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ABSTRACT
This paper presents new algorithms and theoretical results for so-

lutions to Multi-action Multi-armed Restless Bandits, an important

but insufficiently studied generalization of traditional Multi-armed

Restless Bandits (MARBs). Though MARBs are popular for model-

ing many problems, they are restricted to binary actions, i.e., "to act

or not to act". This renders them unable to capture critical complexi-

ties faced by planners in real domains, such as a systemmanager bal-

ancing maintenance, repair, and job scheduling, or a health worker

deciding among treatments for a given patient. Limited previous

work on Multi-action MARBs has only been specialized to sub-

problems. Here we derive multiple algorithms for use on general

Multi-action MARBs using Lagrangian relaxation techniques, lead-

ing to the following contributions: (i) We develop BLam, a bound op-

timization algorithm which leverages problem convexity to quickly

and provably converge to the well-performing Lagrange policy; (ii)

We develop SampleLam, a fast sampling technique for estimating

the Lagrange policy, and derive a concentration bound to investi-

gate its convergence properties; (iii) We derive best and worst case

computational complexities for our algorithms as well as our main

competitor; (iv) We provide experimental results comparing our

algorithms to baselines on simulated distributions, including one

motivated by a real-world community health intervention task. Our

approach achieves significant, up to ten-fold speedups over more

general methods without sacrificing performance and is widely

applicable across general Multi-action MARBs. Code is available at

https://github.com/killian-34/MAMARB-Lagrange-Policies.
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1 INTRODUCTION
MARBs, the state-based generalization of classic Multi-Armed Ban-

dits [30], have been studied extensively for solving a diverse set of

problems including machine replacement [10, 29], sensing and wire-

less network scheduling [2, 3, 7, 22, 37], job scheduling [13, 34, 35]
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Figure 1: Multi-action MARB: one planner, many stateful
agents, daily budget, many actions with varied costs/effects.

anti-poaching patrol scheduling [28], and healthcare [5, 17, 19].

In classic Multi-Armed Bandits, a planner must select 𝑘 out of 𝑁

arms on which to act for each of 𝐿 rounds in a way that maximizes

reward produced by the arms. In MARBs, additional complexity is

introduced in that the reward on each arm depends on the action as

well as an internal state that evolves according to an independent

two-action Markov Decision Process (MDP). It has been shown that

this problem is, in general, PSPACE-hard to solve exactly [26], but

highly effective heuristics are known to exist [4, 33].

However, a critical limitation of MARB frameworks is they only

allow for 2 actions: act or not act. This is restrictive for many real-

world cases where planners have various actions at their disposal

with varying degrees of cost and effect. For example, a system man-

ager may need to balance preventative maintenance, full repair, and

job scheduling each with different costs and effects on throughput

[6]. In anti-poaching, the planner could allocate different levels of

patrol effort to different targets, where more effort has higher cost

and higher deterrent effect on poachers [23]. In public health, a

community health worker could have several options for interven-

ing with a patient, such as calling, visiting in person, or escalating

patients to a more intense treatment [25]. Traditional MARBs sim-

ply cannot model these complexities, restricting planners to a world

where their only choices are to, e.g., call or not call. Rather, the

planner needs to simultaneously optimize the use of all of the tools

in their toolbelt each day, subject to a per-day time or cost budget

𝐵. This process is visualized in Fig. 1.

To model such problems, we consider an under-examined gener-

alization of MARBs that allow for multiple action types per arm,

which we call Multi-Action MARBs ((MA)
2
RBs). Previous work has

considered extending the classical MARB notion of indexability and
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corresponding index policies to (MA)
2
RBs [9]. In both traditional

and Multi-action MARBs, index policies are desirable because: (1)

they decompose the problem in a manner that scales well and (2)

when indexability holds, they are asymptotically optimal [14, 32].

However, both deriving index policies and verifying indexability is

notoriously difficult, and largely requires special problem structure

[9, 10]. Our goal is thus to develop fast, well-performing policies

for a broader class of (MA)
2
RBs where no structure is assumed and

indexability cannot be readily verified. We bypass the task of deriv-

ing index policies by taking a more general Lagrangian relaxation

approach that leads to an auxiliary problem of computing a policy

that minimizes the Lagrange bound. Computing this “Lagrange

policy” is desirable because it recovers the index policies when they

exist, but is readily computable regardless of problem structure.
1

The Weakly Coupled MDP (WCMDP) literature offers a method

to compute the Lagrange policy for WCMDPs. Here, we recognize

WCMDPs as a generalization of (MA)
2
RBs and identify that this

approach can be used to compute the Lagrange policy for (MA)
2
RBs.

