
SEERL : Sample Efficient Ensemble Reinforcement Learning
Rohan Saphal

Indian Institute of Technology Madras
Chennai, India

rohansaphal@gmail.com

Balaraman Ravindran
Robert Bosch Center for Data Science

and Artificial Intelligence
Indian Institute of Technology Madras

Chennai, India
ravi@cse.iitm.ac.in

Dheevatsa Mudigere
Facebook Inc

Menlo Park, USA
dheevatsa@fb.com

Sasikant Avancha
Intel Corporation
Bangalore, India

sasikanth.avancha@intel.com

Bharat Kaul
Intel Corporation
Bangalore, India

bharat.kaul@intel.com

ABSTRACT
Ensemble learning is a very prevalent method employed in machine
learning. The relative success of ensemble methods is attributed to
their ability to tackle a wide range of instances and complex prob-
lems that require different low-level approaches. However, ensem-
ble methods are relatively less popular in reinforcement learning
owing to the high sample complexity and computational expense
involved in obtaining a diverse ensemble. We present a novel train-
ing and model selection framework for model-free reinforcement
algorithms that use ensembles of policies obtained from a single
training run. These policies are diverse in nature and are learned
through directed perturbation of the model parameters at regular
intervals. We show that learning and selecting an adequately di-
verse set of policies is required for a good ensemble while extreme
diversity can prove detrimental to overall performance. Selection
of an adequately diverse set of policies is done through our novel
policy selection framework. We evaluate our approach on challeng-
ing discrete and continuous control tasks and also discuss various
ensembling strategies. Our framework is substantially sample ef-
ficient, computationally inexpensive and is seen to outperform
state-of-the-art (SOTA) scores in Atari 2600 and Mujoco.

KEYWORDS
Deep Reinforcement Learning, Ensemble methods, Combining poli-
cies

ACM Reference Format:
Rohan Saphal, Balaraman Ravindran, Dheevatsa Mudigere, Sasikant Avan-
cha, and Bharat Kaul. 2021. SEERL : Sample Efficient Ensemble Reinforce-
ment Learning. In Proc. of the 20th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAA-
MAS, 9 pages.

1 INTRODUCTION
Deep reinforcement learning over the years has made considerable
advancements with applications across a variety of domains – from
learning to play Atari 2600 suite from raw visual inputs [20], mas-
tering board games [23, 26], learning locomotion skills for robotics

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

[16, 24, 25], mastering Starcraft [30], the development of Alpha Fold
[6] to predict the 3D structure of a protein and most recently, the
improvements in model-based [13] and off-policy reinforcement
learning [9, 10]
Nonetheless, it is a challenging task to create a single agent that
performs well, is sample efficient and is robust. There are con-
siderable hurdles surrounding training and optimization of deep
reinforcement learning algorithms such as the sensitivity to hyper-
parameters, the high variance associated with the learning process
and high sample complexity. In order to overcome these problems,
we exploit the well-known concept of ensemble learning [4] and
adapt it for reinforcement learning in a novel way. Traditionally,
the idea of using ensembles in reinforcement learning settings is
associated with combining multiple value functions or policies from
different agents. These agents could be the same algorithm trained
across different hyper-parameter settings, generated by different
algorithms altogether [5, 7, 32] or by training multiple networks
of an agent in parallel [14]. Training multiple such agents is an
approach that cannot be used in practice owing to high sample
complexity and computational expense.

We tackle this problem by creating sufficiently diverse policies
from a single training run. The policies are generated in a serial
manner, one after the other, where the subsequent policies take
into account the diversity from earlier policies. Our framework is
seen to achieve state-of-the-art (SOTA) performance on popular
reinforcement learning domains.
Our approach to sequentially generate policies is inspired by the
recent developments in the deep learning literature studying the
effects of learning rate schedules and their impact on generaliza-
tion [15, 21]. It is shown that learning rate annealing generalizes
better than using a small constant learning rate and high initial
learning rate impacts the model’s selection of the local minimum
to converge [12, 15]. We leverage these properties of neural net-
work training to learn a diverse ensemble of policies. The diversity
among the policies are obtained by the directed perturbation of
the model weights at regular intervals. The directed perturbation
is induced by sudden and sharp variations in the learning rate,
and for doing so, we employ cyclical learning rates [17]. When
the model weights are perturbed using larger learning rates, the
directed motion along the gradient direction prevents the optimizer
from settling in any sharp basins and directs the model into the

Main Track AAMAS 2021, May 3-7, 2021, Online

1100

general vicinity of a local minima [15]. Annealing the learning rates
during training leads the optimizer to converge to some local min-
ima and improves generalization [21]. We leverage the diversity of
the policies learned at these different local minima for the ensemble.
We also show through experimentation that directed perturbation
and not random perturbation is necessary for obtaining diverse
policies. We also empirically show that an extremely diverse set of
policies do not form a good ensemble.
In order to prevent bias from sub-optimal policies in the ensemble,
we introduce a novel framework that selects the best subset of poli-
cies to include in the ensemble. Our approach uses the trajectories
obtained during training the policies to find this subset.
Since we use models from a single training run instead of training
𝑀 different models independently from scratch, we refer to our
approach as Sample Efficient Ensemble Reinforcement Learning
(SEERL). To summarize, our main contributions are:

• A sample efficient framework for learning𝑀 diverse mod-
els in a serial manner from a single training run with no
additional computation cost. The framework can adopt any
existing reinforcement learning algorithm to create an en-
semble

• A novel optimization framework to select the best subset of
policies for the ensemble. It acts as a filter to choose the best
performing and diverse subset of policies without using any
additional samples from the environment.

