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ABSTRACT
Studying adversarial attacks on Reinforcement Learning (RL) agents
has become a key aspect of developing robust, RL-based solutions.
Test-time attacks, which target the post-learning performance of
an RL agent’s policy, have been well studied in both white- and
black-box settings. More recently, however, state-of-the-art works
have shifted to investigate training-time attacks on RL agents, i.e.,
forcing the learning process towards a target policy designed by
the attacker. Alas, these SOTA works continue to rely on white-box
settings and/or use a reward-poisoning approach. In contrast, this
paper studies environment-dynamics poisoning attacks at training
time. Furthermore, while environment-dynamics poisoning pre-
sumes a transfer-learning capable agent, it also allows us to expand
our approach to black-box attacks. Our overall framework, inspired
by hierarchical RL, seeks the minimal environment-dynamics ma-
nipulation that will prompt the momentary policy of the agent
to change in a desired manner. We show the attack efficiency by
comparing it with the reward-poisoning approach, and empirically
demonstrate the transferability of the environment-poisoning at-
tack strategy. Finally, we seek to exploit the transferability of the
attack strategy to handle black-box settings.
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1 INTRODUCTION
Proliferation of applied Reinforcement Learning (RL) techniques
has drawn the ever increasing attention to their safety and robust-
ness. In fact, the study of RL’s susceptibility to subversion has
become a prominent research area of its own. The majority of ex-
isting works [7, 8, 10, 11, 23] focus on test-time attacks against
RL agents, challenging an already learned and fixed policy. These
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works successfully attack and degrade the performance of a de-
ployed, RL-generated policy, though the policy itself is not subject
to the methods’ manipulation. However, a research sub-stream that
aims to subvert an RL agent’s policy as it is being generated, during
training time, has been forming [2, 12, 20, 27]. Admittedly, these
methods are successful to a degree, and propel the RL agent towards
a target policy, designed and chosen by the attacker. However, sev-
eral strong assumptions wrt access to the RL agent’s perceptions
and knowledge of the agent’s processes (white-box assumption)
greatly limit the applicability of these approaches.

In more detail, current training-time attack methods assume
that the attacker has full knowledge of the RL agent’s learning
algorithm and policy model. Furthermore, it is assumed that the
agent’s perceptions andmemory are accessible, so that the complete
interaction information between an agent and its environment is
manipulable. Thus, reward manipulation/poisoning is a common
weapon of choice to interfere with the agent’s learning process and
drive it towards the target policy. However, the agent’s perceived
rewards are determined by both external feedback and the agent’s
intrinsic environment [22]. For example, in a classical story "Phil
prepares his breakfast" [1, 22], Phil’s chosen action might receive
different rewards depending on his hunger level, his mood and other
features of his body, which are internal and private properties of the
agent. Similarly, some robots’ perceived rewards are determined by
the configuration of embedded sensors, encapsulated away from
clients/attackers. In such scenarios, reward manipulation [25–27]
is infeasible, as there is no access to the manner in which rewards
are generated. Similar failure easily befalls approaches that work
by poisoning the RL agent’s memory [12]. Thus, it is necessary to
design an attack approach that works only through features and
properties of the environment that are external to the RL agent, i.e.,
environment’s response to actions, dynamics. Additionally, even
though we may have some design documentation on the agent’s
learning algorithm, it is important to design an attack method that
will be as independent from such information as possible. In other
words, the method and its attack strategy should operate under
the black-box assumption and be transferable across different RL
agents. In this paper, we develop such an approach.

Specifically, we develop a method to automatically design a
transferable attack strategy, trained in a white-box setting with
a proxy agent and then applied to an unknown (black-box) victim
agent. In more detail, we deploy a bi-level Markov Decision Process
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(MDP) framework as a means of finding a training-time attack
strategy by environment-dynamics poisoning. At a lower-level, an
RL proxy agent explores anMDP environment, seeking to maximize
its expected cumulative rewards. At a higher-level, the attacker
seeks to tweak the dynamics of the lower-level MDP to drive the
proxy agent towards a target behaviour/policy. We assume that
the tweak can be generated at regular intervals with respect to the
lower-level time-line, and that prior to the tweak the higher-level
attacker obtains a reliable estimate of the proxy agent’s current
policy. While the attacker’s main goal is to drive the proxy agent
towards acquiring the target policy, the attacker is also limited
in its ability to change the proxy agent’s environment. In fact, we
relate the degree to which the environment has been changed to the
attacker’s effort and stealth. Thus, we build the attack optimization
around the combined deviation of a) the environment dynamics
from their natural form and b) the proxy agent’s policy from the
target policy. The combined deviation measurement is based on
the Kullback-Leibler Divergence Rate [19] between two autonomic
systems.