However, the approach relies on solving a large linear program (LP)

that scales quadratically in the number of arms and states. Setting

up and solving this LP quickly becomes infeasible for large problem

sizes as we show later in experiments. To address this issue, we in-

vestigate and utilize basic structural properties of general (MA)
2
RBs

to create scalable algorithms for computing the Lagrange policy on

any (MA)
2
RB problem, leading to the following contributions:

(i) Bound optimization algorithm:We develop BLam, an itera-

tive bound optimization method for computing the Lagrange policy.

BLam leverages problem convexity to derive progressively tighter

upper and lower bounds on the Lagrange policy via a series of small

LPs. We provide key technical results that prove this method con-

verges to the policy that minimizes the Lagrange bound and provide

experimental evaluation of its runtime on various distributions.

(ii) Sampling algorithm:We develop a sampling-based algorithm,

SampleLam, which trades off the guarantees of BLam for speed.

SampleLam chooses a random subset of arms, rapidly computes

a statistic about the desirability of allocating budget to each arm,

then combines the statistics to construct an estimated Lagrange

policy for the full problem. We derive a concentration bound to

prove the method converges, then use insights from the bound to

inform how the algorithm carries out sampling.

(iii) Complexity Results:We derive best and worst case computa-

tional complexities for our methods as well as our main competitor.

Our exact algorithm, BLam, achieves ≈
√
𝑁 improvement and Sam-

pleLam achieves a factor of 𝑁 improvement in the best case;

(iv) Experimental evaluation: We compare our algorithms to

baselines on synthetic distributions with different underlying struc-

ture, including one motivated by a real-world public health chal-

lenge. Our algorithms scale up to ten times better than a more

general baseline without sacrificing performance, and readily adapt

to each problem with minimal tuning. Thus our work newly makes

available multiple avenues for computing well-performing policies

on new (MA)
2
RBs at scale, without the need for the user to first

arduously derive a problem-specific index policy.

1
Please see the online appendix for additional discussion https://teamcore.seas.harvard.

edu/files/teamcore/files/multi_action_bandits_appendix.pdf

2 RELATEDWORK
Previous work extends the traditional MARB notion of indexabil-

ity to (MA)
2
RBs [9, 14]. However, their analysis is restricted to a

subclass of (MA)
2
RBs with special monotonic structure, whereas

we build algorithms for general (MA)
2
RBs. “Superprocesses” are

an alternative multi-action extension where a primary planner dis-

tributes a limited set of sub-planners who act on arms without

constraint [18, 31, 36]. This structure does not generally apply to

(MA)
2
RBs since they do not constrain the number of agents that

can be acted on each round. Very recent work [20] designs a Monte-

Carlo rollout approach for estimating traditional and multi-action

MARB policies when a restricted set of “threshold” policies are

optimal, but our algorithms do not assume this structure.

Also related are WCMDPs in which a planner operates N inde-

pendent MDPs subject to a set of arbitrary constraints over actions.

[21] derive methods for handling “global” resource constraints over

all rounds, whereas we address round-by-round constraints. [12],

the main baseline we compare against, derive a Lagrangian re-

laxation on the general form of a WCMDP and give an LP for

minimizing the Lagrange bound. In contrast, we leverage the single

constraint nature of (MA)
2
RBs to greatly speed up the computation

of the Lagrange bound compared to [12]. [1] give an approximate

dynamic programming method that achieves a tighter bound and

better performing policies than the Lagrange approach toWCMDPs.

However, it scales exponentially, restricting it to small problem sizes.

[11] develop a Lagrange approach for solving WCMDPs with MDPs

that grow exponentially in problem parameters, restricting them to

approximation techniques. In contrast, we develop a method that

exactly computes the Lagrange policy.

Finally, our work is related to a large body of work developing

Lagrangian methods for solving traditional MARBs [4, 10, 24, 33].

We generalize these settings to allow for multiple actions. Moreover,

the methods we develop here reduce in the binary action case to

the widely-used, well-performing, Whittle index policy [10, 33].

