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ABSTRACT
Dynamic target search and tracking represents one of the most chal-
lenging problems for multi-agent systems. Effective strategies are
critically needed to address numerous real-world robotic applica-
tions. Hitherto, the most common approach still relies on centrally
controlled agents that become ineffective when tasked with both
finding and tracking fast-moving targets in large and unstructured
environments. While dynamic Particle Swarm Optimization (PSO)
networks have been previously considered, the central effect played
by the level of connectivity among swarming agents has been over-
looked. In this paper, we present a fully decentralized swarming
strategy offering a tunable exploration-exploitation multi-agent
dynamics. This approach is achieved by combining adaptive inter-
agent repulsion and an adjustable network PSO-based strategy.
By tuning the topological distance between agents—i.e. the level
of connectivity—we identify an optimal balance between explo-
ration and exploitation leading to an effective performance of the
swarm even in the presence of very fast moving targets. Beyond
the quantitative results obtained through simulations, we present
experimental test and validation of this approach with a fully de-
centralized swarm of eight ground miniature robots.
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1 INTRODUCTION
The search and tracking of a dynamic target is a challenging prob-
lem with applications such as search and rescue [13], as well as
environmental monitoring [31]. Currently, the leading strategies
for dynamic target search and tracking are based on centrally con-
trolled agents using a predetermined search pattern to perform a
systematic sweep of a given search area [23, 24]. However, these
search methods are rendered ineffective when searching for and
tracking a target moving faster than the capability of the individual
searchers.

One proposed solution to deal with such highly dynamic target
search and tracking problems is the usage of swarming multi-robot
systems (MRS). These multi-agent systems have clear benefits over
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the use of single-robot systems or other non-decentralized or non-
swarming MRS, including faster search times, the ability to with-
stand the sudden loss of agents—robustness, the ability to perform
a task with differing number of agents—scalability, and the ability
to perform a task in a dynamic environment—flexibility or swarm
intelligence [5, 18].

Recently, the particle swarm optimization (PSO) algorithm, an
algorithm suitable for stationary multidimensional and nonlinear
functions [17], has been brought into the robotics realm to achieve
effective target searches with swarming MRS [8, 10, 15, 29]. Modifi-
cations enabling this translation include, for instance, the addition
of obstacle or inter-agent collision avoidance behaviors [9], as well
as the implementation of a limited communications range [8, 25, 30].
The fact that PSO is a metaheuristic makes it a highly compelling ap-
proach for decentralized MRS operations in dynamic search-spaces.

However, two main challenges of implementing a PSO-based
target search and tracking strategy in dynamic environments have
not been sufficiently addressed. These challenges are: (1) solving the
problems caused by outdated memory, and (2) excessive exploita-
tion of the search environment at the expense of exploration [16].
In both cases, the swarm converges on the target but is unable
to continue tracking the target’s movements due to insufficient
exploratory actions performed by the agents (i.e. particles) once
engaged with the target. This highlights the requirement that the
swarm needs to be able to constantly explore the search space, even
after the target is found.

To promote sufficient exploration of the search space, swarm
reinitialization procedures have been considered. This involves ran-
domizing the particle positions and fully restarting the entire PSO
process when the ‘global best’ (gBest) value has not been updated
in several iterations [12, 20]. However, such procedures can only be
considered when using PSO as a computational optimization tech-
nique. They are neither practical nor feasible in the physical world
and as such, Jatmiko et al. have proposed dispersing the robotic
swarm if the gBest value has not changed after a specified number
of time-steps [15]. Another strategy to promote exploration of the
search environment is to employ agents with a constant repulsive
parameter, preventing them from clustering [3]. However, these
approaches require an all-to-all network to facilitate inter-agent
repulsion, thereby making them essentially centralized.

Another key factor to take into account when devising PSO-
based search and tracking strategies is the connectivity of the agents
involved when performing such tasks. From the computational
standpoint of PSO, the most commonly studied network structures
are the static lBest (ring) and gBest (all-to-all) network topolo-
gies, with the gBest topology being the predominant approach [19].
Typically, these networks are fixed during the initialization of the
particles and do not change while the PSO simulation unfolds. It
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has recently been recognized that agents in PSO networks with
lower amounts of connectivity (i.e. low degree) perform more ex-
ploratory actions achieving higher global search performance. In
contrast, agents in networks with greater connectivity (i.e. high
degree) perform more exploitative actions and fare better at local
search tasks [4]. It is worth pointing out that the network topology
plays a central role in the effectiveness of distributed information
exchanges underpinning the collective response of a swarm [26].