We demonstrate the effectiveness of the proposed method in two
stages. First, we develop it to handle white-box scenarios, where the
victim agent’s algorithm is known to the attacker; hence, the proxy
agent is precise in simulating the victim of the attack. We then show,
how the approach can be extended to black-box scenarios, where
the proxy agent approximates the victim using the latter’s observed
interaction trajectories. Furthermore, we explore the transferability
of the environment-poisoning attack strategy between RL agents by
explicitly creating scenarios where the proxy agent and the victim
run different and distinct algorithms. Overall, the contribution of
this paper can be summarized as follows:
• We propose a transferable environment-dynamics poisoning
attack (TEPA) against an RL agent at training time;
• We present a close-loop attack design framework based on
a bi-level Markov Decision Process architecture;
• We show that the bi-level architecture can be successfully
resolved using a Deep RL technique that generates valid
attack strategies;
• We demonstrate that our approach generates effective white-
box and black-box attacks, and investigate the transferability
of the environment-poisoning solution.

2 RELATEDWORK
In this section, we review existing works on training-time attacks
against RL and present how this work is different from them.

Training-time Attacks against RL. Different from test-time
attacks, which perturb the performance of the well-trained policy,
training-time attacks aim to enforce an arbitrary target policy on
the RL agent. Existing works mostly poison the agent’s policy by
manipulating rewards at training time [12, 27]. Here, [12] poisons
rewards in the training data set for batch RL, and [27] studies
adaptive reward-poisoning attacks on a Q-learning RL agent. Of
particular interest is the work proposed in [20], which poisons
environment transition dynamics. Its target victim is an RL agent
using a minimization-regret framework as the learning algorithm,
whose objective is to maximize average rewards in undiscounted
infinite-horizon settings. Thus, this environment-poisoning attack

in [20] is suitable for cyclic tasks which have no termination state.
In contrast, our proposed environment-poisoning attack works
in episodic MDP and targets an RL agent whose objective is to
maximize its cumulative rewards. Additionally, unlike [12, 20, 27]
that focus on a specific RL agent, our method is not constrained by
how the agent learns the policy.

White-box andBlack-boxAttacks. For test-time attacks on RL
agents, existing works have investigated both white-box [10, 11, 23]
and black-box settings [7, 8]. In white-box settings, the attacker is
assumed to have full knowledge of the victim’s learning algorithm
and policy model. During the deployment of the victim’s policy, the
attacker perturbs the victim’s perceived states in order to change its
decision on selecting actions. In the works [7, 8] which study black-
box attacks, the attacker has no access to the RL agent’s model
weights. These works are developed based on a key concept: trans-
ferability of adversarial examples (i.e., crafted malicious inputs) [15].
Here, the concept ’transferability’ means that adversarial examples,
which can mislead one model, are also able to perturb other models.
Transferability has been demonstrated effective for models whose
architectures or training sets are different, as long as these models
are trained for the same task. Inspired by the transferability of ad-
versarial examples, [7, 8] learn attacks on a proxy model and build
black-box adversarial examples to fool deep RL agents. However,
in the area of training-time attacks on RL, to our knowledge, no
approach is feasible in black-box settings. In this work, we aim to
explore the effectiveness of our method for attacking black-box RL
agents at training time.

Offline and Online Attacks. In existing training-time attack
works, there are mainly two settings: offline and online attacks.
For offline attacks, the attacker has full knowledge of the training
data set. It makes one decision on rewards manipulation, and then
provides the poisoned training data set to the RL agent for its policy
planning [12, 20]. On the other hand, online attacks mean that the
attacker sequentially manipulates the feedback signal when inter-
acting with the RL agent [20, 27]. It requires the attacker to access
the agent’s transitions (i.e., current state, chosen action, next state
and reward), to make attack decisions on-the-fly. Such attacks are
generally adaptive to the victim’s learning progress, however, they
are constrained to white-box settings. Different from offline and on-
line attacks, we propose an intermediate attack framework where
the environment is sequentially poisoned at regular interval during
the victim’s learning process. The attacker makes an attack decision
in response to the victim’s policy features, without needing to grasp
every transitions of the victim. The proposed setting allows us to
extend training-time attacks to black-box settings where learning
algorithms or policy models are unknown.

Environment Poisoning and Shaping. It has been shown in
previous works that RL agents are very sensitive to training envi-
ronments [6]. Thus, manipulating environment is an effective way
to influence the agent’s policy learning [9, 17, 18, 20, 21]. Gener-
ally, these works can be grouped as either environment shaping
or environment poisoning, based on their objectives. Specifically,
environment shaping aims to speed up the agent acquiring its own
optimal policy, which is popular in behaviour teaching [9, 17, 21].
Environment poisoning, on the other hand, enforces an arbitrary
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target policy on the agent. The target policy can be a suboptimal
one for the agent. It is usually studied in adversarial attack fields
[18, 20]. Even though the objectives are different, teaching and
attacking are mathematically equivalent. This means our work can
be used to teaching a specific target policy. Furthermore, when our
work is discussed in the teaching area, it is important to note the
difference between our work and inverse RL (IRL) [3, 16] due to
their similar objectives. IRL performs teaching by human inputs,
and requires the agent to be able to estimate the teacher’s motiva-
tion; while our work depends on automated environment design
and performs effectively even when the agent has no intention of
learning.

3 PRELIMINARIES
The development of our work is inspired by Behaviour Cultivation
(BC) [18]. In this section, we describe the core idea of BC and how
it fits into our proposed attack method.