3 PRELIMINARIES
A (MA)

2
RB consists of a set of 𝑁 arms, each associated with a

Markov Decision Process (MDP) [27]. An MDP {S,A, 𝑟 ,𝑇 , 𝛽} con-
sists of a set of states S, a set of actions A, a state-dependent

bounded reward function 𝑟 : S → R, a transition function𝑇 , where

𝑇 (𝑠, 𝑎, 𝑠 ′) gives the probability of transitioning to state 𝑠 ′ when
action 𝑎 is taken from state 𝑠 , and a discount factor 𝛽 ∈ [0, 1). An
MDP policy 𝜋 : S → A maps states to actions. The long-term

discounted reward starting from state 𝑠0 = 𝑠 is defined as

𝑅𝜋
𝛽
(𝑠) = 𝐸

[ ∞∑
𝑡=0

𝛽𝑡𝑟 (𝑠𝑡+1 ∼ 𝑇 (𝑠𝑡 , 𝜋 (𝑠𝑡 ), 𝑠 ′𝑡 )) |𝜋, 𝑠0 = 𝑠
]

(1)

Each arm 𝑖 in a (MA)
2
RB is an MDP with an action setA𝑖

of size

𝑀𝑖
and corresponding action cost vector 𝑪𝑖 ∈ R𝑀𝑖

. We assume

all action sets and costs are the same for all arms (and henceforth

drop the subscript 𝑖), but all techniques in this paper extend in a

straightforward manner to general action sets and costs. Without

loss of generality, we assume that the elements 𝑐 𝑗 of 𝑪 are ordered

ascending. Also, to align with the standard bandit assumption that

an arm can be “not played” at no cost, we set 𝑐0 = 0. Each round,

the planner must select one action for each of the 𝑁 arms such
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that the sum cost of all actions do not exceed a budget 𝐵. Formally,

the planner must choose a decision matrix 𝑿 ∈ {0, 1}𝑁×𝑀
with

elements denoted 𝑥𝑖, 𝑗 such that

𝑀−1∑
𝑗=0

𝑥𝑖, 𝑗 = 1 ∀𝑖 ∈ 0...𝑁 − 1

𝑁−1∑
𝑖=0

𝑀−1∑
𝑗=0

𝑥𝑖, 𝑗𝑐 𝑗 ≤ 𝐵 (2)

where the first constraint enforces one action per arm and the

second enforces the budget. The planner’s goal is to maximize

their discounted reward across the arms over time, subject to these

constraints. Let 𝒔 = [𝑠0, 𝑠1, ..., 𝑠𝑁−1] represent the vector of all

arm states. The planner’s goal can be represented by the following

constrained Bellman equation

𝐽 (𝒔) = max

𝑿
{
𝑁−1∑
𝑖=0

𝑟 𝑖 (𝑠𝑖 ) + 𝛽𝐸 [𝐽 (𝒔 ′) |𝒔,𝑿 ] |
𝑁−1∑
𝑖=0

𝑀−1∑
𝑗=0

𝑥𝑖, 𝑗𝑐 𝑗 ≤ 𝐵} (3)

While Eq. 3 could be solved directly via value iteration, 𝐽 (𝑠) ∈ S𝑁 ,

and the number of feasible actions over which to take the max for

each 𝐽 (𝒔) is also exponential in 𝑁 , making this approach intractable

for non-trivial problem sizes. The key insight, though, is that the

value functions and actions are only coupled due to the shared

budget constraint over all arms. Therefore to simplify the problem,

we relax the budget constraint and add it as a penalty to the objective

with a Lagrange multiplier 𝜆 as follows:

𝐽 (𝒔, 𝜆) =

max

𝑿
{
𝑁−1∑
𝑖=0

𝑟 𝑖 (𝑠𝑖 ) + 𝜆(𝐵 −
𝑁−1∑
𝑖=0

𝑀−1∑
𝑗=0

𝑥𝑖, 𝑗𝑐 𝑗 ) + 𝛽𝐸 [𝐽 (𝒔 ′) |𝒔,𝑿 ]}
(4)

The value functions then decouple as desired, giving:

𝐽 (𝒔, 𝜆) = 𝜆𝐵

1 − 𝛽 +
𝑁−1∑
𝑖=0

𝑉 𝑖 (𝑠𝑖 , 𝜆), where ∀𝑖, (5)

𝑉 𝑖 (𝑠𝑖 , 𝜆) = max

𝑎𝑖
𝑗
∈A

{𝑟 𝑖 (𝑠𝑖 ) − 𝜆𝑐 𝑗 + 𝛽
∑
𝑠𝑖′
𝑇 (𝑠𝑖 , 𝑎𝑖𝑗 , 𝑠

𝑖 ′)𝑉 𝑖 (𝑠𝑖 ′, 𝜆)}

(6)

See [1] for a complete proof. Notice that for a given value of 𝜆, Eq.