Although, the use of static networks has not been seen as a
problem when considering PSO’s applications in silico, using such
methods in robotico with an MRS evolving in an unstructured en-
vironment poses significant challenges. This includes the limited
communication ranges and limited information processing capa-
bilities of a robot that constrains the number of connections it can
effectively establish and sustain. As such, dynamic PSO networks
based on metric-distance neighbors have been proposed and stud-
ied [25, 30]. It has been shown that larger communication ranges
result in faster convergence times for the swarm [25]. This holds
true until the communications radius of each member is able to
cover the entire swarm, at which point, an all-to-all network is
formed and there is no further reduction in convergence time [30].

Recently, it has also been shown that regardless of the technical
limitations of the individual robotic units, there exists an optimal
level of connectivity between swarming agents involved in a de-
centralized decision-making process. Interestingly, this optimal
connectivity is directly related to speed of the driving signal [21].
Furthermore, it has also been shown that an excessive amount of
interaction limits a swarm’s ability to collectively respond to per-
turbations [22]. This implies that while tracking a dynamic target,
instead of relying on all agents within a set communication range,
tuning the level of connectivity of a swarm may result in a better
collective tracking performance. While efforts have been made to
implement dynamic network topologies in robotic swarms, this
effect of varying the level of connectivity of a swarm operating in
a dynamic environment has largely been ignored.

In this paper, a fully decentralized swarming strategy with tun-
able exploration-exploitation dynamics (EED) is introduced and
quantitatively evaluated. The tunable EED allows the agents to
prioritize exploitation or exploitation of the search space depend-
ing on information it collects from the environment, as well as
information from its neighbors. This novel multi-agent dynamic
is achieved by means of two fundamental elements: (1) an adap-
tive inter-agent repulsion behavior, and (2) an adjustable network
PSO-based dynamics. By varying the topological distance between
particles—i.e. the degree 𝑘 of the 𝑘-nearest neighbor network—the
balance between exploitative and exploratory behaviors changes.
Through this process, we are able to uncover an optimal collective
performance of the swarm corresponding to a specific connectivity
𝑘 . This swarm strategy for dynamic search and tracking is experi-
mentally tested and validated with a decentralized swarm of eight
wheeled miniature robots operating in the absence of any support-
ing infrastructure.

2 METHODS
2.1 Search and Tracking Strategy
Our PSO-based swarming MRS with adjustable exploration and
exploitation dynamics (EED) search and tracking strategy is based
on: (i) a decentralized and dynamic network PSO-based algorithm
searching for a global minimum value corresponding to the tar-
get, and (ii) an adaptive repulsion behavior promoting collective
exploratory actions. The control of the inter-agent information
exchanges is achieved by selecting the value of the degree 𝑘 of the
inter-connecting 𝑘-nearest neighbor network.

2.1.1 Decentralized Particle Swarm Optimization. Similar to the
original PSO algorithm, the 𝑁 agents (i.e. particles) that make up
the swarm are initially spread out across the search-space. At any
discrete time-step 𝑡 , each agent 𝑖 is fully characterized by three
state variables: its two-dimensional velocity v𝑖 [𝑡], its position x𝑖 [𝑡],
and its objective function value 𝑓 (x𝑖 [𝑡], 𝑡). If agent 𝑖 is on target
at instant 𝑡 , then 𝑓 (x𝑖 [𝑡], 𝑡) = −1. Otherwise, the its objective
function value is zero. The explicit dependence on time of the
objective function value 𝑓 (x, 𝑡) reflects the dynamic character of
the target.

At each time-step, each agent 𝑖 seeks to bring its objective func-
tion value to the tracking value−1 by taking into account its current
direction of travel and the best position of an agent within its neigh-
borhood, denoted by Nbest for “Neighborhood best.” Most classical
variants of PSO dealing with a static objective function also includes
the influence of the personal best position—know as the cognitive
term, which essentially acts as the agent’s memory. Given that
we consider the much more challenging case of a dynamic objec-
tive function, such memory effects are known to be completely
counter-effective and are therefore discarded [8, 14]. The velocity
and position of the agents are updated based on Eqs. (1) & (2). The
parameter 𝜔 is known as the velocity inertial weight, and 𝑐 as the
velocity social weight, while 𝑟 is a number randomly drawn from
the unit interval.

vpso,𝑖 [𝑡 + 1] = 𝜔v𝑖 [𝑡] + 𝑐𝑟
(
Nbest [𝑡 + 1] − x𝑖 [𝑡 + 1]

)
(1)

x𝑖 [𝑡 + 1] = x𝑖 [𝑡] + v𝑖 [𝑡] . (2)

It should also be noted that, Nbest [𝑡] is assigned the position of
its neighbor with the best position at any particular time-step.
This is unlike the original PSO algorithm where Nbest [𝑡] takes on
the historical best position found by the particle’s neighbors. It is
important note that in our framework, the concept of a neighbor is
understood in the network sense. This means that any agent 𝑖 has
as many neighbors as its degree 𝑘𝑖 , and that these neighbors are
changing given that we consider time-varying network topologies.
The specifics are given in the following section.

