ on different days of the week [2, 9] due to the activities of occupants, so
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as a vector 𝜁𝑖 , as in 𝜁𝑖 =
(
N(𝜇𝑡=1

𝑖
, 𝜎𝑡=1

𝑖
), . . . ,N(𝜇𝑡=168

𝑖
, 𝜎𝑡=168

𝑖
)
)
,

where 𝜁𝑖 is the vector of the hourly consumption of 𝑖 over the
week, with the consumption for each hour drawn from a normal
distribution of mean 𝜇𝑡

𝑖
(i.e., 𝜇𝑡

𝑖
=
∑4

𝑤=1 𝑐
𝑤,𝑡
𝑖

) and variance 𝜎𝑡
𝑖
(i.e.,

𝜎𝑡
𝑖
=
( ∑4

𝑤=1 (𝑐
𝑤,𝑡
𝑖

− 𝜇𝑡
𝑖
)2
)
/4).

Thereafter, 𝜁𝑖 is normalized so that the consumption profiles of
all homes fall within the range (𝜖, 1), where 𝜖 ∈ R>0 is a very small
number. This creates a vector of comfort,Δ𝑖 as inΔ𝑖 = 𝜁𝑖/max

𝑡
{𝜁𝑖 } =(

𝛿𝑡=1
𝑖

, . . . , 𝛿𝑡=168
𝑖

)
, where Δ𝑖 is a vector of values 𝛿𝑡𝑖 ∈ R>0. Conse-

quently, Δ𝑖 represents the preference 𝑖 has for electricity during all
hours in a week.

Being a mapping from consumption, this model creates a vector
of utilities for each agent in terms of its electricity needs. In addition,
the electricity needs of all agents become uniquely quantifiable
and interpersonally comparable, without considering how much
electricity the agents consume with respect to others.

2.3 The Fair Load Shedding Problem (FLSP)
The hourly estimated demand of each agent 𝑐𝑡

𝑖
is derived5 from

the representative data by drawing from the normal distribution
𝑐𝑡
𝑖
∼ N(𝑐𝑡

𝑖
, 0.05). The aggregated hourly estimated demand of the

set of agents (𝐼 ) is represented as the hourly load on the system, and
is denoted as 𝑙𝑡 ∈ R>0, where 𝑙𝑡 =

∑𝑛
𝑖=1 𝑐

𝑡
𝑖
. Similarly, the hourly

estimated supply capacity available for meeting the demand of
agents in 𝐼 is represented as 𝑔𝑡 ∈ R>0. The value of 𝑔𝑡 for each day
ahead is then taken as the average of the sum of hourly household
consumption estimates for that day (i.e., 𝑔𝑡 = (∑24

𝑡=1
∑𝑛
𝑖=1 𝑐

𝑡
𝑖
)/24).

Now, in a developing country, it is often the case that 𝑙𝑡 is greater
than 𝑔𝑡 . In this event, there is a deficit on the system and load
shedding becomes necessary to maintain a balance between 𝑙𝑡 and
𝑔𝑡 . In executing load shedding, a piece-wise variableΛ𝑡

𝑖
is defined to

take the value 1 if 𝑖 is connected to electricity at 𝑡 , and 0 otherwise.

3 LOAD SHEDDING SOLUTIONS
The solutions herein are based on other assumptions that household
consumption estimates may be computed, that there is enough
spinning reserve to cater for errors in computing these estimates,
and that the vector of comfort is independent of load shedding
events.6

A first set of heuristic solutions (see [5]) comprises of (1) the
Grouper Algorithm which disconnects the group of agents that
has suffered the least number of disconnections over time,7 (2) the
Consumption-Sorter Algorithm which uses a round-robin tech-
nique to disconnect individual agents from supply based on their
consumption, (3) the Random-Selector Algorithm which uses a
round-robin technique to disconnect agents from supply while
being agnostic to their consumption, and (4) the Cost-Sorter Algo-
rithm which uses a round-robin technique to disconnect individual
agents from supply based on their comfort.

that it becomes necessary to consider the household’s typical consumption pattern
during each day of the week [9].
5It is necessary to compute estimates of demand when planning for load shedding.
6These assumptions are justified in [6].
7The Grouper Algorithm is designed to mimic the response of human operators to load
shedding, albeit at the household level. Human operators would normally disconnect
parts of the grid from supply until demand slightly falls below available capacity.