5 can be solved using a fast method like value iteration to solve

for the individual 𝑉 𝑖s, where 𝑉 𝑖 and its corresponding actions are

now in S and A, respectively. However, the choice of 𝜆 will be

critical when using the resulting value functions to derive policies

for our bandits. For instance, 𝜆 = 0 would correspond to ignoring

the budget constraint while planning which clearly will not be

optimal in general. Alternatively, as 𝜆 → ∞, the optimal policy

in each value function is to never act since all actions will have

effectively infinite cost except for 𝑐0 = 0. To gain insight about how

to set the value of 𝜆 we recast the problem as an LP, rewriting Eq.

5 by leveraging the known LP solution to the value function [27]:

𝐽 (𝒔, 𝜆) = min

𝑉 𝑖 (𝑠𝑖 ,𝜆),𝜆

𝜆𝐵

1 − 𝛽 +
𝑁−1∑
𝑖=0

𝜇𝑖 (𝑠𝑖 )𝑉 𝑖 (𝑠𝑖 , 𝜆)

s.t. 𝑉 𝑖 (𝑠𝑖 , 𝜆) ≥ 𝑟 𝑖 (𝑠𝑖 ) − 𝜆𝑐 𝑗 + 𝛽
∑
𝑠𝑖′
𝑇 (𝑠𝑖 , 𝑎𝑖𝑗 , 𝑠

𝑖 ′)𝑉 𝑖 (𝑠𝑖 ′, 𝜆)

∀𝑖 ∈ {0, ..., 𝑁 − 1}, ∀𝑠𝑖 ∈ S, ∀𝑎 𝑗 ∈ A, and 𝜆 ≥ 0

(7)

Where 𝜇𝑖 (𝑠𝑖 ) = 1 if 𝑠𝑖 is the start state for arm 𝑖 and is 0 otherwise.

That we minimize over 𝜆 and that 𝜆 ≥ 0 is a classic Lagrangian

result, motivated by making 𝐽 (𝒔, 𝜆) a tight-as-possible upper bound
on 𝐽 (𝒔). Intuitively, and matching how problem-specific index poli-

cies have been derived in previous work [9, 33], we want to derive a

policy from the𝑉 𝑖s that provide the tightest bound on 𝐽 (𝑠). So that
our algorithms can generally apply to any (MA)

2
RB, our approaches

will solve Eq. 7 in its general form.

The above derivation was first given by [12] for WCMDPs, and

as suggested therein, clearly one can directly solve Eq. 7 using

any LP solver. However, Eq. 7 has 𝑁 |S| + 1 variables and 𝑁 |S| |A|
constraints. Further, the current lowest known computational com-

plexity for solving an LP is O(𝑛2+
1

18 ), where 𝑛 is the number of

variables [15], implying that directly solving Eq. 7 has computa-

tional complexity ≈ O(𝑁 2 |𝑆 |2) (derived in section 4). The key to

our approach will be separating the computation of the 𝜆 that mini-

mizes Eq. 7, henceforth 𝜆𝑚𝑖𝑛 , and the corresponding 𝑉 𝑖s that solve

Eq. 7 in a way that provides vast speedups. Herein we derive exact

and heuristic methods for computing 𝜆𝑚𝑖𝑛 , each of which has an

improved best case complexity in 𝑁 by a factor of

√
𝑁 or better.

4 BOUND OPTIMIZATIONWITH BLAM
BLam is our exact approach to computing the Lagrange policy.

We first give an overview, noting theorems where relevant that

are derived in the next section. The main idea is rooted in the

form of the functions 𝑉 𝑖 (𝑠𝑖 , 𝜆) in Eq. 7, visualized in blue in Fig. 2.

To exactly compute Eq. 7 requires adding |S| |A| constraints and
|S| variables to the LP for each of the 𝑁 arms’ value functions

𝑉 𝑖 (𝑠𝑖 , 𝜆). Instead, we will build special approximations to each

𝑉 𝑖 (𝑠𝑖 , 𝜆) that are represented in the LP each with just one variable

and a constant number of constraints, achieving vast speedups. The

approximations are constructed by rapidly testing for the slope

of 𝑉 𝑖 (𝑠𝑖 , 𝜆) at various test points 𝜆𝑡𝑒𝑠𝑡 using value iteration, then
creating a piecewise linear combination of the slopes. The key is

we construct two special types of approximations: one that upper

bounds the slope of 𝑉 𝑖 (𝑠𝑖 , 𝜆) and one that lower bounds it, shown

in Fig. 2 in green and red, respectively.