2.1.2 SwarmConnectivity. The interaction network among swarm-
ing agents plays a key role in the effectiveness of our EED strategy.
In particular, the level of connectivity—i.e. the degree—can be ad-
justed with significant effects on the collective dynamics [5]. As
previously mentioned, higher levels of connectivity lead to higher
levels of local exploitation, and consequently a higher degree of
aggregation within the search space, while a low degree causes the
swarm to prioritize exploration of the environment.
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It has been shown that in flocks of starlings, birds interact with
only 7 to 8 nearest neighbors on average, regardless of the distance
between them [2]. Such a topological neighborhood concept is
conveniently represented by a 𝑘-nearest neighbor graph. Here, the
value of the degree 𝑘—identical for all agents—characterizes the
level of connectivity within the swarm. At each time-step, any
agent 𝑖 identifies its 𝑘-nearest neighbors in the topological sense,
and sets its Nbest position to be the position of the nearest neighbor
on target. Should the agent detect the target itself, or should none
of the agent’s neighbors detect the target, Nbest is then set to the
agent’s own position x𝑖 at that given time-step. At this point, we
defineN𝑖 [𝑡] as the set of 𝑘 indices corresponding to the topological
neighbors of agent 𝑖 at time-step 𝑡 . In the sequel, the reference to
the time-step is dropped to simplify the notations.

2.1.3 Adaptive Repulsion. There are two main reasons for the
implementation of inter-agent repulsion as part of our EED ap-
proach. Firstly, repulsion encourages a more exploratory behavior
of the search-space and prevents the swarm from congregating
within a small area—an undesirable herding dynamics. Secondly,
from the practical swarm robotics standpoint, this behavior offers
a welcome collision-avoidance measure.

The repulsive behavior adopted is based on the one used in
another swarming system [28, 31]. For any agent 𝑖 with topological
neighbors 𝑗 , the repulsion velocity can be expressed as:

vrep,𝑖 [𝑡] = −
∑
𝑗 ∈N𝑖

(
𝑎𝑅 [𝑡]
𝑟𝑖 𝑗 [𝑡]

)𝑑 r𝑖 𝑗 [𝑡]
𝑟𝑖 𝑗 [𝑡]

, (3)

where r𝑖 𝑗 is the vector from agent 𝑖 to agent 𝑗 . This inter-agent
repulsion is controlled by two parameters: the repulsion strength
𝑎𝑅 that affects the agents’ distance from each other at equilibrium,
and the exponent 𝑑 in the pre-factor term (𝑎𝑅/𝑟𝑖 𝑗 ). In what follows,
𝑑 is fixed at 6 given that this value has very moderate effects on the
performance of the EED strategy. At large (𝑎𝑅/𝑟𝑖 𝑗 ) and 𝑑 values,
the repulsion strength of the agents is approximately equal to the
nearest-neighbor distance in equilibrium configuration [28]. As
such, these two parameters were set so that the swarm was able to
cover the entire search area when there was no target found.

A central aspect of this repulsive behavior is the ability of an
agent to tune its level of repulsion based on the information it gath-
ers from the environment and its neighbors. Based on this gathered
local information, each agent has the ability to adjust the value of
its own parameter 𝑎𝑅 within a set range, thereby yielding adaptive
repulsion. In our numerical tests, 𝑎𝑅 was allowed to vary between
0.375 and 1.5. If an agent or its neighbors are not within range of the
target, this agent enters an exploratory state, in which it gradually
increases 𝑎𝑅 until it reaches the maximum prescribed value. On
the other hand, if an agent or at least one of its neighbors is within
range of the target, the agent adopts a tracking behavior in which it
gradually reduces the strength of its repulsion toward the minimum
value. The adaptive repulsion is summarized in Algorithm 1.

2.1.4 Exploration Exploitation Dynamics. Given the elements
reported in the previous sections, we can detail the inner workings
of the proposed EED search and tracking strategy in Algorithm 2.

