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ABSTRACT
Deregulated power systems with high renewable penetration of-

ten involve complex decision-making by self-interested private

investors. In this work, we study the setting of privately developed

and shared network capacity, where the power grid infrastructure,

renewable generation and storage units are built by profit-driven

investors. Specifically, we consider a case where demand and gener-

ation sites are not co-located, and a private investor installs genera-

tion capacity and a power line between the two locations providing

also access to rival competitors (local generators and storage in-

vestors) against a fee. We show such a setting leads to a bilevel

Stackelberg-Cournot game between the line investor (leader) and

local investors (followers) and develop a data-driven solution to

derive the profit-maximising capacities installed by players at equi-

librium, based on analysis of a large-scale empirical dataset from a

grid upgrade project in the UK. Our method provides a realistic tool

to analyse decision-making of private investors in such games and

subsequently encourage further adoption of renewable generation.
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1 INTRODUCTION
Recent years have seen increasing adoption of renewable energy

sources (RES), in order to reduce CO2 emissions and combat climate

change. The sustainability agenda has led to research efforts not

only in power systems, but also in the multi-agent and artificial

intelligence communities [9, 25, 34–36]. Variable RES generation

has led to operational challenges in power systems [8, 14] and

undesirable energy curtailment, i.e. the wastage of RES energy so

that power system’s operation is safeguarded. Typically, curtail-

ment happens when existing grid infrastructure is insufficient and

RES generation cannot be transported where required [7, 10, 17]

entailing high costs for energy end-users. This issue is especially

critical in remote areas, such as in windy islands, where resources

are abundant, and installation of wind turbines is preferred.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Curtailment can be partially reduced by smarter operation of elec-

tricity grids, however, a long-term solution is increasing the trans-

mission network capacity, usually a costly investment supported

by public funding. Against this background, recent debates have

focused on attracting private funding in network investments [15],

such as from RES generation companies [19]. A key knowledge gap

faced by energy policy makers is how to incentivise such projects,

that could prove beneficial, especially in cases where several RES

generators can share the privately developed grid infrastructure,

against payment of a transmission fee.

One solution attracting significant attention is for all newly

developed power lines to be shared by private investors under

‘common access’ line rules. This means that a private investor may

be granted a license to build a line under the obligation to allow

third-party access (local generators or energy storage projects),

by setting a payment mechanism per unit of energy transported

through the line. The interplay of competing rival investors access-

ing demand through the shared transmission line however, raises

strategic behaviour issues, especially as the line and local rival local

investors may have conflicting underlying goals. In this paper, a

game-theoretic model is developed to allow a systematic study of

these interactions. Our model allows incentivising of private line

investments and line access fees determination, such that desirable

game equilibria (from a public policy perspective) are achieved, and

in which all stakeholders can benefit.

In more detail, motivated by a realistic case of a network invest-

ment from the UK, we consider a two-location model, where excess

RES generation and demand are not co-located, and where a private

RES investor constructs and shares access of a power line with local

investors of renewable energy and storage. This leads to a two-

stage Stackelberg-Cournot game between the line investor (leader),

who builds the line and RES generation capacity, and investors in

local generation and storage (followers). Stackelberg game equilib-

ria are classified as solutions to sequential hierarchical problems

where a dominant player (here the line investor) has the market

power to impose their strategies to smaller players and influence

the equilibrium. Cournot games describe structures where rival

investors independently and simultaneously decide production out-

put quantities (here RES generation and storage capacities). Agents

act to maximise their own profits and optimal investor strategies of

transmission, generation and storage capacities are interdependent

and affect the resulting curtailment and profitability of projects.

Several works considered strategic issues raised by private grid

capacity investments [5, 11, 21, 22, 24]. A simplified analytical solu-

tion to a stylised deterministic model of a Stackelberg game between

a line investor and local generators was shown in [1], while subse-

quent work [2] developed a formal model that considered stochastic
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RES resources and demand. Work in [2] showed that, due to the

large and continuous action sets, an analytical solution of the game

equilibrium could not be found. Moreover, work in [2] did not con-

sider energy storage players, which not only introduce additional

non-linearities and time dependencies in the optimisation, but lead

to a secondary Cournot game between local generators and storage

investors. Building on previous work, this paper presents a new

game-theoretic decision framework, which additionally includes

energy storage players. In the Stackelberg-Cournot game analysis,

payoff enumeration is derived not by simplified (smooth) mathemat-

ical functions, but from realistic energy system control algorithms

that emerge from real data of RES generation and demand and from

a concrete application. In more detail, our contributions are:

- First, we formulate a Stackelberg-Cournot game to model strate-

gic decision-making on optimal investments in distributed energy

systems, where energy assets are privately developed and access

to network capacity is shared. In the first stage, a private investor

(leader) constructs the network capacity required to access areas of

high demand, and own generation capacity. Next, local investors

(followers) compete on installing additional generation and storage

capacity, using the infrastructure installed by the leader, against a

transmission fee. Local investors play a Cournot game, conditioned

on the line investment decision made by the Stackelberg leader.

- Second, we develop an algorithmic solution approach where

agents’ payoffs are derived from large-scale datasets of historical

observations and simulations that realistically represent operation

and control in energy systems. Moreover, we establish a technique

for finding equilibrium, despite agents exhibiting continuous and

multi-dimensional strategy sets.