Behaviour Cultivation: The goal of BC [18] is to induce an
RL agent to learn a desired behaviour with minimized changes
of environment dynamics. In BC, the learner has no intention of
following the desired behaviour, instead, it seeks to maximize its
own benefit. The teacher aims to induce the learner to acquire an
arbitrary behaviour that is desired by the teacher. These charac-
teristics allow BC to be effective in adversarial attacks on an RL
agent’s policy. In this work, we borrow the core idea of enforcing
an arbitrary desired policy via environment-dynamics tweaks from
BC. We extend this core idea into a closed-loop control sequence of
environment-dynamics modifications responding to the learner’s
actual learning progress.

Since BC aims to achieve a desired behaviour on the learner via
minimized environment-dynamics changes, it considers the cost
of changing dynamics when minimizing the deviation between
the learner’s actual policy with the desired one. BC uses Kullback
Leibler Divergnece Rate (KLR) [19] as the measurement of this
deviation. In this work, we also adopt KLR to measure the attack
cost to achieve attack success with control of the attack effort.

Kull-Leibler Divergence Rate: Kullback-Leibler divergence
measures how one probability distribution is different from a refer-
ence probability distribution.
Definition.1: Given discrete probability distributions p and q, the
Kullback-Leibler divergence of q from p is

𝐷𝐾𝐿 (𝑝 | |𝑞) =
∑
𝑖

𝑝 (𝑖) log 𝑝 (𝑖)
𝑞(𝑖)

When Kullback-Leibler divergence is extended to Markovian pro-
cesses, it is called Kullback-Leibler Divergence Rate [19].
Definition.2: Given Markov Processes X1𝑡 and X2𝑡 , the Kullback-
Leibler Divergence Rate (KLR) is

𝐷𝐾𝐿𝑅 (𝑋 1 | |𝑋 2) = lim
𝑛→∞

1
𝑛
𝐷𝐾𝐿 (𝑃 (𝑋 1 = 𝑥𝑛) | |𝑃 (𝑋 2 = 𝑥𝑛))

When the Markov Process is described by two conditional tran-
sition matrices, 𝑃 (𝑥 ′ |𝑥) and 𝑄 (𝑥 ′ |𝑥), the KLR is proven to be

𝐷𝐾𝐿𝑅 (𝑃 | |𝑄) =
∑
𝑥

𝐷𝐾𝐿 (𝑃 (𝑥 ′ |𝑥) | |𝑄 (𝑥 ′ |𝑥)) × 𝑝 (𝑥) (1)

where 𝑝 (𝑥) is the stationary distribution of 𝑃 [19].

4 PROBLEM STATEMENT
In this section, we formulate our environment-poisoning attack
problem using a bi-level MDP architecture, which is shown in Fig-
ure 1a. Here, the victim is an RL agent who interacts with the
environment, seeking maximized cumulative rewards. The attacker
is also an RL agent who regards the victim as a dynamic system. As
shown in Figure 1b, at intervals of the victim’s learning process, the
attacker manipulates the victim’s environment dynamics, respond-
ing to the victim’s momentary policy information. The attacker’s
objective is to acquire an attack strategy which succeeds in policy
poisoning with minimized changes of environment.

Attacker

Environment Victim Agent

attacker's state

state
reward
action

attacker's
action

attacking cost

(a) Architecture illustration

(b) Attack Deployment

Figure 1: Environment-Poisoning Attack in Bi-level MDPs

Victim-level MDP. The victim’s Markovian environment is rep-
resented by the tuple < 𝑆,𝐴,𝑇�̂� , 𝑟 , 𝑞0, 𝛾 >. Here, 𝑠 ∈ 𝑆 is an environ-
ment state and 𝑞0 (𝑠) is a distribution over initial states. 𝐴 is the set
of the victim’s available actions and 𝑟 : 𝑆 ×𝐴×𝑆 → R is the reward
function. 𝛾 ∈ (0, 1) is the discount factor. 𝑇�̂� : 𝑆 × 𝐴 × 𝑆 → [0, 1]
is the probabilistic state transition function with tweaks of hyper-
parameters coming from space 𝑈 (described in the attack-level
MDP). Thus, 𝑇�̂� (𝑠 ′ |𝑠, 𝑎) represents the probability of the environ-
ment state changing from 𝑠 to 𝑠 ′, given that the environment dy-
namics was tweaked by 𝑢 ∈ 𝑈 and the victim chose the action 𝑎.
The victim’s objective is to find an optimal policy 𝜋 (𝑎 |𝑠) which
maximizes the cumulative discounted rewards.

Attack-level MDP. We define the attacker’s environment as a
higher-level Markovian process, which is denoted as the tuple <
Θ,𝑈 , 𝐹,𝛾𝑎, 𝑐, 𝜃

∗ > where:
− Θ is the attacker’s state space. It is the set of the victim’s pol-

icy parameterisations. 𝜃∗ denotes the target policy designed
by the attacker.
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− 𝑈 is the attacker’s action space. 𝑢𝑖 ∈ 𝑈 is the tweak to the
victim’s environment hyper-parameters. Here, the hyper-
parameters control how the environment responds to the vic-
tim’s action. 𝑢0 means that environment hyper-parameters
are not changed by the attacker.𝑢1:𝑖 represents the aggregate
outcome of a sequence of tweaks, which is also termed as 𝑢𝑖
within confines of a set 𝑈 .