We then use the insight that the 𝑉 𝑖 (𝑠𝑖 , 𝜆) in Eq. 7, are indeed

convex decreasing functions of 𝜆 (Prop. 4.1), implying that Eq. 7 is

minimized when the combined per-unit decrease to the objective
brought by the convex 𝑉 𝑖 (𝑠𝑖 , 𝜆) functions is equal to or less than

the constant per-unit increase to the objective brought by
𝜆𝐵
1−𝛽 . In

other words, 𝜆𝑚𝑖𝑛 is the point where the negative sum of slopes

of 𝑉 𝑖 (𝑠𝑖 , 𝜆) is equal to 𝐵
1−𝛽 (Prop. 4.2). Crucially, if we replace any

𝑉 𝑖 (𝑠𝑖 , 𝜆) with a convex function with strictly more negative slope

(i.e., a lower bound), the value of 𝜆 at which the negative sum of

slopes equals
𝐵

1−𝛽 could only increase, giving an upper bound on

𝜆𝑚𝑖𝑛 . The converse also holds, i.e., replacing with upper bound

convex functions gives a lower bound on 𝜆𝑚𝑖𝑛 (Thm. 4.3). This

constitutes the core tradeoff in our approach: the more𝑉 𝑖 (𝑠𝑖 , 𝜆) are
replaced with approximations in the LP, the faster it will execute,

but the looser the bounds will be. We handle this by first “bounding

out”, i.e., replacing 𝑉 𝑖 (𝑠𝑖 , 𝜆) with its approximation, all but a small

number 𝐾 processes to get loose bounds on 𝜆𝑚𝑖𝑛 rapidly. We then

iteratively add back 𝑉 𝑖 (𝑠𝑖 , 𝜆)s to the LP until the bounds on 𝜆𝑚𝑖𝑛
are with a pre-specified 𝜖 . With minimal tuning, the test points can
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Algorithm 1: BLamPrecompute

Data: 𝑇, 𝑅,𝐶, 𝑁 ,𝐺, 𝛽
1 D = [] ; // hold slopes at each arm test point

2 𝜖0 = 1e-3;

3 for 𝑖 = 1, ..., 𝑁 do
4 for 𝑗 = 1, ..., |𝐺 [𝑖] | do
5 𝜆𝑡𝑒𝑠𝑡 = 𝐺 [𝑖, 𝑗];
6 𝑅𝜆, 𝑅𝜆+𝜖0 = 𝑅 [𝑖];
7 for 𝑥 ∈ 1, ..., |𝐶 | do subtract action costs

8 𝑅𝜆 [𝑥] −= 𝜆𝑡𝑒𝑠𝑡 ∗𝐶 [𝑥];
9 𝑅𝜆+𝜖0 [𝑥] −= (𝜆𝑡𝑒𝑠𝑡 + 𝜖0) ∗𝐶 [𝑥];

10 D[𝑖, 𝑗] = (VI(𝑇 [𝑖], 𝑅𝜆+𝜖0 , 𝛽) - VI(𝑇 [𝑖], 𝑅𝜆, 𝛽))/𝜖0
11 U, L = BuildBounds(D);

12 return U, L

be set to create tight enough bounds that BLam will converge after

only a small number of iterations, leading to great speed increases.

The algorithm proceeds in two parts. InBLamPrecompute, given

in Alg. 1, we compute the upper and lower bound approximations

of of the arms, passing in the MDP parameters of the arms, along

with a list 𝐺 of points 𝜆𝑡𝑒𝑠𝑡 at which to approximate the slopes. VI

in Alg. 1 denotes value iteration andU/L will contain the pieces of

the piecewise upper and lower bounds for𝑉 𝑖 (𝑠𝑖 , 𝜆) for all arms and

states. BLamPrecompute runs once at the beginning of simulation.

BLam, given in Alg. 2, runs on each round of the (MA)
2
RB to

compute 𝜆𝑚𝑖𝑛 for the current set of arm states 𝒔 (line 2 of Alg. 2
selects the bounding functions for the current state of each arm).