- Finally, the practical application of the Kintyre-Hunterston grid
project in the UK is studied for validation and parametric explo-

ration of the game dynamics. The analysis proposes a mechanism

for setting fees that ensure the line gets built, but local investors can

also benefit from investing in RES energy and energy storage. Our

work provides a decision support tool for investors and energy pol-

icy makers facing the problem of funding costly grid upgrades and

enabling alternative market structures for RES generators.

The structure of the paper is: Section 2 discusses relevant lit-

erature, Section 3 presents the Stackelberg-Cournot game model,

Section 4 presents the equilibrium solution analysis, Section 5 in-

troduces the case study, Section 6 presents results from explorative

scenarios and Section 7 concludes and discusses future work.

2 RELATEDWORK
Following the deregulation of the electricity sector and prolifera-

tion of variable RES technologies, power network expansion and

planning requires adoption of optimisation techniques [13, 27] and

modelling of strategic behaviour of market participants [11]. In

this context, game-theoretic and agent-based modelling are becom-

ing highly relevant for efficient planning and achieving desired

outcomes. Strategic behaviour can be analysed by agent-based ap-

proaches, such as in Baringo & Conejo [5], where renewable and

network capacity investment are jointly considered or in Motamedi

et al. [22] where the effect of generation capacity on network plan-

ning is examined. Maurovich-Horvat et al. [21] compare network

capacity undertaken by system operators or private investors, and
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Figure 1: Energy flows in Stackelberg-Cournot game

show that different ownership models may lead to significantly

different optimal results. Perrault & Boutilier [24] also consider

private grid upgrades and use coalition formation to enforce co-

ordination, reduce inefficiencies and transmission losses. Instead,

our work uses non-cooperative game theory to study strategic

interactions of investors in constrained areas of the grid. Other

works consider transmission expansion at power network areas

with congestion, such as the work from Joskow and Tirole [16]

that analysed a two-node system and studied market behaviours

of players exerting market power and allocation of transmission

rights. Our work derives optimal capacity decisions at areas with

curtailment by consideration of a Stackelberg-Cournot game.

In the context of network expansion, Stackelberg games were

utilised in several works, which considered analysis with social

welfare [28], locational marginal pricing [29] or highlight uncer-

tainties introduced by stochastic renewable generation [33]. More

recent works on the renewable energy domain, use Stackelberg

game analysis to model energy trading between microgrids [4, 20],

peer-to-peer energy trading [3, 32] or the development of elec-

tric vehicles infrastructure [37]. In the security domain, efficient

strategies for attacker-defender problems [18, 23] and poaching

prevention [12] are often modeled as Stackelberg games.

3 PROBLEM FORMULATION
Two locations were considered, location A of high energy demand

𝐷 , representing a large city or mainland, and a high RES generation

location B, such as a windy island, with local demand 𝑑 (see Fig. 1).

Three investor or agent types were assumed:

• Player 1 or the ‘line investor’ is building RES generation

capacity of 𝑃𝑁1
at B and a transmission line of capacity 𝑇

between A and B, which is crucially also used by rival players

to access remote demand 𝐷 against a transmission payment.

• Player 2 or ‘local generators’ represent all small-scale pro-

ducers at B installing generation capacity of 𝑃𝑁2
.

• Player 3 or the ‘storage investor’ builds storage capacity 𝑆 at B
and purchases renewable energy at times of RES oversupply.

In other words, storage utilises energy that would prior to

its installation have been curtailed.

Players are self-interested and aim to maximise their own utility

(profit). The main research question of this work is the determina-
tion of optimal strategies or capacities built by players

〈
𝑃𝑁1

,𝑇 , 𝑃𝑁2
, 𝑆
〉
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so that profits are maximised. Estimation of optimal agents’ actions

is studied as a Stackelberg-Cournot game. The line investor is the
leader, as he moves first by building the transmission line 𝑇 and

renewable generation capacity 𝑃𝑁1
at B, intending to maximise his

own profit. The leader is typically a larger investor who has the

capital and technical expertise to build the line enabling also local

investors to export their energy surplus. Profits however, depend

also on the investment capacity decisions (action sets) of local gen-

erators and the storage. Local investors share available capacity at

B by playing a Cournot game. Local investors’ optimal action sets

consists of finding 𝑃𝑁2
and 𝑆 so that profits are maximised. Analyti-

cally, the game equilibrium can be found by backward induction. At
the first stage, the leader estimates the Cournot game equilibrium,

determined by the joint actions of local investors, for every strategy

of the leader

〈
𝑃𝑁1

,𝑇
〉
. For a given

〈
𝑃𝑁1

,𝑇
〉
, the Cournot game equi-

librium can be found by the intersection of the local investors best

responses. Next, the line investor selects from the set of Cournot

game equilibria to build the profit-maximising

〈
𝑃𝑁1

,𝑇
〉
.

A model schematic of the game is shown in Fig. 1 along with the

energy flows between energy system components owned by players.

Without loss of generality wind and battery storage capacities were

assumed in this work, as shown in Section 3.1.

3.1 Models of energy system components
3.1.1 Wind generation model. Wind generation depends on the

rated capacity installed 𝑃𝑁𝑖
and wind speed at the project’s location

𝑤𝑖 . Power output from wind generators is modelled as a sigmoid

function of wind speed, as in other works in the literature [26]:

𝑥
(𝑡 )
𝐺𝑖

=
1

1 + 𝑒−𝛼 (𝑤
(𝑡 )
𝑖
−𝛽)

(1)

where 𝑥𝐺𝑖
is the normalised power generated by player 𝑖 and 𝛼, 𝛽

are the sigmoid function parameters
1
. Time series data of wind

power output can be created by the product of 𝑃𝑁𝑖
𝑥
(𝑡 )
𝐺𝑖

.