A second set of Multiple Knapsack Problem (MKP) based so-
lutions are the Comfort Model which maximizes the comfort ob-
jective (as in max

∑𝑝

𝑡=1
∑𝑛
𝑖=1 𝛿

𝑡
𝑖
Λ𝑡
𝑖
), and the Supply Model which

maximizes the supply objective (as in max
∑𝑝

𝑡=1
∑𝑛
𝑖=1 𝑐

𝑡
𝑖
Λ𝑡
𝑖
). They

both do so based on the constraints that (1) demand is never higher
than supply (as in

∑𝑛
𝑖=1 𝑐

𝑡
𝑖
Λ𝑡
𝑖
≤ 𝑔𝑡 ∀ 𝑡 ∈ {1, . . . , 𝑝}), (2) all agents are

connected to supply daily for a number of hours as equal as possible
(as in 𝛽2 ≥ ∑𝑝

𝑡=1 Λ
𝑡
𝑖
≥ 𝛽1 ∀ 𝑖 ∈ 𝐼 ), (3) every agent is delivered as

much comfort as possible (as in
∑𝑝

𝑡=1 𝛿
𝑡
𝑖
Λ𝑡
𝑖
≥ 𝛽3 ∀ 𝑖 ∈ 𝐼 ), and (4)

every agent is supplied as much electricity as possible to meet its
demand (as in

∑𝑝

𝑡=1 𝑐
𝑡
𝑖
Λ𝑡
𝑖
≥ 𝛽4 ∀ 𝑖 ∈ 𝐼 ). Note that 𝑝 = 24.

4 PERFORMANCE EVALUATION
We used the utilitarian, egalitarian and envy-freeness social wel-
fare metrics in evaluating all solutions within three primary experi-
ments. In the first experiment, the solutions were evaluated in terms
of how long they connected agents to supply individually (based on
the egalitarian and envy-freeness metrics) and collectively (based
on the utilitarian metric) on the average. In the second, they were
evaluated in terms of the comfort they delivered to agents individ-
ually and collectively on the average. Lastly, they were evaluated
in terms of the electricity they supplied to agents individually and
collectively on the average. Following these, the MKP solutions
were found to connect more agents to supply, deliver more comfort
to agents, and supply more electricity to agents on the average,
both individually and collectively.

In another experiment, the solutions were evaluated in terms of
the excess load they disconnected from supply during load shedding.
The MKP solutions were found to be more efficient in this regard,
as they disconnected less excess load than the heuristics. They were
also found to deliver more comfort and electricity to each agent on
the average in other experiments. In order to see how our solutions
perform when estimates of demand are poor, we evaluated them
under different levels of uncertainty (by increasing 𝜎𝑡

𝑖
) and found

that though they performed erratically when estimates of demand
become poorer, their average results did not greatly differ.

Thereafter, we used our solutions to implement the FLSPs with
other datasets in order to show that they generalize within similar
settings, and found them to perform in line with prior evaluations.
Finally, we considered the time complexities of all our solutions
within which the heuristics and MKP solutions appeared to solve
in exponential and linear time respectively with respect to the
population of agents.

It is noteworthy that all of the above experiments were run
repeatedly (up to nine times each), being the reason why the per-
formances of the solutions evaluated on the average.

5 CONCLUSIONS
This paper presented a summary on the solutions which were
developed to enable fairer and more efficient load shedding. The
solutions were evaluated under a number of experiments, from
which the constrained optimisation (i.e., MKP) solutions were found
to produce results which Pareto dominated others. When taken
together, the solutions herein establish a set of benchmarks for fair
load shedding schemes. They also provide insights which may be
used within other settings to develop fair allocation solutions for
scarce resources.
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