− 𝐹 is the attacker’s environment transition probability func-
tion. It captures how the victim updates its policy. 𝐹 (𝜃 ′ |𝜃,𝑢)
represents the probability that the victim changes its policy
parameter from 𝜃 to 𝜃 ′ in the environment tweaked by 𝑢.

− 𝛾𝑎 is the discount factor.
− 𝑐 : Θ ×𝑈 → R is a function representing the attack cost. It

denotes the combined impact of the victim’s (possibly unde-
sirably) parameterised policies and the attacker’s aggregate
tweaks in the victim’s environment.

The attacker aims to minimize the cumulative discounted attack
cost 𝐶 =

∑∞
𝑖=1 𝛾

𝑖
𝑎𝑐𝑖 , where 𝑖 is the attack epoch. The attacker’s

objective is to find an attack strategy 𝜎 (𝑢𝑖 |𝜃𝑖−1, 𝑢1:𝑖−1) which can
stealthily force the victim to acquire the target policy while mini-
mizing cumulative changes to the environment dynamics.

5 METHODOLOGY
In this section, we first design the attack-level optimality criteria
in white-box settings, and then investigate black-box attacks.

5.1 White-box Attacks
The white-box attack setting is common in research on adversarial
attack [7, 12, 20, 27]. In white-box settings, the attacker is assumed
to know the victim’s learning algorithm and its policy model. Before
describing the attack optimality criteria, we first describe the target
policy which is designed by the attacker. Given a target state set
𝑆∗ ⊆ 𝑆 , the target policy is denoted as:

𝜋𝜃 ∗ (𝑠) =
{
𝑎∗ s ∈ 𝑆∗

𝜋𝜃𝑖 (𝑠) s ∉ 𝑆∗
(2)

where 𝑎∗ is the target action desired by the attacker. 𝜋𝜃𝑖 (𝑠) is the
victim’s actual policy. 𝜋𝜃 ∗ (𝑠) is a partial target policy which is more
applicable for large-size discrete or continuous state domains, in
comparison with the complete target policy (i.e., define desired
actions in all the states) proposed in BC [18].

Based on the definition of 𝜋𝜃 ∗ (𝑠), we measure the attack cost 𝑐𝑖
at each attack epoch 𝑖 , as described by the following:

𝑐𝑖 (𝜃,𝑢) = 𝐷𝐾𝐿𝑅 (𝑃𝑖 | |𝑃∗)
𝑠 .𝑡 .

𝐷𝐾𝐿𝑅 (𝑃𝑖 | |𝑃∗) =
∑
𝑠,𝑎

𝑞𝑖 (𝑠)𝜋𝜃𝑖 (𝑎 |𝑠)𝐷
𝐾𝐿
𝑖 (𝑠, 𝑎)

𝐷𝐾𝐿𝑖 (𝑠, 𝑎) =
∑
𝑠′,𝑎′

𝑃𝑖 (𝑠 ′, 𝑎′ |𝑠, 𝑎) log
𝑃𝑖 (𝑠 ′, 𝑎′ |𝑠, 𝑎)
𝑃∗ (𝑠 ′, 𝑎′ |𝑠, 𝑎)

𝑃𝑖 (𝑠 ′, 𝑎′ |𝑠, 𝑎) = 𝑇𝑢1:𝑖 (𝑠 ′ |𝑠, 𝑎)𝜋𝜃𝑖 (𝑎
′ |𝑠 ′)

𝑃∗ (𝑠 ′, 𝑎′ |𝑠, 𝑎) = 𝑇𝑢0 (𝑠 ′ |𝑠, 𝑎)𝜋𝜃 ∗ (𝑎′ |𝑠 ′)

𝑞𝑖 (𝑠 ′) =
∑
𝑠,𝑎

𝑞𝑖 (𝑠)𝜋𝜃𝑖 (𝑎 |𝑠)𝑇𝑢1:𝑖 (𝑠
′ |𝑠, 𝑎)

(3)

Here,𝑞𝑖 (𝑠) is the stationary distribution of the victim’s environment
MDP. 𝑃𝑖 (𝑠 ′, 𝑎′ |𝑠, 𝑎) represents a stochastic process over state-action
pairs, where the victim follows the policy 𝜋𝜃𝑖 (𝑎 |𝑠) in the environ-
ment modified by a sequence of tweaks 𝑢1:𝑖 , where 𝑢 𝑗 ∈ 𝑈 for all
𝑗 ∈ [1 : 𝑖]. Similarly, 𝑃∗ (𝑠 ′, 𝑎′ |𝑠, 𝑎) is the ideal Markovian process
from the perspective of the attacker.