3.1.2 Energy storage model. A generic battery storage model is

assumed based on Lithium-ion batteries (e.g. Tesla Powerwall). For-

mally stated, energy stored in the storage device at time 𝑡 , 𝐸𝑆,𝑡 ,

depends on energy stored in the previous storage state 𝐸𝑆𝑡−𝛿𝑡 :

𝐸𝑆,𝑡 = 𝐸𝑆,𝑡−𝛿𝑡 + 𝑟𝑡𝜂𝛿𝑡 (2)

where 𝑟𝑡 is the power charged or discharged from storage, i.e. when

𝑟𝑡 > 0 then 𝑟𝑡 = 𝑃𝑐ℎ,𝑡 > 0, else when 𝑟𝑡 < 0 then 𝑟𝑡 = −𝑃𝑑𝑐ℎ,𝑡 < 0,

𝜂 represents the efficiency during charging 𝜂 = 𝜂𝑐ℎ or discharging

𝜂 = 1/𝜂𝑑𝑐ℎ . Moreover, storage follows operational constraints, such

as dynamic restrictions of power charged to or discharged from the

device. In addition, to prevent battery lifetime degradation, the op-

eration of storage is usually bounded between a safe minimum and

a maximum state of charge 𝑆𝑂𝐶 , which represents the maximum

capacity reached 𝑆𝑂𝐶𝑚𝑎𝑥 = 100%:

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑡 =
𝐸𝑆,𝑡

𝑆
100% ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (3)

1
A generic wind turbine model assumed in this paper was based on a 2.05 MW Enercon

E82 yielding 𝛼 = 0.3921 s/m and 𝛽 = 16.4287 m/s http://www.enercon.de/en/

products/ep-2/e-82/

For all 𝑡 and〈
𝑃𝑁1

,𝑇 , 𝑃𝑁2
, 𝑆
〉
repeat

Estimate generation and

demand

〈
𝑃𝐺1

, 𝑃𝐺2
, 𝑑, 𝐷

〉

Calculate residual demand ⟨𝑅𝐷 ⟩

𝑅𝐷 > 0

Estimate

storage

discharge

Satisfy 𝑑 with

RES & storage

(Pro Rata)

Satisfy 𝐷 with

remaining

RES & storage

(Pro Rata)

Serve deficit

from other

sources

Estimate power flows〈
𝑃𝑑𝑖 , 𝑃𝐷𝑖

, 𝑃𝑆𝑑 , 𝑃𝑆𝐷 , 𝑃𝑆𝑖𝑛𝑖

〉
𝑡

Total energies〈
𝐸𝐺𝑖

, 𝐸𝑑𝑖 , 𝐸𝐷𝑖
, 𝐸𝑆𝑑 , 𝐸𝑆𝐷 , 𝐸𝑆𝑖𝑛𝑖

〉

Satisfy 𝑑 with

RES (Pro Rata)

Satisfy 𝐷 with

remaining

RES (Pro Rata)

Store excess

RES in storage

Curtail

excess RES

Shortage

Oversupply

Figure 2: Control algorithm for energy flows estimation

3.1.3 Demand model. Demand follows a typical electricity load

behaviour 𝑃𝐿 with a morning and an afternoon peak. Local demand

𝑑 is a smaller portion of 𝑃𝐿 , while remote demand 𝐷 at location A,

represents the demand that can be served, after the transmission

line capacity 𝑇 is taken into account:

𝐷 =

{
𝑃𝐿, if 𝑃𝐿 < 𝑇

𝑇, otherwise

(4)

3.2 Power and energy flows
Energy flows and dispatch priority in the two-location system is

determined by the control scheme shown in Fig. 2. In summary,

for every 𝑡 , the residual demand 𝑅𝐷 (total demand minus potential

RES production) is estimated. When there is a shortage of renewable
supply, the control algorithm estimates the storage discharge, while

respecting power constraints and 𝑆𝑂𝐶𝑚𝑖𝑛 . Next, available supply

from agents serves the local demand in an equal or proportional

way (Pro Rata). Local demand is prioritised over remote demand

due to reduced energy losses, but also because of transmission

charges imposed to local generators and the storage investor. Any

remaining renewable or storage supply then serves the remote
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demand. The deficit to fully satisfy demand is supplemented by

other sources in the system. On the other hand, when there is

an oversupply of renewable production, RES generators serve both
local and remote demand on a Pro Rata basis. Excess is stored in

the storage system, as long as the 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 and maximum

charging power constraints are not violated. Any excess generation

that cannot be stored in the storage unit is curtailed. Power flows

are estimated for all 𝑡 , while energy flows for a larger duration such

as the project lifetime, are computed as the summation of power

flows for each 𝑡 over the project lifetime horizon.

Renewable generators have an energy production of 𝐸𝐺𝑖
and

can serve either local demand 𝐸𝑑𝑖 at B or remote demand 𝐸𝐷𝑖
at

A via the transmission line. In addition, RES generators can sell

any excess energy that cannot be absorbed locally or transferred

through the line to storage at B. The energy sold to storage by 𝑖

player is denoted as 𝐸𝑆𝑖𝑛𝑖 . Any excess that doesn’t serve the demand

and cannot be stored is curtailed 𝐸𝐶𝑖
. Taking all possible energy

flows for renewable energy production, the following must hold

for the line investor and local generators, respectively:

𝐸𝐺𝑖
= 𝐸𝑑𝑖 + 𝐸𝐷𝑖

+ 𝐸𝑆𝑖𝑛𝑖 + 𝐸𝐶𝑖
(5)

where 𝑖 = 1 denotes the line investor and 𝑖 = 2 the local generators.