• Evaluation of various ensemble strategies for discrete and
continuous action spaces with SOTA performance across
multiple environments

We demonstrate the effectiveness of SEERL for discrete (Atari 2600
[3]) and continuous control benchmarks (Mujoco [29]). Our experi-
ments show that SEERL consistently outperforms popular model-
free and model-based reinforcement learning methods including
those that use ensembles.

2 RELATEDWORK
There has recently been a small body of work on using ensembles
for reinforcement learning, primarily the use of ensembles during
the training phase to reduce the variance and improve robustness
of the policy.
Value function based methods such as Averaged DQN [1] train
multiple Q networks in parallel with different weight initialization
and average the Q values from all the different networks to reduce
variance. It results in learning policies that are much more stable.
However, the approach requires training multiple networks simul-
taneously and a possibility that the model might diverge if either
of the Q values being averaged is biased.
Bootsrapped DQN [22] uses an ensemble of Q functions for efficient
exploration but does not enforce diversity in the Q networks. The
Q head is chosen at random and used to generate actions for that
episode. The multiple heads are also trained in parallel while we
train our models in a serial manner.
SUNRISE [14] also uses an ensemble of Q networks that are ran-
domly initialized and each head trained with a different set of
samples to stabilize learning and enforce diversity. The actions are
selected by examining the Upper Confidence Bound(UCB) of the Q
values and choosing the action with the highest upper confidence

bound to allow for exploration. However, the framework does not
account for bias from the different Q heads which in turn would af-
fect the UCB. Our policy selection framework prevents such biases
by filtering out such models during evaluation. Additionally, SUN-
RISE works only where the base learner is an off policy algorithm
whereas our framework works with both on-policy and off-policy
methods.
Earlier works [5, 7, 8, 32] explore the idea of value function en-
sembles and policy ensembles during evaluation phase. However,
value function ensembles from different algorithms trained inde-
pendently could degrade performance as they tend to converge to
different estimates of the value function that are mutually incon-
sistent. An alternative method [18] tries to tackle this problem by
having a meta-learner linearly combine the value functions from
different algorithms during training time to adjust for the inherent
bias and variance. Although training multiple policies or value func-
tions in parallel is sample efficient, it tends to reduce the diversity
among them and is computationally expensive. Our method com-
bines the best of both approaches and improves the performance
of the algorithm by balancing sample complexity with the com-
putational expense. Training deep neural network architectures
with cycling learning rates [17, 27] and using ensembles in super-
vised learning settings, [11] have shown to be useful. The authors
[11] show that in each cycle, the models obtained are comparable
with those learned using traditional learning rate schedules. Even
though the model is seen to degrade in performance temporarily,
the new model surpasses the previous one, as the learning rate
anneals.

3 PRELIMINARIES
Reinforcement learning is associated with sequential decision mak-
ing and involves the interaction of an agent with an environment.
In this paper, we consider a discrete-time finite-horizon Markov
Decision Process(MDP) defined by (𝑆 , 𝐴, 𝑃 , 𝑟 , 𝛾 , 𝜌), where 𝑆 de-
notes the state space, 𝐴 denotes the action space, 𝑃 ≡ 𝑃 (𝑠 ′ |𝑠, 𝑎) the
transition function, 𝜌 , the probability distribution over the initial
states, 𝑟 (𝑠, 𝑎) = E[𝑅𝑡+1 |𝑠𝑡 , 𝑎𝑡], the reward function with 𝑅𝑡+1 being
the scalar reward at time 𝑡 + 1 when the agent in state 𝑠𝑡 took the
action 𝑎𝑡 , and 𝛾 ∈ (0, 1) the discount factor. The policy dictates the
behavior of an agent at a particular state in an environment. More
formally, a policy is defined by 𝜋 : 𝑆 → P(𝐴) where P(𝐴) denotes
the probability distribution over actions 𝑎 𝜖 𝐴. The objective of the
agent is to maximize the discounted return 𝐺𝑡 = Σ𝑇

𝑖=𝑡
𝛾𝑖−𝑡 𝑅𝑖

4 SEERL
In this paper, we propose SEERL, a novel framework for learning
and selecting an ensemble of diverse policies obtained from a single
training instance. Unlike supervised learning, where the dataset can
be reused for training different models, training multiple RL agents
on the same trajectories can result in a lack of diversity among the
policies. Instead, multiple RL agents can be trained independently
for an ensemble but would suffer from high sample complexity. If
each agent requires 𝑁 number of samples and the computational
expense for training a single agent is 𝐶 , then training 𝑀 agents
independently require 𝑀 × 𝑁 samples and 𝑀 ×𝐶 computational
cost. If trained in parallel, only 𝑁 samples are required, but the

Main Track AAMAS 2021, May 3-7, 2021, Online

1101

Figure 1: Cyclical cosine annealing learning rate schedule.
𝛼0 is set at 0.05, number of models 𝑀 = 5 and training
timesteps 𝑇 = 1000000

computational cost remains at 𝑀 ×𝐶 . Though training agents in
parallel is a possible solution to tackle sample complexity, it is com-
putationally expensive and limits the diversity among the learned
policies since every policy observes the same state.
SEERL follows a two-step process-learning policies and policy selec-
tion, summarized in Algorithm 1. Learning policies involves saving
𝑀 policies during training at periodic intervals when the learning
rate anneals to a small value. This is followed by policy selection
that finds the best subset of𝑚 policies from the entire set𝑀 . Policy
selection uses an optimization framework that uses the 𝑁 samples
obtained during training to find the𝑚 policies. These policies are
then used as an ensemble during the evaluation phase. Thus SEERL
produces𝑚 models for the ensemble, requiring only 𝑁 number of
samples and a computational expense of𝐶 . In the later sections, we
empirically verify that the policies from different local minima are
diverse in nature.