Using the piecewise bounded versions of 𝑉 𝑖 (𝑠𝑖 , 𝜆), it constructs a
special LP, BLamLP, given in Eq.8 below, that produces upper and

lower bounds on 𝜆𝑚𝑖𝑛 by replacing 𝑉 𝑖 (𝑠𝑖 , 𝜆) with their bounded

counterparts. It loops, replacing successively more 𝑉 𝑖 (𝑠𝑖 , 𝜆) in lieu

of their bounded forms, until the resulting bounds on 𝜆𝑚𝑖𝑛 are

within 𝜖 . BLam terminates by running one final value iteration

with the appropriate 𝜆𝑚𝑖𝑛 , the result of which solves Eq. 7 without
constructing or solving the full LP, leading to vast speed ups. The
resulting value functions will be used to construct a final policy in

section 6.

4.1 BLam: Derivation
To bound the slope of𝑉 𝑖 (𝑠𝑖 , 𝜆), we rely on it having a convex form.

Proposition 4.1. 𝑉 𝑖 (𝑠𝑖 , 𝜆) is convex decreasing in 𝜆, and as 𝜆 →
∞, 𝑑𝑉

𝑖 (𝑠𝑖 ,𝜆)
𝑑𝜆

→ 0

Proof. This follows directly from Eq. 6, but can be shown via

induction that since𝑉 𝑖 (𝑠𝑖 , 𝜆) is a max over piecewise linear convex

functions of 𝜆, it is also piecewise linear convex, and since 𝜆𝑐 𝑗 ≥ 0,

it must be weakly decreasing in 𝜆. Furthermore, since 𝑐0 = 0 in

(MA)
2
RBs, as 𝜆 → ∞, the one time charge 𝜆𝑐 𝑗 of any action 𝑎 𝑗

s.t. 𝑗 > 0 becomes greater than any long-term achievable reward,

therefore the optimal policy must always choose not to act. At

that point, 𝑉 𝑖 (𝑠𝑖 , 𝜆) = 𝐸 [∑∞
𝑡=0 𝛽

𝑡𝑟 (𝑠) |𝜋 (𝑎) = 0,∀𝑎] which does not

depend on 𝜆. □

Let 𝜆𝑢 (𝜆ℓ ) correspond to the 𝜆 which solves Eq. 7 when𝑉 𝑖 (𝑠𝑖 , 𝜆)
are replaced in the objective by L (U). Note that the lower bound

Algorithm 2: BLam
Data: 𝑇, 𝑅,𝐶, 𝑁 , 𝐵, 𝛽 , 𝑠 , 𝐺 ,U, L, 𝜖 , kStep

1 /* Only need bounds for current arm states */

2 GetCoeffsForState(U, L, 𝑠);

3 Sort(U, L, 𝑇 , 𝑅);

4 st = PickStart(L,
√
𝑁 );

5 for 𝑘 ∈ [st, st+kStep, ..., 𝑁 ] do
6 𝜆𝑢 = BLamLP(𝑇 [:𝑘], 𝑅 [:𝑘], 𝐵,𝐶, 𝛽, 𝑠,L);
7 𝜆ℓ = BLamLP(𝑇 [:𝑘], 𝑅 [:𝑘], 𝐵,𝐶, 𝛽, 𝑠,U);
8 if 𝜆𝑢 − 𝜆ℓ ≤ 𝜖 then break ;

9 𝑉 (𝑖, 𝑠) = [] // 𝑁𝑥 |S| array to hold value functions

10 𝜆𝑚𝑖𝑛 = (𝜆𝑢 − 𝜆ℓ )/2;
11 for 𝑖 = 1, ..., 𝑁 do
12 𝑅𝜆 = 𝑅 [𝑖];
13 for 𝑥 ∈ 1, ..., |𝐶 | do subtract action costs

14 𝑅𝜆 [𝑥] −= 𝜆𝑚𝑖𝑛 ∗𝐶 [𝑥];
15 𝑉 [𝑖] =VI(𝑇 [𝑖], 𝑅𝜆, 𝛽);
16 return V

𝜆

V1(s, 𝜆)

Test point LB UB Actual

𝜆

V2(s, 𝜆)

Figure 2: Constructing bounds on the slope of 𝑉 𝑖 (𝑠𝑖 , 𝜆) for
two different arms with three test points. Note: bounds are
with respect to the slope, not the value of the function.

functions L will be used to derive upper bounds on the value of

𝜆𝑚𝑖𝑛 and vice versa.

Next, we give a helpful intermediate result.