Energy stored that serves local demand 𝑑 and remote demand 𝐷

are denoted as 𝐸𝑆𝑑 and 𝐸𝑆𝐷 , respectively. Demand can be served ei-

ther directly from RES generators or from storage or other external

sources in the system:

𝐸𝑑 = 𝐸𝑑1 + 𝐸𝑑2 + 𝐸𝑆𝑑 + 𝐸𝑑𝑜𝑡ℎ (6)

𝐸𝐷 = 𝐸𝐷1
+ 𝐸𝐷2

+ 𝐸𝑆𝐷 + 𝐸𝐷𝑜𝑡ℎ
(7)

Eq. (5) - (7) hold for a larger time period and for each 𝑡 . For profit

(payoff) estimation however, aggregate energy flows are required.

3.3 Profit or payoff functions
Players’ profits or payoffs depend on aggregate energy quantities,

tariff prices and costs for capacity installation. RES production is

remunerated with a price of 𝑝𝐺 in £/MWh of energy used to serve

demand. Energy traded with storage is sold for a tariff price of 𝑝𝑆
and energy transported through the line stemming from either one

of local investors is charged with 𝑝𝑇 . With regards to costs, RES

generation capacity is assumed to cost 𝑐𝐺𝑖
in £/MWh of expected

generation installed 𝐸𝐺𝑖
, the power line costs 𝑐𝑇 in £/MW per unit

of transmission capacity installed and storage costs 𝑐𝑆 in £/MWh

per unit of storage capacity installed. The costs reflect both capital

required and operation and maintenance costs.

Taking these into consideration the players’ profits are equal to:

Π1 = (𝐸𝑑1 +𝐸𝐷1
)𝑝𝐺 + (𝐸𝐷2

+𝐸𝑆𝐷 )𝑝𝑇 +𝐸𝑆𝑖𝑛1𝑝𝑆 −𝑐𝐺1
𝐸𝐺1
−𝑐𝑇𝑇 (8)

Π2 = (𝐸𝑑2 + 𝐸𝐷2
)𝑝𝐺 + 𝐸𝑆𝑖𝑛2𝑝𝑆 − 𝑐𝐺2

𝐸𝐺2
− 𝐸𝐷2

𝑝𝑇 (9)

Π3 = (𝐸𝑆𝑑 + 𝐸𝑆𝐷 )𝑝𝐺 − (𝐸𝑆𝑖𝑛1 + 𝐸𝑆𝑖𝑛2 )𝑝𝑆 − 𝐸𝑆𝐷𝑝𝑇 − 𝑐𝑆𝑆 (10)

Line investor’s revenues (see Eq.(8)) stem from serving the demand

(𝑑 or 𝐷), rewarded with 𝑝𝐺 , from energy transmitted through the

line charged with 𝑝𝑇 , and from energy sold to storage, charged with

𝑝𝑆 . Costs represent RES capacity 𝑐𝐺1
and transmission capacity 𝑐𝑇

installation. Similarly, local generators earn 𝑝𝐺 per unit of demand

served and 𝑝𝑆 for the energy sold to storage. The costs incurred by

local generators are RES capacity costs 𝑐𝐺2
, and the cost for energy

transmitted through the line 𝑝𝑇 (Eq.(9)). Finally, the storage investor

Algorithm 1 Profit estimation

1: p𝐺 , p𝑇 ,p𝑆 ⊲ feed-in tariff, transmission fee, storage fee

2: c𝑇 ⊲ transmission capacity cost

3: c𝐺𝑖
⊲ i player’s generation cost

4: for all
〈
P𝑁1
∈ {0, ..., 𝑃𝑁𝑚𝑎𝑥 }, T ∈ {0, ...,𝑇𝑚𝑎𝑥 }

〉
do

5: for all P𝑁2
∈ {0, ..., 𝑃𝑁𝑚𝑎𝑥 } do

6: for all S ∈ {0, ..., 𝑆𝑁𝑚𝑎𝑥 } do
7: Π1 ← (𝐸𝑑1 + 𝐸𝐷1

)𝑝𝐺 + (𝐸𝐷2
+ 𝐸𝑆𝐷 )𝑝𝑇 + 𝐸𝑆𝑖𝑛1𝑝𝑆 −

𝑐𝐺1
𝐸𝐺1
− 𝑐𝑇𝑇

8: Π2 ← (𝐸𝑑2 + 𝐸𝐷2
)𝑝𝐺 + 𝐸𝑆𝑖𝑛2𝑝𝑆 − 𝑐𝐺2

𝐸𝐺2
− 𝐸𝐷2

𝑝𝑇
9: Π3 ← (𝐸𝑆𝑑 +𝐸𝑆𝐷 )𝑝𝐺 − (𝐸𝑆𝑖𝑛1 +𝐸𝑆𝑖𝑛2 )𝑝𝑆 −𝐸𝑆𝐷𝑝𝑇 −

𝑐𝑆𝑆

10: end
11: end
12: end
13: return ⟨Π1,Π2,Π3⟩

earns 𝑝𝐺 when serving the local and/or remote demand, while

paying 𝑝𝑆 for the energy purchased from renewable generators,

𝑝𝑇 for the energy transported through the transmission line and

𝑐𝑆 for installing energy storage capacity of 𝑆 (Eq.(10)). Note here

that the energy purchased by storage from RES generators would

otherwise have been curtailed, meaning that the storage investor

can negotiate a low tariff price 𝑝𝑆 , hence increasing the profitability

of storage investments in the region.