4.1 Learning policies
Learning rate annealing [15, 21] is shown to improve generalization
and the use of high initial learning rate [12] determines the local
minima for the model. We use cosine cyclical annealing learning
rate schedule [17] to introduce learning rate annealing and learn
multiple policies, as shown in Figure 1. Depending on the number
of time-steps needed to train the agent, and the number of models
needed for the ensemble, the learning rate schedule can be calcu-
lated.
As the learning rate anneals to a small value, the model converges
to a local minimum, and we obtain the first policy. By increasing the
learning rate, the model is perturbed along the gradient direction
and dislodged from its local minima. In other words, if 𝑀 models
are required, we split the training process into𝑀 different training
cycles where in each cycle the model starts at a high learning rate
and anneals to a small value. The high learning rate is significant as
it provides energy to the policy to escape the local minima and the
learning rate annealing traps it into a well behaved local minima.
The annealing helps in generalization and converging to a local
minima while the directed perturbation re-orients the model to
converge to a different local minima. The formulation is as follows:

𝛼 (𝑡) = 𝛼0
2

(
cos

(
𝜋 mod (𝑡 − 1, ⌈𝑇 /𝑀⌉)

⌈𝑇 /𝑀⌉

)
+ 1

)
(1)

where 𝛼0 is the initial learning rate, 𝑡 is the time-step, and 𝑇 is the
total number of time steps for which the agent is trained, and𝑀 is
the number of models.

4.2 Policy selection
In order to avoid bias from the more inferior policies, the best𝑚
policies should ideally be selected for the ensemble. At the same
time, the policies also need to be diverse to obtain good performance
in different parts of the state space when used in an ensemble.
Near identical policies would not yield much improvement in an
ensemble.

4.2.1 Framework : We propose an optimization framework to
select the best subset of policies. The formulation has two parts,
a policy error term and a Kullback-Liebler (KL) divergence term
indicative of diversity. Only optimizing for the policy error term
would result in the selection of policies with excellent performance.
The addition of the KL divergence term helps balance the require-
ments of performance and diversity. We have a hyper-parameter
𝛽 ∈ [1, 2), that balances between diversity and performance. The KL
divergence is calculated based on the action distribution between
the two polices over the state space. The formulation is as follows :

𝐽 (𝑤) =
∑
𝑠∈𝑆

𝑃 (𝑠)
[∑
𝑖∈𝑀

𝑤𝑖𝐵𝑖 (𝑠)
]2

(2)

𝐵𝑖 (𝑠) =
©«
∑
𝑎∈𝐴

𝐿(𝑠, 𝑎) − 𝛽

𝑀 − 1

∑
𝑘∈𝑀,𝑘≠𝑖

KL(𝜋𝑖 (𝑠) | |𝜋𝑘 (𝑠))
ª®¬ (3)

with the following constraints
∑
𝑖∈𝑀 𝑤𝑖 = 1,𝑤𝑖 ≥ 0∀𝑖 . 𝑆 is the

set of states and 𝑃 (𝑠) is the probability of observing a particular
state. 𝐿(𝑠, 𝑎) is the weighted error associated with the model and is
indicative of the performance of the model. We weigh the loss in a
manner that we give more weight when the loss is above a certain
threshold value, and the action taken by the model, 𝑎, matches the
action taken by the ensemble 𝑎𝑒 . We formalize 𝐿(𝑠, 𝑎) as follows :

𝐿(𝑠, 𝑎) =

1, if |𝐿′(𝑠, 𝑎) | ≥ 𝑇𝑒𝑟𝑟 and |𝑎 − 𝑎𝑒 | < 𝜖, a is continuous
1, if |𝐿′(𝑠, 𝑎) | ≥ 𝑇𝑒𝑟𝑟 and 𝑎 = 𝑎𝑒 , a is discrete
0, otherwise

(4)

𝐿′(𝑠, 𝑎) is the total error for a particular state-action pair. While the
overall process is algorithm agnostic, the details of the total error
depend on the actual RL algorithm adopted. 𝑇𝑒𝑟𝑟 is the threshold
value that is used to distinguish the right actions from the wrong.
If 𝐿′(𝑠, 𝑎) is above the threshold error and the actions match, then
we would like to consider that action from the policy as a wrong
one.
In a discrete action space, it is relatively easy to determine if the
action taken by the model and ensemble are the same. However, in
continuous action space, the final ensemble action and the action
taken by the policy might not coincide. Therefore, we introduce a
𝜖 bound on the ensembled action. If the action from the model is
within a 𝜖 distance from the ensembled action, we consider it as a
match. 𝜖 ranges between 0.005 to 0.01, depending on the environ-
ment.
We use a squared loss formulation to capture the inter-dependencies
among the policies. Instead, if the degree were 1, the objective func-
tion would be the weighted sum of the loss, and the one with the

Main Track AAMAS 2021, May 3-7, 2021, Online

1102

lowest error would be the best policy. By having a higher degree,
we are capturing the dependencies among the policies. The depen-
dencies arise because the initialization of a new policy is at the
termination of the previous policy and the policy network weights
are shared.
Let us consider the computation of the total error for the case of
A2C, the total error, 𝐿′(𝑠, 𝑎), for a state action pair is the weighted
sum of the policy gradient loss and the value function loss.𝑉 (𝑠) and
𝐴(𝑠, 𝑎) is the value function and the advantage function respectively
at state 𝑠 obtained by using policy 𝜋 (𝑎 |𝑠) .