Algorithm 1 Adaptive Repulsion
Set 𝑎𝑅,min = 0.375, 𝑎𝑅,max = 1.5, 𝑑 = 6, and 𝛿 = 0.01
while System active do

if 𝑓 (x𝑖 [𝑡], 𝑡) = −1 or ∃ 𝑗 ∈ N𝑖 s.t. 𝑓 (x𝑗 [𝑡], 𝑡) = −1 then
if 𝑎𝑅 > 𝑎𝑅,min then
𝑎𝑅 ← 𝑎𝑅 − 𝛿

end if
else

if 𝑎𝑅 < 𝑎𝑅,max then
𝑎𝑅 ← 𝑎𝑅 + 𝛿

end if
end if
Calculate vrep,𝑖 using Eq. (3)

end while

Algorithm 2 Dynamic 𝑘-Nearest Network PSO with Adaptive
Repulsion

Set 𝑡 = 0, 𝑘 ∈ [2, 𝑁 − 1], 𝜔 = 1, and 𝑐 = 0.5
while System active do

for All agents 𝑖 ∈ [1, 𝑁 ] do
Calculate 𝑓 (x𝑖 [𝑡], 𝑡)
if 𝑓 (x𝑖 [𝑡], 𝑡) = −1 then

Nbest ← x𝑖 [𝑡]
else
Determine N𝑖 = { 𝑗 ∈ [1, 𝑁 ] s.t. agent 𝑗 is a topological
k-nearest neighbor of agent 𝑖}
if ∃ 𝑗 ∈ N𝑖 s.t. 𝑓 (x𝑗 [𝑡], 𝑡) = −1 then

Nbest ← x𝑗 [𝑡]
else

Nbest ← x𝑖 [𝑡]
end if

end if
Calculate vpso,𝑖 using Eq. (1)
Calculate vrep,𝑖 using Algorithm 1
v𝑖 [𝑡] ← vpso,𝑖 [𝑡] + vrep,𝑖 [𝑡]
v𝑖 [𝑡] ← v𝑖 [𝑡]/𝑣max
x𝑖 [𝑡 + 1] ← x𝑖 [𝑡] + v𝑖 [𝑡]

end for
𝑡 ← 𝑡 + 1

end while

2.2 Swarm Performance Metrics
In this paper, three distinct metrics are used to characterize the
performance of the swarm while searching and tracking the target.
These are the cumulative velocity fluctuation magnitude, the corre-
lation between an agent’s heading and its bearing relative to the
target’s location, and the proportion of time the swarm has at least
one agent in detection range of the target.

The choice of a particular metric is an important one as it condi-
tions the effectiveness of our assessment of the performance of the
system for a given task. Unfortunately, there is no general agree-
ment on a particular metric in the literature. Most of the metrics
reported hitherto tend to focus on the action of one or a few partic-
ular agents, and not the swarm as a whole. This hinders our ability
to compare the respective performances of various approaches and
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justifies our aim to consider new swarm performance metrics. The
three metrics, which are introduced in the following sections, not
only offer different insights into the overall complex collective dy-
namics of the swarm, but also reveal the influence of the exploitative
and exploratory components on the agents’ behavior.

2.2.1 Cumulative Velocity Fluctuation Magnitude. In the sem-
inal work done by the STARFLAG group, Cavagna et al. found
that in flocks of starlings, the effectiveness of the transmission of
information between swarming agents is closely connected to the
level of velocity fluctuations of individual agents and their correla-
tions [6]. The same conclusion was reached when studying swarms
of midges [1]. Therefore, as a proxy for its collective activity, the
level of velocity fluctuations in our artificial swarm is quantified.

The velocity fluctuation of an agent i is given by the difference
between its velocity and the mean velocity of the entire swarm:

u𝑖 [𝑡] = v𝑖 [𝑡] − ⟨v𝑗 [𝑡]⟩𝑗=1,...,𝑁 = v𝑖 [𝑡] −
1
𝑁

𝑁∑
𝑗=1

v𝑗 [𝑡] . (4)

The overall response of the swarm to the dynamic environment can
then be calculated by taking the time-averaged sum of all of the
swarming agents’ velocity fluctuations, divided by the number of
agents in the swarm, and then normalizing the value with respect
to the agents’ maximum speed:

Ξ =
1
𝑇𝑓

𝑇𝑓∑
𝑡=1

〈
u𝑗 [𝑡]
𝑣max

〉
𝑗=1,...,𝑁

=
1

𝑁𝑇𝑓 𝑣max

𝑇𝑓∑
𝑡=1

𝑁∑
𝑗=1

u𝑗 [𝑡], (5)

where 𝑇𝑓 is the total number of time-steps considered.

2.2.2 Heading-Bearing Correlation. To quantify the exploitative
activity of the swarm, we introduce the correlation between the
heading of any agent 𝑖 and the target’s bearing relative to this agent.
This correlation can be calculated as follows

𝜙𝑖 [𝑡] =
v𝑖 [𝑡] · t𝑖 [𝑡]
∥v𝑖 [𝑡] ∥

= cos𝜃𝑖 [𝑡], (6)

where t𝑖 [𝑡] is the bearing of the target in relation to the agent and
𝜃𝑖 [𝑡] is the angle between the two unit vectors (see Fig 1). The
quantity 𝜙𝑖 therefore has a value between −1 and 1, with large neg-
ative values related to exploratory actions, and large positive ones
revealing exploitative actions of agents that are indeed tracking the
target.