Payoff enumeration and the continuous and multi-dimensional

nature of agents’ action sets, highlight the high complexity of the

analysis task. In addition, there are interdependencies with regards

to the curtailment incurred, time dependencies introduced by stor-

age and complex rules in the priority of dispatch (analysed in Sec-

tion 3.2). Hence, an analytical solution of the game equilibrium is

not feasible. For this reason, we propose an algorithmic solution

that relies on payoff enumeration directly from simulation analysis.

The methodology is described in detail in the following section.

4 EQUILIBRIUM ANALYSIS
The methodology utilises time series data for payoffs and equilib-

rium estimation. In particular, wind speed and demand data inform

the models presented in Section 3.1 and energy flows computation

(see Section 3.2). The game is restricted by considering a discretised

action set of ⟨𝑃𝑁1
,𝑇 , 𝑃𝑁2

, 𝑆⟩ that represents the continuous payoff
game. Following computation of energy flows, profits are estimated

for various financial parameters as in Alg. 1. Profits represent the

players’ expected payoffs, hence the game equilibrium can be found

by estimation of the normal form of the game shown in Fig. 3.

The game equilibrium is found by backward induction as in the

algorithmic procedure summarised in Alg. 2 and illustrated in Fig. 3.

Each plane in Fig. 3 illustrates the Cournot game played by local

investors for a given strategy of the leader. First, the line investor

moves in order to maximise his profit, however he needs to antic-

ipate the reaction of other investors to building the transmission

line and 𝑃𝑁1
at B. The leader estimates for every possible strat-

egy ⟨𝑃𝑁1
,𝑇 ⟩, the equilibrium solution of the Cournot game played
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Figure 3: Stackelberg-Cournot game equilibrium estimation: each plane illustrates the Cournot game played by local investors
for any given action of the leader, who then selects the profit-maximising Cournot game equilibrium

Algorithm 2 Stackelberg-Cournot eqilibrium estimation

1: for each
〈
P𝑁1

, T
〉
∈ ⟨{0, ..., 𝑃𝑁𝑚𝑎𝑥 }, {0, ...,𝑇𝑚𝑎𝑥 }⟩ do

2: for each S ∈ {0, ..., 𝑆𝑚𝑎𝑥 } do
3: Π#

2
← max

𝑃𝑁
2

Π2 (𝑃𝑁2
, 𝑆) |⟨𝑃𝑁1

,𝑇 ⟩ ⊲ local generators best

response

4: 𝑃𝑁2

# ← argmax

𝑃𝑁
2

Π2 (𝑃𝑁2
, 𝑆) |⟨𝑃𝑁1

,𝑇 ⟩

5: end
6: 𝐵𝑅2 ← (𝑃#𝑁2

, 𝑆) |⟨𝑃𝑁1
,𝑇 ⟩

7: for each P𝑁2
∈ {0, ..., 𝑃𝑁𝑚𝑎𝑥 } do

8: Π#

3
← max

𝑆
Π3 (𝑃𝑁2

, 𝑆) |⟨𝑃𝑁1
,𝑇 ⟩ ⊲ storage best response

9: 𝑆# ← argmax

𝑆

Π3 (𝑃𝑁2
, 𝑆) |⟨𝑃𝑁1

,𝑇 ⟩

10: end
11: 𝐵𝑅3 ← (𝑃𝑁2

, 𝑆#) |⟨𝑃𝑁1
,𝑇 ⟩

12: (𝑃𝑁2
, 𝑆)† = 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝐵𝑅2, 𝐵𝑅3) |⟨𝑃𝑁1

,𝑇 ⟩ ⊲ Cournot game

equilibrium

13: end
14: Π∗

1
← max

(𝑃𝑁
1
,𝑇 )

Π1 (𝑃𝑁1
,𝑇 , (𝑃𝑁2

, 𝑆)†) ⊲ line investor best

response

15: (𝑃𝑁1
,𝑇 , 𝑃𝑁2

, 𝑆)∗ ← argmax

(𝑃𝑁
1
,𝑇 )

Π1 (𝑃𝑁1
,𝑇 , (𝑃𝑁2

, 𝑆)†)

16: (𝑃𝑁1
,𝑇 , 𝑃𝑁2

, 𝑆)∗ = (𝑃∗
𝑁1

,𝑇 ∗, 𝑃∗
𝑁2

, 𝑆∗) ⊲ game equilibrium

17: return ⟨Π∗
1
,Π∗

2
,Π∗

3
, 𝑃∗

𝑁1

,𝑇 ∗, 𝑃∗
𝑁2

, 𝑆∗⟩

between local investors. An illustration of the Cournot game equi-

librium estimation is shown for clarity in the first plane in Fig. 3.