𝑉𝑙𝑜𝑠𝑠 (𝑠) = 𝑟 (𝑠, 𝑎) + 𝛾𝑉 (𝑠 ′) −𝑉 (𝑠) (5)

𝜋𝑙𝑜𝑠𝑠 (𝑎 |𝑠) = −𝑙𝑜𝑔(𝜋 (𝑎 |𝑠))𝐴(𝑠, 𝑎) (6)

𝐿′(𝑠, 𝑎) = 𝜋𝑙𝑜𝑠𝑠 (𝑎 |𝑠) +𝑉𝑙𝑜𝑠𝑠 (𝑠) ∗𝐶𝑣 (7)

𝛾 is the discount factor, 𝐶𝑣 is the coefficient used for weighting the
value function against the policy gradient loss.
By minimizing this objective function, we obtain the values of
𝑤𝑖 , the Lagrange multipliers to this optimization framework. To
choose the best ensemble, we select the𝑚 policies with the highest
corresponding lagrange multipliers.

4.2.2 Implementation detail : In order to solve the optimization
problem, we can re-frame it as a quadratic programming problem
with box constraints as follows:

𝐽 (𝑤) = 𝑤𝑇𝐵𝑤 (8)

and,
𝐵𝑖 𝑗 =

∑
𝑠∈𝑆

𝑃 (𝑠)𝑏𝑖𝑏 𝑗 (9)

where,

𝑏𝑖 =

∑
𝑎∈𝐴

𝐿(𝑠, 𝑎) − 𝛽

𝑀 − 1

∑
𝑘∈𝑀,𝑘≠𝑖

KL(𝜋𝑖 (𝑠) | |𝜋𝑘 (𝑠))

(10)

The formulation is still subjected to all the linear constraints as
earlier. The matrix 𝐵 is a positive definite matrix since it is an
inner product of the loss terms. This results in a convex objective
function for which the global minimum can be found. In order to
run this optimization, we select the states from multiple trajectories
in the training samples. This framework efficiently reuses data and
is better in comparison to evaluating the policies directly in the
environment. Without this framework, the method to find the best
ensemble subset would be to evaluate all possible combinations. For
comparison, if each ensemble model is evaluated using 𝑁 ′ samples
from the environment, a total of𝑚 × 𝑁 ′ samples will be used up in
selecting the𝑚 policies.

4.3 Ensemble techniques
Once the𝑚 policies are chosen, depending on the complexity of the
action space, discrete or continuous, there are multiple strategies to
ensemble the actions in the environment. We divide the ensemble
strategy into two categories, for discrete and continuous action
spaces.

Algorithm 1 SEERL
1: Input Initialize a policy 𝜋𝜃 , training time-steps 𝑇 , evaluation

time-steps 𝑇 ′, number of policies 𝑀 , maximum learning rate
𝛼0, number of policies to ensemble𝑚, ensemble strategy 𝐸

2: Output Average reward during evaluation
3: Training
4: while 𝑡 ≤ 𝑇 do
5: Calculate the learning rate, based on the inputs to the cosine

annealing learning rate schedule 𝑓
6: 𝛼 (𝑡) = 𝑓 (𝛼0, 𝑡,𝑇 , 𝑀) //Equation 1
7: Train the agent using 𝛼 (𝑡)
8: if t mod (T/M) then
9: Save policy 𝜋𝑖

𝜃
for 𝑖 = 1, 2 . . . , 𝑀

10: end if
11: end while
12: Evaluation
13: Select the𝑚 policies using the Policy selection process //Section

4.2
14: Select an ensemble strategy 𝐸

15: while 𝑡 ≤ 𝑇 ′ do
16: Collect actions from the𝑚 policies, 𝑎1, 𝑎2 . . . , 𝑎𝑚 for envi-

ronment state 𝑠𝑡
17: Find the optimal action, 𝑎∗ using 𝐸 //Section 4.3
18: Perform action 𝑎∗ on the environment
19: Obtain cumulative reward for the episode, 𝑟𝑡 and the next

state 𝑠𝑡+1
20: end while
21: return Average reward obtained during evaluation

4.3.1 Ensemble in discrete action spaces : In discrete action
spaces, we consider majority voting as a good solution. Due to
different fixed point convergences of value functions of algorithms
trained independently, it is not possible to compare actions by their
𝑄 values.

𝜋 (𝑎 |𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

[∑
𝑖∈𝑚

𝑁𝑖 (𝑠, 𝑎)
]

(11)

where 𝑁𝑖 (𝑠, 𝑎) is one if the agent 𝑖 takes action 𝑎 in state 𝑠 , else
zero. It the case of a tie, random action is chosen among the set of
actions having the tie.

4.3.2 Ensemble in continuous action spaces : In continuous
action spaces, [5] proposes multiple strategies to find the optimal
action. However, the performance comparison of the strategies is
not provided and environments considered are too simple. The
different strategies are as follows:

• Averaging: We take the average of all the actions as part
of the ensemble. This strategy could fail in settings where
one or more of the actions are extremely biased and thereby
shifts the calculated value away from the true mean value.