Note that Equation 3 defines attack cost computation at each
attack epoch 𝑖 . The attacker and the victim have different time scales.
At each attack epoch 𝑖 , the environment transition dynamics𝑇𝑢1:𝑖 is
fixed. The victim interacts with the poisoned environment within
𝑡𝑚𝑎𝑥 time steps and finds policy 𝜋𝜃𝑖 . Then, the attacker recognizes
the parameterisation of the victim’s updated policy and accordingly
tweaks environment hyper-parameters, starting another attack
epoch 𝑖 + 1.

Based on the proposed optimality critieria, the training of the
attack strategy is described in Algorithm 1. Here, line 9 ∼ 10 in-
troduce how the attacker poisons the environment dynamics, and
line 11 means that the victim updates its policy in the poisoned
environment using algorithm f𝑣𝑖𝑐𝑡𝑖𝑚 . In line 12 ∼ 13, the attack cost
is computed following Equation 3. Then, the attacker’s transitions
are saved in the replay buffer D for optimizing the strategy network.
When the victim chooses desired actions in all the target states, the
attack is done and the training goes to the next episode.

Algorithm 1 Training of Attack Strategy in White-box Settings
1: Input:

𝑇0: default environment dynamics
𝜋0: victim’s initial policy
𝜋𝜃 ∗ : target policy designed by attacker

2: Output:
𝜎 : attack strategy network

3: 𝑃∗← 𝜋𝜃 ∗ ×𝑇0: compute ideal Markovian process
4: for all episode_num do
5: 𝑇0 = 𝑇𝑢0 : reset default environment dynamics
6: 𝜋0 = 𝜋𝜃0 : revert victim to initial policy
7: 𝑥0 ← {𝜋0, 𝑢0}: attacker’s input
8: for 𝑖=1 to 𝐼𝑚𝑎𝑥 do
9: 𝑢𝑖 ← 𝜎 (𝑥𝑖−1): choose attack action
10: 𝑇𝑖 ← 𝑇𝑢1:𝑖 : poison environment dynamics
11: 𝜋𝑖 ← f𝑣𝑖𝑐𝑡𝑖𝑚(𝜋𝑖−1,𝑇𝑖 ): obtain victim’s updated policy
12: 𝑃𝑖 ← 𝜋𝑖 ×𝑇𝑖 : compute actual Markovian process
13: 𝑐𝑖 ← DKLR (𝑃𝑖 , 𝑃∗): compute attack cost
14: 𝑥𝑖 ← {𝜋𝑖 , 𝑢1:𝑖 }: update attacker’s input
15: D← {𝑥𝑖−1, 𝑢𝑖 , 𝑥𝑖 , 𝑐𝑖 }: save transitions to replay buffer
16: Update attack strategy network 𝜎
17: if {𝜋𝑖 (𝑠) == 𝜋𝜃 ∗ (𝑠) |𝑠 ∈ 𝑆∗} then
18: 𝑎𝑡𝑡𝑎𝑐𝑘𝐷𝑜𝑛𝑒 = 1: go to the next episode
19: end if
20: end for
21: end for

We use Deep RL algorithms to learn the attack strategy. We
choose Deep Q-learning (DQN) [13] in discrete attack action do-
main, and adopt Twin Delayed DDPG (TD3) [4] for continuous
attack actions.
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5.2 Black-Box Attacks
In this section, we will introduce how to apply the proposed bi-
level environment-poisoning attack in black-box settings. We study
black-box attacks in two settings. First, the attacker has no prior
information about the victim agent’s learning algorithm, i.e., how
the agent learns the policy. The attacker is assumed to know the
victim agent’s policy model, i.e., what the agent’s momentary policy
is. In the second setting, the attacker knows nothing about the
victim agent’s learning algorithm as well as its policy. Instead,
the attacker can only observe the agent’s behaviour trajectories.
These two settings are closer to real-world attack scenarios than
the setting in white-box training-time attacks [12, 20, 27]. To our
knowledge, there is no prior work investigating black-box attacks
on RL agents at training time.

5.2.1 Transferable Environment-Poisoning Attack (TEPA). In the
first setting, the challenge for the attacker is in designing its attack
strategy without information about the victim’s learning algorithm.
To address this issue, we would like to demonstrate transferability
of poisoned training environments. As [22], in comparison with
supervised learning, the characteristic feature of RL is that the
agent learns optimal actions via feedback from the training envi-
ronment, rather than being directly instructed by correct actions.
Thus, the interaction with the training environment plays a crucial
role in determining the RL agent’s optimal policy. As for the agent’s
learning algorithms or policy representations, they only affect how
efficiently the agent finds the optimal policy, instead of determining
what the optimal policy is. Therefore, the training environment
which poisons one agent’s policy can be transferred to attack other
RL agents, even if these agents utilize different learning algorithms
or policy representations. We term this property as transferability
of poisoned training environments.

We utilize transferability of poisoned training environments to
solve the challenge in the first black-box setting. Here, we propose
that the attacker learns its attack strategy on a white-box proxy
agent (i.e., learning algorithm is known by the attacker), and then
transfers the strategy to attack a black-box victim agent.