The Cournot game is analysed as follows. For every ⟨𝑃𝑁1
,𝑇 ⟩, local

generators estimate their best response for all possible strategies

of the storage player. In other words, local generators estimate the

renewable capacity they need to install 𝑃𝑁2

#
for every possible stor-

age capacity 𝑆 (and for every ⟨𝑃𝑁1
,𝑇 ⟩). In Fig. 3 this corresponds

to finding the maximum Π2 at each column (yellow color). Simul-

taneously, the storage investor estimates his best response to the

RES capacity built by local generators i.e. for every possible 𝑃𝑁2
,

the storage investor estimates the profit-maximising capacity 𝑆#

to be built. In Fig. 3, this is equal to finding the maximum Π3 at

every row of the payoff matrix (green color). The Cournot game

equilibrium between local investors is given by the intersection

of their best responses (𝑃𝑁2
, 𝑆)† (pink color). The Cournot game

analysis is repeated for all possible strategies of the line investor

and the corresponding line investor’s profits Π1 are recorded (red

square). From the set of Cournot game equilibria, the leader selects

the strategy that maximises Π1 i.e. the Stackelberg-Cournot game

equilibrium ⟨𝑃∗
𝑁1

,𝑇 ∗, 𝑃∗
𝑁2

, 𝑆∗⟩ (red box filled with pink color). This

concludes the optimal strategy backward induction process fol-

lowed by the line investor. The line investor then installs (𝑃∗
𝑁1

,𝑇 ∗).
Local investors (local generators and storage investors) observe the

leader’s strategy and respond by installing the Cournot game equi-

librium capacities 𝑃∗
𝑁2

and 𝑆∗, as anticipated by the leader. Results

from methodology application are discussed in the next section.

5 CASE STUDY ANALYSIS
The methodology was applied to the practical application of the

Kintyre-Hunterston network upgrade project in the UK. Located in

western Scotland, the Kintyre peninsula is one of most favourable

wind generation sites in the UK, however grid infrastructure origi-

nally built to serve a typical rural area of low demand, was inade-

quate to integrate high RES volumes developed in the region. This

led to a £230m network upgrade project connecting the Hunterston

substation, partially through a sub-sea link, to the Kintyre creat-

ing headroom for 150 MW additional RES capacity [31] with an

estimated net lifetime benefit of £520m [30]. Based on this project

figures, we consider a two-node network of a location A of high
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demand (mainland) and a location B of high wind generation (Kin-

tyre). Historical observations of hourly mean wind speed data over

a 17-year period (MIDAS dataset from UK Met Office) and hourly

demand data over the 2006-2015 period (UKNational Demand) were

collected to inform generation and demand models. Demand fol-

lows a similar pattern to the UK demand profile with local demand

equal to about 20% of remote demand. Energy flows were computed

for an hourly simulation analysis over a year, accounting for hourly

and seasonal variations of generation and demand. Installation cost

parameters were adjusted to represent annual costs. Transmission

cost 𝑐𝑇 was based in cost figures of the Kintyre-Hunterston project

i.e. £230m/150 MW of 𝑇 installed. A useful lifetime of 10 years

was assumed for storage, after which the system is replaced. En-

ergy storage system parameters were based on typical values for

Lithium-ion batteries, with 𝑆𝑂𝐶𝑚𝑖𝑛 = 20%, 𝑆𝑂𝐶𝑚𝑎𝑥 = 100% and a

charging and discharging efficiency of 𝜂𝑐ℎ = 𝜂𝑑𝑐ℎ = 90%.

Continuous action sets were discretised as 𝑃𝑁𝑖
= [0 : 1 : 500]

MW, 𝑆 = [0 : 1 : 300] MWh and 𝑇 = [0, 75, 100, 125, 150, 175] MW

leading to 501 × 301 × 3006 or 450million potential strategy combi-

nations. This results in a restricted game that represents the contin-

uous payoff game. For each combination, hourly energy flows were

estimated (vectors of 8760 magnitude) and profits calculated for at

most 51 values of cost parameters per scenario, increasing the com-

putational intensity required for the analysis. Hence, simulations

were executed in a high-performance computing facility (Cirrus

UK National Tier-2 HPC Service at EPCC http://www.cirrus.ac.uk)

in a MATLAB environment with 36 parallel workers.

Discrete action sets mean that agents’ best responses are vectors

of pair elements (or arrays), which lead to a challenge observed

with regards to the intersect function (Alg. 2 Line 12), which re-

turns as output the common data found in best responses 𝐵𝑅2 and

𝐵𝑅3. The intersect function does not exhaustively search the payoff

space for estimation of the Cournot game equilibrium, but only

in feasible areas where intersections can occur. If the search for

intersection returns exactly one intersection point (𝑃𝑁2
, 𝑆)† then

this is the Cournot game equilibrium (e.g. see Fig 4). In the case of

multiple intersection points, the equilibrium is the mean of the in-

tersection points. If the intersection lies between the best response

data recorded, the Cournot game equilibrium is taken at the inter-

section between the line segments formed by the local investors’

best response curves. The two latter cases above only occur due to

the discrete strategy space and large-scale data analysis, as opposed

to other works where profits/costs are mathematical functions and

the equilibrium is found analytically.

6 SCENARIO RESULTS
This section explores the game dynamics and equilibrium properties

by varying the cost parameters of the game. Five scenarios were

considered in which, the value of the tested parameter varies, while

other parameters remain fixed (parameter values are shown in

Table 1). Transmission, generation and storage capacities installed

and agents’ profits at equilibrium are shown in Fig. 5-6.