Proposition 4.2. The optimal solution to Eq. 7 will be found at
the value of 𝜆 in which the negative sums of the slopes of 𝑉 𝑖 (𝑠𝑖 , 𝜆)
w.r.t. 𝜆 become less than or equal to 𝐵

1−𝛽 .

Proof. Assume 𝜆∗ corresponds to an optimal solution to Eq. 7

and the negative sums of the slopes of convex decreasing 𝑉 𝑖 (𝑠𝑖 , 𝜆)
are greater than

𝐵
1−𝛽 . Then 𝜆

∗
can be increased by 𝜖 and the ob-

jective value would decrease, i.e., 𝐽 (𝒔, 𝜆∗ + 𝜖) < 𝐽 (𝒔, 𝜆∗) giving a

contradiction. □

We now can prove our main result:

Theorem 4.3. 𝜆ℓ ≤ 𝜆𝑚𝑖𝑛 ≤ 𝜆𝑢

Proof. The proof is best seen by considering 𝜆𝑚𝑖𝑛 which solves

𝐽 (𝒔, 𝜆), i.e., Eq. 7. We start with 𝜆𝑚𝑖𝑛 ≤ 𝜆𝑢 : LetV denote the set of

𝑉 𝑖 (𝑠𝑖 , 𝜆) in the objective of Eq. 7. Further, let V𝑏
denote the set of

𝑉 𝑖 (𝑠𝑖 , 𝜆) which will be replaced by L𝑏 ⊂ L. Now replace all V𝑏

with their corresponding L𝑏 , name this new LP 𝐽𝜆𝑢 (𝒔, 𝜆) and name

its optimal solution 𝜆𝑢 . By definition, at all values of 𝜆, the slope of
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𝑉 𝑖 (𝑠𝑖 , 𝜆) is greater than the slope of L𝑏 . Thus, at 𝜆𝑚𝑖𝑛 , the negative
sums of the slopes of 𝑉 𝑖 ∈ V\V𝑏

plus L𝑏 is weakly greater than

the negative sums of the slopes of 𝑉 𝑖 ∈ V . By Prop. 4.2, we must

have that 𝐽𝜆𝑢 (𝒔, 𝜆) ≤ 𝐽 (𝒔, 𝜆), and respectively 𝜆𝑢 ≥ 𝜆𝑚𝑖𝑛 .

𝜆𝑚𝑖𝑛 ≥ 𝜆𝑙 : The proof follows similarly. □

We now describe a quick method for computing U and L. To

construct these piecewise linear convex functions that will serve as

the bounds, wemake use of the insight that the slope of𝑉 𝑖 (𝑠𝑖 , 𝜆) can
be rapidly computed at any test point 𝜆𝑡𝑒𝑠𝑡 by calculating (𝑉 𝑖 (𝑠𝑖 , 𝜆 =

𝜆𝑡𝑒𝑠𝑡 + 𝜖0) − 𝑉 𝑖 (𝑠𝑖 , 𝜆 = 𝜆𝑡𝑒𝑠𝑡 ))/𝜖0 where both 𝑉 𝑖 (𝑠𝑖 , 𝜆)𝑠 can be

quickly computed via value iteration and 𝜖0 ≈ 0. Let 𝐺𝑖 represent

the set of test points for a given arm. The larger 𝐺𝑖 , the tighter the

bounds will be, but the higher the up-front computational cost. Thus

the choice of both the size and the exact elements of𝐺𝑖 represent a

set of parameters that can be tuned to maximize performance on a

given distribution of 𝑉 𝑖s. However, at minimum, 𝐺𝑖 must include

𝜆𝑡𝑒𝑠𝑡 = 0 since proposition 4.1 implies that the minimum slope

of any 𝑉 𝑖 occurs at 𝜆 = 0. Once the slope at all the test points

are computed, they are used to construct U and L via standard

linear equations—the exact process is recorded in Appendix 1. Let

U𝑖 (𝐺𝑖
𝑘
,𝑚) andU𝑖 (𝐺𝑖

𝑘
, 𝑏) be the slopes and intercepts, respectively,

for each piece𝑘 of the upper bounding functionU𝑖
for arm 𝑖 . Define

L𝑖 (𝐺𝑖
𝑘
, ∗) similarly.