Attacker

White-box
Proxy Agent

Black-box
Victim Agent

1. Attacker learns
attack strategy

using a proxy agent

2. Attacker infers
the victim's policy

feature

3. Attacker poisons
the environment

Poisoned Env

4. Transferable 
poisoned

environment

Figure 2: Black-box, transferable poisoning attacks

5.2.2 TEPA with Victim Modeling. Since it is difficult for the at-
tacker to have prior knowledge on the victim’s private information

in real-world scenarios, the second black-box setting is more realis-
tic and worth being investigated. Based on the solution in the first
setting, the key task for the attacker is to infer the victim’s policy
when deploying responsive attacks.

Inspired by generative policy representations [5, 24], we use the
encoder-decoder neural network to obtain policy parameterisations
which can best represent the victim’s policy features. Specifically,
at each attack epoch 𝑖 , the attacker first collects the victim’s suc-
cessive 𝑁 state-action transitions Xi = {𝑠𝑖𝑡 , 𝑎𝑖𝑡 } derived from the
victim’s policy 𝜋𝜃𝑖 , where 𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+𝑁 ). Then, the attacker learns
a representation function 𝑓𝜔 : Xi → R𝑑 which encodes trajectories
Xi as a 𝑑-dimensional real-valued vector embedding. This embed-
ding represents the victim’s policy features. The decoder network
is a policy function 𝑓𝜙 : 𝑆 ×𝐴 × R𝑑 → [0, 1] which maps the vic-
tim’s state and the embedding to the distribution over its actions.
The parameter 𝜔 and 𝜙 in the encoder-decoder neural network are
learned via maximizing the negative cross-entropy objectives:

Exi1∼Xi,xi2∼Xi


∑

⟨𝑠𝑖 ,𝑎𝑖 ⟩∼xi2

log 𝑓𝜙 (𝑎𝑖 |𝑠𝑖 , 𝑓𝜔 (xi1))
 (4)

Here, xi1 and xi2 are two different trajectories from the transition
set Xi, which are used to train the encoder and the decoder net-
work, respectively. Since the output of the encoder network (i.e.,
embedding) represents the victim’s policy features, it is used as the
input to the attacker.

In summary, as described in Figure 2, the attacker learns the
attack strategy on a white-box proxy agent, and infers the black-box
victim agent’s policy features according to trajectory observations.
Then, it applies the transferable attack strategy to the black-box
victim, responding to the victim’s policy features.

6 EXPERIMENT
In this section, we present experiments to show the attack perfor-
mance of bi-level environment(env)-poisoning attack under white-
box and black-box settings.

6.1 Experiment Settings
6.1.1 Experiment Environment. Robot navigation is one funda-
mental problem in robotics and commonly used to test RL algo-
rithms [14]. Therefore, we choose to attack an RL agent performing
navigation tasks in Grid World environment.

3D Grid World. The 3D grid world is proposed in [18] to simulate
a mountain or rugged terrain. As shown in Figure 3a, there are
associated elevations among cells of the 3D grid world. Success
of moving from one cell to the neighboring one is proportional
to the relative elevation between these two cells. Thus, changing
elevation can affect how the environment responds to the agent’s
action, which is a mechanism to modify the environment dynamics.
The 3D grid world is the victim agent’s environment. The agent’s
aim is to find an optimal path from the start cell to the destination.
At each time step, the agent can move in one of the four cardinal
directions with the reward −1. For the attacker, the attack objective
is to stealthily force the agent to follow a target path reaching the
destination. As shown in Figure 3a, the blue line represents the
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victim agent’s optimal path in the natural elevation setting, whereas
the red line is the target path designed by the attacker.

(a) 3D Grid World

S

G1 G2

G1

G2

: 1

: 2

: -1

+0.793

- 0.024

- 0.793

- 0.793

- 0.769

+0.793

+0.793

(b) 2-Goal Grid World

Figure 3: Discrete domains: (a) In the 3D grid world, the shal-
low cell is the goal state. (b) In the 2-Goal grid world, there
are two goal states 𝐺1 and 𝐺2

Grid World with Two Goal States: Inspired by the experiment
design in [12], we extend the 3D grid world with two goal states𝐺1
and𝐺2 shown in Figure 3b. We set the default elevation of each cell
to be the same. In this domain, the agent is rewarded −1 for each
step until it reaches 𝐺1 or 𝐺2 with reward +1 and +2, respectively.
The agent’s task is to reach one of goal states with maximized
cumulative rewards. The agent will reach 𝐺1 following its own
optimal policy. However, the attacker aims to induce the agent to
reach the other goal state,𝐺2, by changing cell elevations. In Figure
3b, the blue line is the target path while the black line is the agent’s
optimal option. In addition, the red circle and green arrow represent
how the state transition probabilities are changed by the attacker.
For example, the red circle with value +0.793 means the probability
of staying still has been increased by 0.793 when the agent choose
a specific action.