In Scen. 1-3, total generation capacity decreases as the tested

parameter value increases. RES investors, i.e. the line investor and

local generators, install less capacity, as their own generation cost

𝑐𝐺𝑖
increases. Reduction in capacity installed by a RES investor
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Figure 4: Local investors best responses in Cournot game for
⟨𝑃𝑁1

,𝑇 ⟩ = ⟨100, 100⟩ and 𝑐𝐺1
= 𝑐𝐺2

= 𝑝𝑇 = 0.30𝑝𝐺 , 𝑝𝑆 = 0.10𝑝𝐺

benefits the rival RES investor (Scen. 1-2). In Scen. 3, 𝑃𝑁1
is rel-

atively constant (small increase is observed for large 𝑝𝑇 ), while

𝑃𝑁2
decreases. Lower 𝑆 capacity is installed as 𝑝𝑆 or 𝑐𝑆 increase

(Scen. 4-5). In Scen. 1-3, 𝑆 decreases along with 𝑃𝑁1
, leading also to

a decrease of the total RES capacity installed. Transmission capacity

remains largely unchanged, with some step changes observed (in

Scen.1 & 5 𝑇 decreases, in Scen. 2 & 3 increases, and in Scen. 4 is

constant). Profits exhibit similar behaviour to the capacity installed.

In all scenarios, storage’s profits are significantly lower than profits

by RES investors. This is attributable to high storage costs 𝑐𝑆 and

fees of 𝑝𝑆 and 𝑝𝑇 . Storage has limited market power, as it purchases

energy only when there is RES oversupply and serves demand at

times of RES deficit. Scen. 3 shows that high transmission fees 𝑝𝑇 in-

hibit the uptake of RES generation and storage. Low 𝑝𝑇 can deliver

line investor’s profits, as the line is crucial for accessing remote

demand and generating revenue from rival investors. Suitable 𝑝𝑇
determines a feasible range that allows transmission, generation

and storage capacity investments to be profitable. Scen. 4 showed

that 𝑝𝑆 effect on 𝑃𝑁𝑖
and 𝑇 installed is not significant, however if

𝑝𝑆 ≥ 0.4𝑝𝐺 , no storage capacity is built. Storage can negotiate a low

𝑝𝑆 as energy stored would otherwise have been curtailed. Scen.5

displays a sensitivity analysis to the storage cost 𝑐𝑆 with (𝑐𝑆 = 100%

represents current state of battery costs $200/kWh). As 𝑐𝑆 increases,

𝑆 installed decreases, however the reduction is not linear. Future

reduction in storage costs (at the range of 𝑐𝑆 = 30%−35% of current

prices) could lead to massive adoption of storage devices leading

also to higher RES and transmission capacity.

In addition to optimal strategies installed, we also investigated

the value that storage brings to the energy system by comparing

operation with and without storage. When storage is removed,

the game reduces in a Stackelberg game between the line investor

and local generators. A significant beneficiary when storage is

introduced is the line investor. In all scenarios (Scen. 1-3), the line

investor is able to achieve larger profits, when storage is deployed

(see Fig. 7-(a)), for two main reasons: the leader installs more RES

capacity and revenue is generated by storage (energy sold at 𝑝𝑆
and transferred with 𝑝𝑇 ). Note this result is not obvious, as in

the case of a RES shortage, storage and RES generators compete

for serving the demand on equal terms (Pro Rata). On the other
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Scenario 1 (varying 𝑐𝐺1
) Scenario 2 (varying 𝑐𝐺2

) Scenario 3 (varying 𝑝𝑇 ) Scenario 4 (varying 𝑝𝑆 ) Scenario 5 (varying 𝑐𝑆 )
𝑐𝐺1

0.10𝑝𝐺 : 0.02𝑝𝐺 : 0.70𝑝𝐺 0.30𝑝𝐺 0.36𝑝𝐺 0.36𝑝𝐺 0.36𝑝𝐺

𝑐𝐺2
0.30𝑝𝐺 0.10𝑝𝐺 : 0.02𝑝𝐺 : 0.70𝑝𝐺 0.30𝑝𝐺 0.30𝑝𝐺 0.30𝑝𝐺

𝑝𝑇 0.30𝑝𝐺 0.30𝑝𝐺 0.10𝑝𝐺 : 0.02𝑝𝐺 : 0.90𝑝𝐺 0.30𝑝𝐺 0.30𝑝𝐺

𝑝𝑆 0.10𝑝𝐺 0.10𝑝𝐺 0.10𝑝𝐺 𝑝𝑆 = 0 : 0.02𝑝𝐺 : 𝑝𝐺 0.10𝑝𝐺

𝑐𝑆 15, 000 15, 000 15, 000 15, 000 0.30𝑐𝑆 : 0.05𝑐𝑆 : 1.60𝑐𝑆

Table 1: Cost parameter assumptions for scenario analysis (in all scenarios 𝑝𝐺 = $74.3/MWh and 𝑐𝑡 = $76, 666.67/MW)

(1)

10 20 30 40 50 60 70

Cost of line investor c
G

1

 (% of p
G

)

0

50

100

150

200

250

300

350

400

450

500

G
en

er
a

ti
o

n
 c

a
p

a
ci

ty
 (

M
W

)

0

50

100

150

200

250

S
to

ra
g

e 
ca

p
a

ci
ty

 S
 (

M
W

h
)

Line investor
Local generators
Transmission capacity
Storage

10 20 30 40 50 60 70

Cost of local generators c
G

2

 (% of p
G

)

0

50

100

150

200

250

300

350

400

450

500

C
ap

a
ci

ty
 (

M
W

)