• Binning: This is the equivalent of majority voting in a contin-
uous action space setting. We discretize the action space into
multiple bins of equal size and average the bin with the most
number of actions. The average value obtained is the optimal
action to take. Through this method, we have discretized
the action space, sorted the bins based on its bin-count, and

Main Track AAMAS 2021, May 3-7, 2021, Online

1103

(a) Training performance of SEERL vs A2C on Breakout (b) Training performance of SEERL vs SAC on Half-Cheetah

(c) Comparison between SEERL(A2C),
SOTA and baseline ensembles B1(A2C),
B2(A2C and ACER) on Breakout

(d) Comparison between SEERL(SAC),
SOTA and baseline ensembles B1(SAC),
B2(SAC and DDPG) for Half Cheetah

(e) Performance of each subset of policies
, an ensemble of 3 policies selected from a
set of 5, on Breakout

calculated the mean of the bin with the highest bin-count.
The hyper-parameter to be specified here is the number of
bins. We use five bins in our experiments

• Density-based Selection(DBS): This approach tries to search
for the action with the highest density in the action space.
Given𝑀 action vectors, 𝑎, each of 𝑘 dimensions to be ensem-
bled, we calculate the density of each action vector using
Parzen windows as follows:

𝑑𝑖 =

𝑀∑
𝑗=1

𝑒𝑥𝑝−
∑𝑘
𝑙=1 (𝑎𝑖𝑙 − 𝑎 𝑗𝑙)2

ℎ2 (12)

The action with the highest density, 𝑑𝑖 , is selected as the final
action. The only parameter to be specified is ℎ, the window
width, and we have chosen ℎ = 0.0001 in our experiments.

• Selection through Elimination(STE): This approach elimi-
nates action based on the Euclidean distance. We calculate
the mean of the action vectors and compute the euclidean
distance to each action from the mean. The action with the
largest euclidean distance is eliminated, and the mean is re-
computed. The process is repeated until two actions remain.
The final action is chosen as the average of the two actions.

5 EXPERIMENTS
Through our experiments, we answer the following questions:

• RQ1 : How does SEERL compare against traditional ensem-
bles and SOTA reinforcement learning algorithms in terms
of sample complexity and performance?

• RQ2 : How does the diversity among policies contribute to
the final performance?

• RQ3 : How does the policy selection framework help to find
the best subset of policies?

• RQ4 : How are the policies obtained from SEERL any different
from those obtained through random perturbation?

In the following sections, we describe the setup used for experi-
mentation, the training procedure, the evaluation procedure and
analysis of the results obtained. We answer the questions posed
above in detail in the analysis section.

5.1 Setup
In order to answer the above questions, we consider the environ-
ments from the Atari 2600 game suite [3] for its discrete action
space and Mujoco [29] for its continuous action space. We conduct
three sets of experiments to validate our framework :

• The first set uses the following algorithms as the underlying
reinforcement learning method (base learner) for SEERL -
A2C [19], ACER [31], ACTKR [33], DDPG [16], SAC [9] and
TRPO [24]. The goal is to show that SEERL can be adapted
to any reinforcement learning algorithm, both off-policy and
on-policy.

• The second set compares SEERL with three baseline ensem-
ble methods that we have created. The three baselines are as
follows:
– B1 : Ensembles of policies trained independently from a
single algorithm. E.g., Five models of A2C.

Main Track AAMAS 2021, May 3-7, 2021, Online

1104

Table 1: Evaluation scores across Atari 2600 games averaged over 100 episodes. We report the published scores for DQN [20],
Distributional DQN[2] and Rainbow DQN. SEERL uses A2C as base learner is the best performing of the methods, topping in
11 of the 15 games. All results represent the average of 5 random training runs. We run each game for 20M environment time
steps.

Game DQN A2C Distrib. DQN Rainbow DQN SEERL

Alien 634 518.4 1997.5 6022.4 1924
Assault 178.4 263.9 237.7 202.8 341.2

Bank Heist 312.7 970.1 835.6 826 1124.1
Battle zone 23750 12950 32250 52040 28580
Breakout 354.0 681.9 584.9 379.5 821
Freeway 26.9 0.1 28.8 29.1 33.1
Frostbite 496.1 190.5 2813.9 4141.1 1226

Krull 6206.0 5560.0 6757.8 6715.5 6795.2
MsPacman 1092.3 653.7 2064.1 2570.2 2614.2

Pong 18 5.6 18.9 19.1 19.8
PrivateEye 207.9 206.9 5717.4 1704.4 722.1

Qbert 9271.5 15148.8 15035.9 18397.6 18834.2
Road Runner 35215 34216 56086 54261 58624.2

Robotank 58.7 32.8 49.8 55.2 61.2
Seaquest 4216.7 2355.4 3275.4 19176.0 4811.2

Table 2: Evaluation scores across Mujoco environments av-
eraged over 100 episodes. SEERL using SAC as base learner
is seen to outperform across 5 of the 6 environments. All
results represent the average of 5 random training runs.

Environment TRPO PPO DDPG SAC SEERL

Ant 2342.2 962 342.4 1958 2564
Half Cheetah 4233 1820 5440 7269 11658

Hopper 2252 1112 1233 3379.2 3156
Humanoid 3882 735 101.4 4380 4845
Swimmer 121.2 42.4 43.4 44.6 162.4
Walker 2D 3215 1892 782 2112 4366

– B2 : Ensembles of policies trained independently from
different algorithms. E.g., two models of A2C, two models
of ACER and one model from ACKTR.