6.1.2 Implementation. As introduced in Section 5.1, the attacker
learns the env-poisoning attack strategy using Deep RL learning
algorithms, such as DQN [13] or TD3 [4]. The policy network is
represented by a multi-layer neural network as INPUT(80)-FC(400)-
ReLU-FC(300)-ReLU-FC(16). When attacking victims in the 3D grid
world, the attacker manipulates the cell elevation continuously and
uses TD3 to learn the attack strategy. For attacks in the 2-Goal
grid world, the attacker chooses DQN to train its policy network
with a discrete attack action set. Additionally, victim agents may
choose Q-learning, Sarsa and Monto Carlo (MC) [22] as learning
algorithms with parameter configurations: 𝜖 = 0.1, 𝛾 = 1.0, 𝛼 = 0.1.

6.1.3 Measurement. The attack is regarded as successful if the
victim agent chooses the desired action 𝑎∗ in target states 𝑠∗. We
define attack success rate to denote the percentage of the target
state set that has been attacked successfully. In this experiment,
we measure the attack performance using the attack success rate
during the victim agent’s learning process. The efficiency of an
attack strategy is measured by its convergence rate, with faster
convergence meaning higher attacking efficiency. Furthermore,
a successful transferable strategy is identified as one with more
than 80% success rate for attacking a victim agent when the attack
strategy is trained on a white-box proxy agent.

(a) 3D Grid World

(b) 2-Goal Grid World

Figure 4: Attack performance of Env-Poisoning Attack in
comparison with Reward-Poisoning Attack

6.1.4 Baseline. We use one state-of-the-art approach, adaptive
reward-poisoning attack [27], as our baseline. The adaptive reward-
poisoning attack shares the same attack objective as ours: to force
an RL agent to acquire a target policy designed by the attacker. In
the adaptive reward-poisoning attack, the attacker is formulated
as an RL agent and uses TD3 [4] to train the attack strategy. The
attacker poisons the victim’s policy by manipulating its rewards
on-the-fly. There are two kinds of reward-poisoning methods pro-
posed in [27]. The first one, reward poisoning, regards the victim’s
transition and Q tabular < 𝑠, 𝑎, 𝑠 ′, 𝑟 ,𝑄 > as the input to the attacker.
The other one, reward poisoning + FAA, combines a fast adaptive
attack (FAA) algorithm into the reward poisoning. In reward poi-
soning + FAA, the target states are ranked in descending order by
their distance to the starting states, and are attacked individually
at each time. Furthermore, the attacker forces the victim to fix the
Q value 𝑄 [𝑠∗] once the target action is achieved in the target state
𝑠∗. As such, adaptive reward-poisoning attack controls the victim
agent’s learning algorithm, which limits its potential applications.
Instead, our env-poisoning attack strategy poisons the training en-
vironment to affect the victim’s learning process, without control
on the victim, leading to broader potential applications.
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Figure 5: Attack effectiveness against a range of RL agents

6.2 Experiment Results and Discussion
To avoid any confusion, we discuss the experiment results using
the Question-and-Answer format. Question 1 and 2 address the
performance comparison with the state-of-the-art training-time
attack methods. In Question 3 and 4, we show the transferability
of the env-poisoning attack strategy for victim agents. Lastly, in
Question 5, the effectiveness of env-poisoning attack in black-box
settings is discussed in detail.

6.2.1 White-box Attack Settings. Under the white-box attack set-
tings, the victim’s learning algorithm and policy representation are
known to the attacker.

Question.1: How is the performance of Env-Poisoning Attack in
comparison with Reward-Poisoning Attack?
The attack success rate during the victim’s learning process is
shown in Figure 4. The env-poisoning strategy shows a better at-
tack success rate in both 3D grid word and 2-Goal grid world. In
Figure 4a, we observe a fast increasing attack success rate during
the victim’s learning progress comparing with reward poisoning
and reward poisoning + FFA. When the victim’s learning process
finishes, our env-poisoning strategy shows 95% attack success rate
comparing with 85% reward poisoning + FFA and 40% reward poison-
ing. For the 2-Goal grid world, our env-poisoning strategy achieves
94% attack success rate, better than the reward poisoning + FFA and
reward poisoning. Note that env-poisoning attack will not control
the victim’s learning way, leading to more practical applications in
real world.

Question.2: Is the Bi-level Env-Poisoning Attack framework effec-
tive for various RL agents?
Existing works on training-time attacks are mostly designed for a
specific RL algorithm, such as batch RL [12] and Q learning [27]. To
show that the env-poisoning attack is not constrained by types of
victim’s learning algorithms, we present the attack results against
RL agents with three learning algorithms respectively: Q-learning,
Sarsa and MC. As shown in Figure 5, we observe that all the attacks
achieve about 100% success rate within 2000 timesteps in the vic-
tim’s learning process. It indicates the proposed attack is general
to RL agents without limitation on victim’s learning algorithms.

6.2.2 Black-box Attack Settings. Under the black-box attack set-
tings, the victim’s learning algorithm and policy representation are
unknown to the attacker.