2.2.3 Time on Target. The overall tracking performance of the
swarm is classically determined by counting the number of time-
steps when there is at least one agent within detection range of
the target. This enables us to calculate the percentage of time the
system is engaged in tracking the target as it moves around the
search-space.

2.3 Target Representation
Most of the research on collective search and tracking considers the
tracking of time-varying fields with given spatial variations. Indeed,
with a continuous field a classical gradient-descent approach can
be used to relatively easily locate the position of the target. Here,
we represent the target by means of a binary objective function,
with an arbitrary value −1 if an agent is on target and 0 otherwise.
This conservative approach is meant to emulate one of the most

challenging cases with a near-zero-range sensor tracking a target
faster than the agent themselves. We believe that the design of effec-
tive swarm strategies benefits from considering such challenging
scenarios.

2.4 Swarm Robotic System

T

i

ti[t]

✓i[t]

vi[t]

10 cm

Figure 1: (Left) Robotic platform used for the experiments.
(Right) Bearing of the target (𝑇 [𝑡]) relative to the agent (t𝑖 [𝑡])
and the heading of the agent (v𝑖 [𝑡]) at time 𝑡 .

For the experimental validations, 8 in-house developed differential-
drive land robots were used (see Fig. 1) [11, 18, 27]. Each robot
operates through the use of two controlling software layers—a
high-level layer and a low-level one by means of an embedded
swarm-enabling unit [7]. The low-level layer is tasked with way-
point navigation and estimating the robot’s position. This is done
through the use of two DC motors attached with encoders, as well
as an Inertial Measurement Unit (IMU). The IMU allows a robot to
estimate its position using dead reckoning. The robot’s estimated
position is then sent by the low-level layer to the high-level layer
that grants the robot its autonomy as part of the swarming system.
The high-level layer consists of a low-power and low-bandwidth
wireless XBee-PRO module as well as a Raspberry Pi zero that is re-
sponsible for implementing and processing the required swarming
behaviors and managing the information received from the neigh-
boring robots. From this, it generates a navigational way-point used
by the low-level layer [18]. Communications between the robots
are facilitated by the XBee module that broadcasts and receives
positional information and objective function values.

The high-level layer is also responsible for filtering and only
processing the data originating from neighboring units according
to the selected value 𝑘 of the inter-connecting topological network.
The degree 𝑘 has to be selected prior to running the test.

To emulate our conservative scenario with a zero-range sensor
capability, we use a fictitious sensing unit. The sensory information—
i.e. the value of the objective function—is provided at every instant
by the Raspberry Pi zero, based on the estimated position of the
robot in relation with the prescribed trajectory of the moving target,
which moves randomly in the search-space at speed 𝑣 .

3 SIMULATION RESULTS
3.1 Simulation Setup
A two-dimensional square search-space (dimensions 𝐿 × 𝐿) was
considered with a disc-shape target having a fixed radius 𝜌 = 𝐿/20
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(see Fig. 2). The target moves randomly about the search-space at
constant speed 𝑣 . If an agent falls within the radius of the target, it
is assigned an objective function value of −1, and zero otherwise.
This models a binary objective function, in which agents either
have are fully informed of the target’s position or have no infor-
mation at all. In our simulations, the speed of the target can vary
between 10 and 50 non-dimensional units, compared to the baseline
velocity value of 10 for the particles. All simulation runs lasted for
a total of 100, 000 time-steps to ensure statistically steady condi-
tions. With such long simulation runs, we were able to calculate
the three performance metrics with a very low variability between
two different runs (below 0.3% for the tracking performance and
0.4% for the cumulative velocity fluctuation magnitude). The code
and generated data-sets are available on Github 1.

Figure 2: (Left) Agents using adaptive repulsion being
blocked by the search-space boundaries and neighboring
agents; (Right) agents remaining in place after losing track
of the target with the low exploratory behavior in the pres-
ence of low constant repulsion.

3.2 Heading-Bearing Correlation
We consider the distribution of the heading-bearing correlation
𝜙𝑖 [𝑡] = cos𝜃𝑖 [𝑡] for all agents 𝑖 in the swarm and over the entire
duration of the simulation (100, 000 time-steps). The histograms of
this heading-bearing correlation allows for the visualization of the
swarm’s EED as discussed in Sec. 2.2.2. This was done by recording
the heading-bearing correlations for all agents and iterations. The
weight of each binwas then divided by the total number of iterations
to give a time-averaged histogram for the entire swarm.