– B3 : Ensembles of policies generated from random per-
turbation of model parameters at regular intervals. E.g.,
Five models of A2C, each of which has been obtained by
perturbing at regular intervals and saving the parameters

The goal is to understand how the traditional ensembles (B1
and B2) compare to SEERL and the role of diverse policies in
an ensemble. Comparison with B3 is intended to show the
importance of directed perturbation against random pertur-
bation.

• The third and final set compares SEERL with SOTA reinforce-
ment learning algorithms that aim to be to sample efficient.
We compare SEERL with SimPLE [13], CURL [28], Rainbow
DQN [10] and SUNRISE [14]. In these experiments SEERL
uses Rainbow DQN as the base learner in order to make a
fair comparison with SUNRISE. The goal is to understand
whether SEERL can be competitive with these algorithms

that are sample efficient and be trained using the limited
interactions it has with the environment. Comparison with
SUNRISE is intended to understand whether SEERL is com-
petitive with a method that trains multiple critics in parallel.

5.2 Training
SEERL uses a base learner to learn an ensemble of policies. This
base learner can be any reinforcement learning algorithm such as
A2C, SAC or Rainbow DQN. After selecting the base learner, SEERL
is trained using the same hyper-parameters configurations as in
the original implementation of the base learner. The ambiguity
that SEERL will lead to poor convergence as a result of shifting
from zero to the maximum learning rate multiple times is mitigated
through our results. SEERL performance during training is at least
at par or better than the base learner, as shown in Figure 2(a, b). We
train the models across different values of𝑀 ranging from 3 to 9.
In order to make the comparison of SEERL with the base learner fair,
we train both models on the same number of timesteps as specified
in the original paper of the base learner. However, for comparison
with SUNRISE, SimPLe, CURL and Rainbow DQN, we train SEERL
using Rainbow DQN as base learner for 100k timesteps for a fair
comparison. Additional training results on the environments are
presented in the supplementary under section 1.

5.3 Evaluation
During evaluation, the policy selection framework is used to select
the best subset of policies for the ensemble with𝑚 = 5. All𝑚 poli-
cies are loaded in parallel and provided with an observation from
the environment. Based on the observation, every policy outputs
an action, and the ensemble strategy decides the final action to be
used on the environment. We perform this evaluation process for
100 episodes, and the average reward over these 100 episodes is

Main Track AAMAS 2021, May 3-7, 2021, Online

1105

Table 3: Evaluation scores across Atari 2600 games averaged over 10 episodes using Rainbow DQN [10] as base learner for
SEERL at 100K interactions. We report the published scores for SimPLe [13], CURL[28] and SUNRISE[14] at 100K interactions.
All results represent the average of 3 random training runs.

Game Rainbow DQN SimPLe CURL SUNRISE SEERL
Alien 789 616.9 558.2 872 800

Amidar 118.5 88.0 142.1 122.6 208.3
Assault 413.0 527.2 600.6 594.8 627.7

BankHeist 97.7 34.2 131.6 266.7 508.0
BattleZone 7833.3 5184.4 14870.0 15700.0 19400.0
Breakout 2.3 16.4 4.9 1.8 3.2
Freeway 28.7 20.3 26.7 30.2 31.3
Frostbite 1478.3 254.7 1181.3 2026.7 2010.0

Krull 3282.7 4539.9 4229.6 3171.9 3203.1
MsPacman 1118.7 1480 1465.5 1482.3 1838.0

Pong -16.9 12.8 -16.5 -13.8 -14.2
PrivateEye 97.8 58.3 218.4 100 100

Qbert 646.7 1288.8 1042.4 1830.8 2125
RoadRunner 9923.3 5640.6 5661.0 11913.3 15290.0

Seaquest 396.0 683.3 384.5 570.7 458.0

reported in Table 1 and Table 2. We use the SOTA scores from Rain-
bow DQN [10] for benchmarking Atari 2600, and SEERL is seen to
outperform it in many games, as seen in Table 1. For Mujoco envi-
ronments, SEERL is seen to outperfom baselines by a considerable
margin as shown in Table 2. Comparison of SEERL with baselines,
B1 and B2, for Breakout and Half cheetah is shown in Figure 2(c,d).
For comparison with SUNRISE, SimPLe, CURL and Rainbow DQN,
the evaluation process is for 10 episodes and reported in Table 3.

5.4 Analysis
We try to understand why and how SEERL gives such superior
performance in comparison to baselines. We analyze the perfor-
mance and sample efficiency of SEERL, the diversity among the
policies, and finally, the comparison between a randomly perturbed
model and SEERL. Analysis on individual performance of the SEERL
policies and the dominance among policies in the ensemble are pre-
sented in the supplementary material under section 2.