0

50

100

150

200

250

S
to

ra
g

e
 c

a
p

ac
it

y
 (

M
W

h
)

Line investor
Local generators
Transmission capacity
Storage

10 20 30 40 50 60 70 80 90

Transmission fee p
T
 (% of p

G
)

0

50

100

150

200

250

300

350

400

450

500

C
a

p
ac

it
y 

(M
W

)

0

50

100

150

200

250

S
to

ra
g

e
 c

ap
a

ci
ty

 (
M

W
h

)

Line investor
Local generators
Transmission capacity
Storage

(2)

10 20 30 40 50 60 70

Cost of line investor c
G

1

 (% of p
G

)

0

10

20

30

40

50

30

35

40

45

50

P
ro

fi
ts

 (
£

 m
ill

io
n

)

Line investor
Local generators
Storage

(a) Scenario 1

10 20 30 40 50 60 70

Cost of local generators c
G

2

 (% of p
G

)

0

5

10

15

20

25

30

35

40

45

50

P
ro

fi
ts

 (
£

 m
il

lio
n

)

Line investor
Local generators
Storage

(b) Scenario 2

10 20 30 40 50 60 70 80 90

Transmission fee p
T
 (% of p

G
)

0

5

10

15

20

25

30

35

40

45

50

P
ro

fi
ts

 (
£

 m
ill

io
n

)

Line investor
Local generators
Storage

(c) Scenario 3

Figure 5: Scenarios 1-3 results: effects of 𝑐𝐺1
, 𝑐𝐺2

and 𝑝𝑇 on capacities installed and profits at Stackelberg-Cournot equilibrium

hand, in the majority of cases, local generators are marginally

worst off when storage is deployed (see an example shown for

Scen. 1 in Fig. 7-(a)). In Scen. 1 & 3, local generators install less

RES capacity when storage is introduced and achieve marginally

lower profits. In Scen. 2, storage brings higher profits for local

generators, only if they have a lower generation cost than the

line investor. A potential reason for the behaviour observed for

local generators is the competitive game between local investors.

Local generators can generate additional revenue by trading energy

surplus with the storage system, however, they also compete with

storage when there is a RES generation shortfall. The competitive

behaviour manifests in a reduction of profits for local generators.

On the contrary, the line investor is able to exploit his competitive

advantage and reap the benefits from the introduction of storage.

Additional benefits that storage brings are observed in increased

RES penetration, as demand served by other sources and curtail-

ment are reduced (see Fig. 7-(b) and (c) respectively). A significant

decrease was observed in the remote demand served, as high lev-

els of local demand served by RES are already achieved before

storage is introduced. Storage increases the RES capacity and re-

duces the remote energy demand served by other sources in the

grid achieving larger penetration of renewable generation. Despite

storage entering the market, RES generation curtailment is not

fully eliminated and it is still required when storage capacity is

exceeded. Eradication of RES curtailment would require a massive

storage capacity installed, a situation not profitable with current

cost prices. Simulation results showed a reduction of curtailment

reaching savings up to 7% (see Fig. 7-(c)).

Finally, a general observation is that results may fluctuate and

may not be monotonic. The main reason for this behaviour is that

the solution approach for payoffs and equilibrium estimation stems

from large-scale simulation analysis, as opposed to analytical solu-

tions considered in other works. In fact, the large space of agents’

action sets was restricted by assuming a discrete strategy space,

that allowed a restriction of the game that made finding equilibrium

computationally tractable, but without losing the ability to gain

insights to the original game. This combined with non-linearities

introduced by storage led to approximations of the Cournot game

equilibrium in the cases of multiple or in-between intersections,

discussed in Section 5, which contributes to non-monotonicity.

7 CONCLUSIONS & FUTUREWORK
A game-theoretic analysis is developed in this work to model strate-

gic decision-making of low-carbon capacity investments, including
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(a) Scenario 4
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Figure 6: Scenarios 4-5 results: effects of 𝑝𝑆 and 𝑐𝑆 on capacities installed and profits at Stackelberg-Cournot equilibrium
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(b) Scenario 2: Demand by others
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(c) Scenario 3: Curtailed energy

Figure 7: Comparison of profits, demand served by other sources and RES curtailment with and without storage

RES generation, energy storage and network upgrades, undertaken

by self-interested and profit-maximising private investors. Specifi-

cally, we model a setting where network access is shared among

investors leading to a two-stage Stackelberg-Cournot game. Agents’

payoff functions and equilibrium estimation are based on simula-

tions and a large-scale data-driven analysis and game dynamics was

studied for a wide range of cost parameters enabling RES investors,

network operators and energy policy makers to explore suitable

market structures and charging fees for transmission and storage,

and to encourage profitable low-carbon technology investments. A

key finding is that by introducing storage, lower curtailment and

higher RES integration can be achieved, with the line investor ben-

efiting most from storage, while local generators are marginally

worst due to the competitive nature of the game. Future work will

focus on alternate market structures with regards to storage owner-

ship. For example, RES investors could decide to invest in their own

storage capacity or they can jointly invest in a common storage

system. Fair allocation of profits generated by co-owned storage

system is of interest in this setting, especially as RES generators may

have invested in dissimilar generation capacities. Game equilibrium

estimation required significant computational resources, due to the

enumeration of payoffs for a large size of agents’ action sets. Hence,

future work will focus on efficient equilibrium estimation, as in the

work by Basilico et al [6]. and will investigate machine learning

techniques for fitting an approximate payoff function to the agent’s

strategy space.
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