Three observations can be made from Fig 3. First, it can be seen
that as the level of connectivity 𝑘 increases, the level of exploration
of the environment decreases in favor of an increase in exploitative
actions, regardless of the type of repulsion used. The “Adaptive
Repulsion” corresponds to our EED strategy, while the “Constant
Repulsion” refers to a static repulsion with the minimum level of
repulsion 𝑎𝑅,min. This shift toward a more exploitative collective
behavior when increasing 𝑘 is robust and observed for all speeds 𝑣
of the target considered. It is characterized by a higher proportion of
agents having large and positive heading-bearing correlations. This
indicates that more agents are moving toward the target rather than

1https://github.com/hianlee/kNNTargetSearch
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Figure 3: Distribution of the heading-bearing correlations
𝜙𝑖 [𝑡] = cos𝜃𝑖 [𝑡] (𝑥-axis) for different levels of the swarm
connectivity (𝑘), target speeds (𝑣). The “Adaptive Repulsion”
corresponds to our EED strategy, while the “Constant Repul-
sion” considers the minimal static repulsion at 𝑎𝑅,min.

exploring the environment. Although this higher exploitation of the
target may at first seem preferable, it is actually detrimental as the
simulation unfolds. Indeed, it leads to an aggregation of the agents
near the target, thereby leaving large swaths of the search-space
empty of units when the target moves away from the “clustered”
swarm (see Fig. 2 (Right)).

Second, the amount of exploitation carried out by the swarm
decreases while the amount of exploration increases with increas-
ing target speed 𝑣 . This is characterized by the reduction in the
number of agents with a positive heading-bearing correlation. The
increased exploration is caused by the swarm losing track of the
target more frequently, causing the swarming agents to disperse
from the target’s last known location.

Finally, it can be seen that there are agents with a heading-
bearing correlation value of 0. This is more prominent at higher
velocities and when using constant repulsion. This is caused by
agents that are stationary or travelling at very low speeds. The
reason for the near stagnation of the agents depends on the type
of repulsion used. With the constant repulsion strategy, when the
swarm loses track of the target, the agents hold their positions and
remain in the vicinity of the target’s last known location unless the
randomly moving target crosses the path of one agent. In contrast,
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while using the adaptive repulsion strategy, the agents disperse
from the target’s last known location. However, their movement
is eventually restricted by the search-space boundaries and the
blocking effect caused by a combination of a high repulsion strength
and the presence of neighboring agents. The stagnant agents using
the two repulsion strategies can be seen in Fig. 2.

3.3 Time on Target
As expected, the overall tracking performance of the swarm, as
measured by the time on target (see Sec. 2.2.3) decreases with the
target speed 𝑣 for all values 𝑘 of the swarm connectivity, and for
both repulsion strategies (see Fig 4). This is a direct consequence
of the target’s competitive advantage in traveling faster than any
individual agent—the constant speed of all agents equals 10, thus
allowing it to “outrun” the searching agents.

The adaptive repulsion behavior adopted as part of our EED strat-
egy yields a significant improvement over the constant repulsion
case (see Fig. 5). For instance, at the highest target speed 𝑣 = 50
and for 𝑘 = 20, the tracking performance improves by approxi-
mately 40% (see Fig. 4). This enhancement of the tracking capability
stems from to the increased exploratory behavior promoted by our
adaptive repulsion scheme. Thanks to this, the swarm exhibits an
improved collective search behavior upon losing track of the target.
In turn, this notably shortens the time required to re-engage the
target. As already highlighted, the reduced exploratory dynamics
with the constant repulsion scheme leads to the swarm aggregating
and a reduced ability to re-engage with the target.
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Figure 4: Tracking performance with varying target speed 𝑣

and for different levels of connectivity 𝑘 while using adap-
tive repulsion (solid lines) and constant repulsion (dashed
lines). Particles travel at a speed of 𝑣 = 10.

Figure 5 reveals the existence of an optimal degree 𝑘∗ ∼ 20 for
the interaction network at which the tracking performance peaks.
Starting from 𝑘 = 10, an increase in the level of connectivity among
swarming agents improves up to 𝑘∗. Beyond that value, more con-
nectivity ends up being detrimental to the collective tracking per-
formance. In the limit of the classically used all-to-all connectivity
(𝑘 = 𝑁 − 1 = 49), the collective tracking performance happens to
be the lowest. Interestingly, the dynamics with the constant repul-
sion scheme fails to exhibit such an optimal connectivity for the
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Figure 5: Tracking performance with varying levels of con-
nectivity 𝑘 for two different target velocities while us-
ing adaptive repulsion (solid lines) and constant repulsion
(dashed lines).

tracking performance. Essentially, in both cases, a too high level of
connectivity induces a stronger exploitative behavior—e.g. herding
behavior—detrimental to the overall performance of the swarm.