5.4.1 RQ1 : Performance and sample efficiency of SEERL.
The training curve in Figure 2(a,b) illustrates the performance of
SEERL with the base learner and is observed to consistently out-
perform it. In Figure 2(a), it can be observed that SEERL achieves
the same performance in 6 million timesteps that which requires
the base learner to achieve in 20 million timesteps. Figure 2(c) and
2(d) illustrates the performance of SEERL in comparison with B1,
B2 and is seen to outperform both baselines. Table 1 shows that
SEERL outperforms the SOTA score from Rainbow DQN on most
games. Similarly Table 2 shows that SEERL outperforms across 5
of the 6 environments. The results in Table 3 illustrate compari-
son of SEERL with Rainbow DQN, SimPLe, CURL and SUNRISE at
100k timesteps. We observe that SEERL outperforms SUNRISE in
11 of the 15 Atari games used for comparison and achieves SOTA
score for 100k interactions in 9 games. The performance of SEERL
trained on 100k interactions highlights its sample efficiency. It is
also observed that SEERL is 4-6 times faster than SUNRISE since it

only uses a single network to sequentially train the policies while
SUNRISE has multiple networks in parallel. As the number of net-
works grows in SUNRISE, the training time is longer while for
SEERL, it remains the same. To summarize, SEERL outperforms
most methods whether it is trained on millions of interactions or
just 100k.

5.4.2 RQ2 and RQ3 : Diversity of Policies and Policy Selec-
tion in SEERL. We establish the diversity among the individual
policies concretely by computing the KL divergence between them
using the action distribution across a diverse number of states. The
higher the KL divergence between the policies, the more diverse
the policies are. From Figure 3(b), we can observe that the SEERL
policies are diverse, and diversity continues to exist as new models
are formed. Conversely, for the baseline models, B1 and B3 (Figure
3(a) and Figure 3(c)), the KL divergence between the policies is
substantial. This observation can be used to explain why the base-
line ensembles failed to perform. The larger KL divergence among
the baseline policies indicate that the policies do not have much
overlap in the action space, and hence ensemble techniques such
as majority voting were unable to find a good action.
Additionally, the analysis of the different subsets of policies in Fig-
ure 5 and their performance in Figure 2(e) confirms that diversity
among policies is required, but too much diversity does not help.
This empirically proves that extremely diverse models are not that
helpful in an ensemble.
We can, therefore conclude that SEERL can generate policies with
sufficient diversity for a good ensemble.

5.4.3 RQ4: Random perturbation vs. SEERL. To emphasize
that directed perturbation of the weights will lead to better models,
we show the comparison between SEERL and a randomly perturbed
model in Figure 4(c). This model has been perturbed with random
values at regular intervals similarly to SEERL. The perturbation
is done by backpropagating random values of gradients instead
of the actual values. We observe that doing a single perturbation

Main Track AAMAS 2021, May 3-7, 2021, Online

1106

(a) Divergence between independently
trained policies used in the baseline, B1 (b) Divergence between SEERL policies (c) Divergence between policies obtained us-

ing random perturbations

(a) Training performance of SEERL as 𝑀

varies between 3 to 9
(b) Training performance of SEERL as max-
imum learning rate 𝛼0 varies

(c) Training performance between SEERL
and randomly perturbed model, with mul-
tiple perturbations in a sequence

Figure 5: Divergence between policies in a subset. Each sub-
set consists of 3 policies chosen from a larger set of 5. The
policies are trained on Breakout using A2C

or, multiple ones sequentially for a small period, does not improve
performance. We can, therefore, establish that directed perturbation
along the gradient direction is necessary to obtain a better model. In
this experiment, all the hyper-parameters have been kept identical
to that used in SEERL.

5.5 Ablation studies
5.5.1 Effect of varying thenumber of cycles. The performance
of SEERL is affected by the selection of𝑀 . For a fixed training bud-
get, if the value of𝑀 chosen is very large, the performance is seen
to degrade. With larger 𝑀 , the training cycle for each policy is
reduced, thereby reducing the chance for the policy to settle at a
good local minimum before it is perturbed again. In practice, we
find that setting the value of 𝑀 between 3 to 7 works reasonably
well. Figure 4(a) compares the performance of SEERL with varying
𝑀 values between 3 and 9.

5.5.2 Effect of varying maximum learning rate. The maxi-
mum leaning rate value influences the performance of the policies

and therefore affects the performance of SEERL. It directly impacts
the perturbation of the local minima and hence, the diversity of
the policies. In practice, we have seen that having a larger value
tends to perform better, owing to the strong perturbation it causes
at different local minima leading to reasonably different policies.
We have used values ranging between 0.01 to 0.001 throughout our
experiments. Figure 4(b) compares the performance of SEERL with
different values of 𝛼0 with𝑀 = 5

6 CONCLUSION AND FUTUREWORK
In this paper, we introduce SEERL, a framework to ensemble multi-
ple policies obtained from a single training run. We show that the
policies learned at the different local minima are diverse in their
performance and our policy selection framework helps to select the
best subset of policies for the ensemble during evaluation. SEERL
outperforms the three baseline methods and beats SOTA scores
in complex environments having discrete and continuous action
spaces. We show our results using both off-policy and on-policy
reinforcement learning algorithms and therefore showcase the scal-
ability of the framework. Our analysis shows that, in comparison to
baselines, SEERL achieves comparable, and sometimes better per-
formance using a significantly low number of samples, making it an
extremely sample efficient algorithm. Future work will explore how
to combine the learned policies during training time as a growing
ensemble to stabilize training and increase diversity.

Main Track AAMAS 2021, May 3-7, 2021, Online

1107

REFERENCES
[1] Oron Anschel, Nir Baram, and Nahum Shimkin. 2017. Averaged-dqn: Variance

reduction and stabilization for deep reinforcement learning. In International
Conference on Machine Learning. PMLR, 176–185.

[2] Marc G Bellemare, Will Dabney, and Rémi Munos. 2017. A distributional perspec-
tive on reinforcement learning. In International Conference on Machine Learning.
PMLR, 449–458.