Question.3: Is the Env-Poisoning Attack strategy transferable
among various RL agents?
In Section 5.2, we propose that the env-poisoning attack can be
transferred from white-box settings to black-box settings. Here,
we evaluate this idea under the first black-box setting without
leaking the victim’s learning algorithm to the attacker. When train-
ing attack strategies, we develop three white-box proxy agents:
Q-learning, Sarsa and MC. There are three attack strategies learned
under these proxy agents, respectively. The strategies are then
transferred to attack victims with arbitrary learning algorithms.
Figure 6 shows performance of each attack strategy on different
victims. Overall, we observe that the attack strategy trained on a
white-box proxy agent is effective for attacking a victim agent with
a different learning algorithm. All these strategies achieve more
than 80% attack success rate within 3000 time steps. This shows
that env-poisoning attack strategies are successfully transferable
among RL agents which adopt different learning algorithms. Thus,
due to the transferability, our proposed that attack can be applicable
to the black-box setting where the victim’s learning algorithm is
unknown.

Question.4: How does the proxy agent affect the transferability
of the Env-Poisoning Attack strategy?
When comparing each plot in Figure 6, we observe that these three
attack strategies vary in attack performance. Specifically, the strat-
egy trained on the Q-learning proxy agent (as in Figure 6a) performs
slightly better than the one trained on Sarsa (as in Figure 6b), while
it is much better than the strategy trained on MC (as in Figure 6c).
These results suggest that the type of the proxy agent has effect on
the transferable performance of the env-poisoning attack strategy.

So, the question is what kind of learning algorithm should be
chosen for proxy agents? Here, MC is a on-policy experience-based
learning algorithm whereas Sarsa and Q-learning are on-policy
and off-policy temporal-difference algorithms, respectively. Based
on the characteristics of each learning algorithm, the difference of
transferable performance is due, in part, to the exploration level
of proxy agents. In on-policy MC, the policy is determined by
experienced trajectories; while in off-policy Q-learning, the agents
use 𝜖-greedy action selection that causes more uncertainty of the
policy and leads to more exploration in the training environment.
Therefore, we should choose a proxy agent which performs enough
exploration when training a transferable attack strategy.

Question.5: Can the proposed Env-Poisoning method effectively
attack a black-box RL agent at training time?
The attacker has no prior information about the victim’s learning
algorithm and policy representations under the black-box setting.
As such, there are two challenges: designing a training-time at-
tack strategy and poisoning the environment in response to the
victim’s policy. In this experiment, we still use a white-box proxy
agent to learn a transferable attack strategy, and furthermore adopt
a policy modeling approach to infer the victim’s policy features
from trajectories < 𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑎𝑡+1, ..., 𝑠𝑡+𝑁 , 𝑎𝑡+𝑁 >. Here, the pol-
icy features are learned using an encoder-decoder network, and
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(a) Trained on Q-learning proxy agent (b) Trained on Sarsa proxy agent (c) Trained on MC proxy agent

Figure 6: Transferability of the environment-poisoning attacks: proxy-agent and the attacked RL explicitly differ.

Table 1: Architecture of Encoder-Decoder network used for
representing policy. ReLU and Layer normalization is ap-
plied after each layer except the last one.

Encoder Decoder

Type Input Dim. Output Dim. Input Dim. Output Dim.
Linear 20 36 6 36
Linear 36 36 36 36
Linear 36 5 36 1

(a) Black-box attack

(b) White-box attack

Figure 7: Effectiveness of environment-poisoning attack
on black-box agents whose learning algorithm and policy
model is unknown.

network configuration is shown in Table 1. The attack strategy
is trained using a Q-learning proxy agent and then transferred to
attack two black-box victims. To emphasize the transferability, we
set the victims using different learning algorithms, Sarsa and MC.
As Figure 7 shows, the transferable env-poisoning attack strategy
is successful in enforcing desired actions in target states. Its final
attack performance is as good as the white-box attack while its
success rate grows slowly. This is partly because the attacker needs
time to collect the victim’s trajectory data and accordingly infers its
policy features. This result shows that our proposed method effec-
tively attack an RL agent whose private information (i.e., learning
algorithm and policy model) is totally unknown.

7 CONCLUSION
In this work, we present a bi-level environment-poisoning attack
framework for an RL agent at training time. The attacker exercises
influence on a victim agent’s learning experience via manipulat-
ing its environment dynamics. The objective of the attacker is to
stealthily force the agent to learn a target policy with minimized
environment changes. We evaluate the environment-poisoning at-
tack in both white-box and black-box settings. We demonstrate
transferability of poisoned training environments, and show that
attack strategies can be trained using a white-box proxy agent and
transferred to poison a black-box victim’s policy. Then, we analyze
how the proxy agent affects the transferable attack strategy, and
conclude that more exploration by the proxy agent can lead to a
strategy with better transferability. Furthermore, we combine gen-
erative policy representation with environment-poisoning attacks,
and demonstrate our work is effective for attacking a black-box RL
agent.

This work automatically generates an adaptive attack on training
environments for an RL algorithm, thus can serve as a baseline to
evaluate the robustness capabilities of that RL algorithm. While it
yields promising results, the experiment domain used here is quite
simplistic. The investigation of more sophisticated environments, in
which the environment transition-dynamics function is unknown
by the attacker, is a topic for on-going research.
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