3.4 Cumulative Velocity Fluctuations
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Figure 6: Cumulative velocity fluctuation magnitude plot
with varying levels of connectivity 𝑘 and at two different tar-
get speeds 𝑣 while using adaptive repulsion (solid line) and
constant repulsion (dashed line).

As explained in Sec. 2.2.1, the cumulative velocity fluctuation
magnitude quantifies the collective response of the swarm to dy-
namic changes in the search-space; in this case the temporal varia-
tions of the objective function represent the target. It can therefore
be considered as a proxy for a quantitative measure of the swarm
intelligence activity.

The results for this more encompassing metric are consistent
with those for the tracking performance. Indeed, Fig. 6 shows a sig-
nificant increase in the swarm’s activity with the adaptive repulsion
scheme as compared to constant repulsion case.
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The curves in Fig. 6 also present a peak in system’s response at
intermediate levels of connectivity. The peak is more clearly marked
for the collective response obtained with the adaptive repulsion
scheme. However, these peaks occur at values of 𝑘 > 𝑘∗ previously
identified for the collective tracking performance. When the swarm
is connected for optimal response, the entire swarm is attracted to
the target, leaving very few to no agents exploring the environment.
Eventually, the pursuing swarm is unable to keep up and loses
track of the target. In contrast, when the swarm is connected for
optimal tracking performance, there is still a portion of the agents
carrying out exploration of the environment. As such, when the
initial group of agents are outrun by the target, the agents carrying
out exploration are able to continue the tracking task, leading to a
better overall system tracking performance.

Lastly, Fig. 6 reveals that there is a slight increase in the 𝑘 value
required for optimal system’s response when the target velocity
increases. This observation seems sensible as the level of connec-
tivity 𝑘 influences the effectiveness of information exchanges lead-
ing to the collective response. When the swarm encounters dy-
namic changes at different time-scales—here the two different tar-
get velocities—it needs to adjust its communication channel to
optimally respond. Moreover, to generate the highest level of fluctu-
ations in the swarm, as many agents as possible must be switching
as often as possible from exploitative actions to exploratory ones.

4 SWARM ROBOTIC EXPERIMENTS
4.1 Experimental Conditions
At the start of each experimental test, 8 robots were arranged in
two lines in the middle of an open search-space (see Fig. 7, left col-
umn). All the robots were able to broadcast their estimated position
within the search space, as well as their objective function value. A
target shaped as a disc of radius 1mwas simulated to be in constant
random motion around the search area. The robots and the target
traveled at the same speed of 10 cm · s−1. It is important to note,
however, that the fictitious target has an infinite maneuverability
compared to the finite one of our robots. Hence, even if the individ-
ual robots have the same speed as the target, they are effectively
much slower to respond changes in their heading owing to their low
maneuverability. In practice, the dynamic target is implemented by
generating a list of target positions and having the robots calculate
the target’s position based on the elapsed time. The robots then
compare their respective position against the target’s position. If a
robot is within the target area, it would assign itself an objective
function value of −1 and 0 otherwise.

The experiments were run for two different connectivity levels
(𝑘 = 3 and 𝑘 = 6, keeping in mind that 𝑘 = 𝑁 − 1 = 7 results in
all-to-all connectivity) and using both repulsion schemes tested
numerically. Each test lasted for slightly over a minute each and
was repeated 5 times for each of the considered cases. This allows
us to assume that the robots are able to perfectly estimate their
position within the search space.

It is important stressing that, aside from the logging of data for
the path reconstruction of the robots, our swarm robotic testbed op-
erates in the complete absence of any supporting infrastructure [18].

In all the experiments carried out, the localization, cooperative con-
trol, and computing tasks were performed by the robotic units in a
fully decentralized manner.

4.2 Experimental Results
Our swarm robotic setup is capable of monitoring and recording
the robots’ and target’s positions and movements throughout the
experiment (see Fig. 7). The robots are first initialized in the middle
of the search-space (Fig. 7 (Left)). Subsequently, under the influence
of the adaptive repulsion scheme, they start dispersing from their
original locations.When a robot engages the target, its𝑘 topological
neighbors start moving toward the target (Fig. 7 (Center)). If a robot
is outrun by the target and one of its neighbors is still within the
target region, it is able to change its heading and move towards the
target’s location (Fig. 7 (Right)).

4.2.1 Tracking Performance. Table 1 shows the percentage of
time when there is at least one robot engaging the target, along with
the 99% confidence intervals. This allows us to quantify the tracking
performance of the robotic swarm. From the results, we can see
that there is no significant difference between the two repulsion
schemes. There seems to be a decrease in the tracking performance
when going from 𝑘 = 3 to 𝑘 = 6, but given the relatively high
variability in the results for 𝑘 = 3, it is impossible to come up with
any definite conclusions.