[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The
arcade learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research 47 (2013), 253–279.

[4] Thomas G Dietterich. 2000. Ensemble methods in machine learning. In Interna-
tional workshop on multiple classifier systems. Springer, 1–15.

[5] Siegmund Duell and Steffen Udluft. 2013. Ensembles for Continuous Actions in
Reinforcement Learning.. In ESANN.

[6] R Evans, J Jumper, J Kirkpatrick, L Sifre, TFG Green, C Qin, A Zidek, A Nelson,
A Bridgland, H Penedones, et al. [n.d.]. De novo structure prediction with
deeplearning based scoring. Annu Rev Biochem 77 ([n. d.]), 363–382.

[7] Stefan Faußer and Friedhelm Schwenker. 2015. Neural network ensembles in
reinforcement learning. Neural Processing Letters 41, 1 (2015), 55–69.

[8] Stefan Faußer and Friedhelm Schwenker. 2015. Selective neural network ensem-
bles in reinforcement learning: taking the advantage of many agents. Neurocom-
puting 169 (2015), 350–357.

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. arXiv preprint arXiv:1801.01290 (2018).

[10] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. 2018.
Rainbow: Combining improvements in deep reinforcement learning. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[11] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q
Weinberger. 2017. Snapshot ensembles: Train 1, get m for free. arXiv preprint
arXiv:1704.00109 (2017).

[12] Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek
Tabor, Kyunghyun Cho, and Krzysztof Geras. 2020. The break-even point on
optimization trajectories of deep neural networks. arXiv preprint arXiv:2002.09572
(2020).

[13] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski,
Sergey Levine, et al. 2019. Model-based reinforcement learning for atari. arXiv
preprint arXiv:1903.00374 (2019).

[14] Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. 2020. SUNRISE:
A Simple Unified Framework for Ensemble Learning in Deep Reinforcement
Learning. arXiv preprint arXiv:2007.04938 (2020).

[15] Yuanzhi Li, Colin Wei, and Tengyu Ma. 2019. Towards explaining the regulariza-
tion effect of initial large learning rate in training neural networks. In Advances
in Neural Information Processing Systems. 11674–11685.

[16] Timothy Paul Lillicrap, Jonathan James Hunt, Alexander Pritzel, Nicolas Man-
fred Otto Heess, Tom Erez, Yuval Tassa, David Silver, and Daniel Pieter Wierstra.
2017. Continuous control with deep reinforcement learning. US Patent App.
15/217,758.

[17] Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochastic gradient descent with
warm restarts. arXiv preprint arXiv:1608.03983 (2016).

[18] Vukosi Ntsakisi Marivate and Michael Littman. 2013. An ensemble of linearly
combined reinforcement-learning agents. In Workshops at the Twenty-Seventh
AAAI Conference on Artificial Intelligence.

[19] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronousMethods for Deep Reinforcement Learning. CoRR abs/1602.01783 (2016).
arXiv:1602.01783 http://arxiv.org/abs/1602.01783

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[21] Preetum Nakkiran. 2020. Learning Rate Annealing Can Provably Help General-
ization, Even for Convex Problems. arXiv preprint arXiv:2005.07360 (2020).

[22] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.
Deep exploration via bootstrapped DQN. In Advances in neural information
processing systems. 4026–4034.

[23] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. 2019. Mastering atari, go, chess and shogi by planning with
a learned model. arXiv preprint arXiv:1911.08265 (2019).

[24] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International conference on machine
learning. PMLR, 1889–1897.

[25] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
2015. High-dimensional continuous control using generalized advantage estima-
tion. arXiv preprint arXiv:1506.02438 (2015).

[26] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. Nature 550,
7676 (2017), 354.

[27] Leslie N Smith. 2015. No more pesky learning rate guessing games. arXiv preprint
arXiv:1506.01186 (2015).

[28] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. 2020. Curl: Contrastive
unsupervised representations for reinforcement learning. arXiv preprint
arXiv:2004.04136 (2020).

[29] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 5026–5033.

[30] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575, 7782 (2019), 350–354.

[31] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Rémi Munos, Koray
Kavukcuoglu, and Nando de Freitas. 2016. Sample Efficient Actor-Critic with
Experience Replay. CoRR abs/1611.01224 (2016). arXiv:1611.01224 http://arxiv.
org/abs/1611.01224

[32] Marco A Wiering and Hado Van Hasselt. 2008. Ensemble algorithms in rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 38, 4 (2008), 930–936.

[33] Yuhuai Wu, Elman Mansimov, Shun Liao, Roger B. Grosse, and Jimmy Ba. 2017.
Scalable trust-region method for deep reinforcement learning using Kronecker-
factored approximation. CoRR abs/1708.05144 (2017). arXiv:1708.05144 http:
//arxiv.org/abs/1708.05144

Main Track AAMAS 2021, May 3-7, 2021, Online

1108

https://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1611.01224
http://arxiv.org/abs/1611.01224
https://arxiv.org/abs/1708.05144
http://arxiv.org/abs/1708.05144
http://arxiv.org/abs/1708.05144

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 SEERL
	4.1 Learning policies
	4.2 Policy selection
	4.3 Ensemble techniques

	5 Experiments
	5.1 Setup
	5.2 Training
	5.3 Evaluation
	5.4 Analysis
	5.5 Ablation studies

	6 Conclusion and Future work
	References