Although our visual observations of the collective dynamics
showed noticeable differences for different 𝑘 values, and between
different repulsion schemes, the quantitative results for the tracking
performance are not congruent with the simulations. This can be
attributed to four reasons: (1) the small number of robots used
within the swarm, (2) the short time duration of each test, (3) the
relatively short amount of time the swarm is able to engage the
target, (4) the relative high speed of the target given that the finite
maneuverability of the robots as compared with the particles in the
simulations.

Table 1: Tracking performance of the swarm robotic system.

Repulsion Type 𝑘 = 3 𝑘 = 6

Adaptive Repulsion 0.26 ± 0.20 0.17 ± 0.05
Constant Repulsion 0.31 ± 0.34 0.24 ± 0.13

4.2.2 System Response. From the same experimental results
used to quantify the tracking performance, the time-averaged cu-
mulative velocity fluctuations of the swarm was calculated, and
hence its level of response to the dynamic target. Table 2 contains
the calculated response levels, along with the 99% confidence inter-
vals. These results unambiguously show that the adaptive repulsion
scheme significantly increases the response of the swarm to the
target (𝑝 < 0.01) for both connectivity levels considered. In addi-
tion, we measure a noticeable drop in collective response with both
repulsion schemes when increasing the network connectivity from
𝑘 = 3 to 𝑘 = 6. This latter observation is fully consistent with the
simulation results (see Fig. 6).

It should also be noted that the time-averaged cumulative ve-
locity fluctuation magnitudes obtained experimentally are higher
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(a) (b) (c)

Figure 7: (Top) Positions of the target, the robots, and path reconstruction of the robots as observed through our monitoring
system. (Bottom) Photos from the physical experiment using a connectivity of 𝑘 = 6 and adaptive repulsion. Each column
corresponds to a different instant during the collective search and tracking run.

Table 2: Response of the swarm robotic system to a dynamic
target.

Repulsion Type 𝑘 = 3 𝑘 = 6

Adaptive Repulsion 1.36 ± 0.07 1.23 ± 0.03
Constant Repulsion 1.23 ± 0.03 1.05 ± 0.08

than those calculated for the simulations. This is expected given
that the robots are unable to instantaneously change their speed
and direction of travel unlike the agents in the simulations.

5 DISCUSSION
The application of robots to a dynamic search and tracking task
is a challenging problem, in particular when considering a target
moving faster than the individual units. While several strategies
involving swarmingMRS have been explored, the effect of changing
a swarm’s connectivity has not been made use of. In this work, we
presented a decentralized swarming strategy with an adjustable
balance of exploratory/exploitative collective actions. This balance
in the EED is achieved by means of an adaptive repulsion scheme
combined with a PSO-based algorithm using a topological distance
𝑘-nearest neighbor graph. This EED is tested on the challenging
problem of search and tracking of a fast moving target.

To characterize the performance of the swarm,we proposed three
swarm performance metrics. These are the cumulative velocity
fluctuation magnitude, quantifying the amount of collective activity
in the swarm, the heading-bearing correlation offering insights into
the exploration/exploitation balance, and the time on target, which
measures the proportion of time duringwhich the swarm is engaged
with the target.

Using these metrics, we showed that increasing 𝑘 within the
swarm causes it to favor exploitative dynamics over exploratory

ones. This high amount of exploitation is detrimental to the swarm’s
tracking performance as it leads to agents clustering near the target.
This leaves large swaths of empty space when the target outruns
the aggregated swarm. By implementing the adaptive repulsion
strategy, the amount of exploration carried out by the swarm is
increased, thus leading to improved search dynamics upon losing
track of the target. This reduces the amount of time required for the
swarm to re-engage with the target, thereby improving its tracking
performance.

The performance metrics also revealed the presence of an opti-
mal degree 𝑘∗ ∼ 20 for maximum tracking performance, which is
different from the degree required for maximum collective response.
The decreased tracking performance at high levels of system re-
sponse is due to the entire swarm being attracted to the target when
the network is adjusted for maximum collective activity. This leaves
few to no agents exploring the environment, leading the swarm
unable to keep up with a faster moving target.

Physical tests were carried out using a swarm robotic system
comprising 8 units. No firm conclusions could be drawn from the
tracking performance of the swarm due to the high variability in
the results. However, the ability of the adaptive repulsion strategy
to significantly improve the swarm’s response to a dynamic target
was clearly demonstrated. In addition, a reduction in the swarm’s
collective response was observed when increasing its connectivity
level 𝑘 , which is in complete agreement with the simulation results.
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