Now, we can compute 𝜆𝑢 and 𝜆ℓ . To start, we choose 𝐾 arms to

include in Eq. 7 in their 𝑉 𝑖 (𝑠𝑖 , 𝜆) form, while the other 𝑁 −𝐾 arms

will be replaced by their bounded counterparts. To compute 𝜆𝑢 , we

replace the 𝑁 − 𝐾 arms with L to get the following LP:

𝐽𝜆𝑢 (𝒔, 𝜆) = min

𝑉 𝑖 ,𝜆,𝑧 𝑗

𝜆𝐵

1 − 𝛽 +
𝐾∑
𝑖=0

𝜇𝑖 (𝑠𝑖 )𝑉 𝑖 (𝑠𝑖 , 𝜆) +
𝑁−𝐾∑
𝑗

𝑧 𝑗

s.t. 𝑉 𝑖 (𝑠𝑖 , 𝜆) ≥ 𝑟 𝑖 (𝑠𝑖 ) − 𝜆𝑐 𝑗 + 𝛽
∑
𝑠𝑖′
𝑇 (𝑠𝑖 , 𝑎𝑖𝑗 , 𝑠

𝑖 ′)𝑉 𝑖 (𝑠𝑖 ′, 𝜆)

∀𝑖 ∈ {0, ..., 𝐾}, ∀𝑠𝑖 ∈ S, ∀𝑎 𝑗 ∈ A (8)

𝑧 𝑗 ≥ L 𝑗 (𝐺 𝑗
𝑘
,𝑚) ∗ 𝜆 + L 𝑗 (𝐺 𝑗

𝑘
, 𝑏)

∀𝑘 ∈ {0, ..., |𝐺 𝑗 |}, ∀𝑗 ∈ {0, ..., 𝑁 − 𝐾}
𝜆 ≥ 0

where 𝑧 𝑗 are auxiliary variables to represent the piecewise linear

convex functions L 𝑗
via the |𝐺 𝑗 | constraints on 𝑧 𝑗 . To compute 𝜆ℓ

we construct a similar LP using U𝑖 (𝐺𝑖
𝑘
, ∗).

One important choice is in selecting the first 𝐾 arms. Intuitively,

the best 𝑉 𝑖 (𝑠𝑖 , 𝜆) to include in Eq. 8 are those with the loosest

bounds. One proxy for looseness is the slope of the last segment,

i.e., the steeper the slope, the looser the bound, since we know the

slope of all 𝑉 𝑖 (𝑠𝑖 , 𝜆) go to 0 eventually (Prop. 4.1). Therefore, we

first sort arms in ascending order by this criteria (line 3 in Alg. 2).

To set 𝐾 , we note that Prop. 4.2 implies that the negative sum of

slopes of𝑉 𝑖 (𝑠𝑖 , 𝜆) andL𝑖 must be less than or equal to 𝐵/(1−𝛽) for
some value of 𝜆 to find a solution. Since L𝑖 are convex decreasing,
if the negative sum of slopes of all the trailing segments of L𝑖 are
greater than 𝐵/(1 − 𝛽), then the LP will be unbounded. Thus, to

guarantee the existence of a bounded solution, we set 𝐾 to pick the

first 𝐾 arms in slope sorted order, such that the negative sum of

slopes of all the trailing segments of L𝑖 is less than 𝐵/(1 − 𝛽). We

then set 𝐾 = max(𝐾,
√
𝑁 ) (line 4 Alg. 2).

Once 𝜆𝑢 and 𝜆ℓ are computed once, we iterate to include 𝐾𝑠𝑡𝑒𝑝
more arms in the LP such that 𝐾 += 𝐾𝑠𝑡𝑒𝑝 then repeat until the

algorithm converges to within a difference 𝜖 . A straightforward

induction argument shows that as 𝐾 grows (and the set of bounded

arms shrinks), the bounds become progressively tighter and are

guaranteed to be exact when 𝐾 = 𝑁 . Once 𝜆𝑚𝑖𝑛 is determined, we

use value iteration to rapidly solve Eq. 7, the result of which we

will use to derive feasible policies in Section 6.

4.2 BLam: Computational Complexity
In BLamPrecompute, BLam computesU𝑖 (𝐺𝑖

𝑘
, ∗) and L𝑖 (𝐺𝑖

𝑘
, ∗) for

all 𝑉 𝑖 (𝑠𝑖 , 𝜆), which requires two runs of value iteration for each

arm for each test point𝐺𝑖
𝑘
. Assuming all arms use the same number

of test points, states and actions, this scales as O(𝑁𝐺𝑖𝑉 𝐼 ( |S|, |A|))
where 𝑉 𝐼 () is the computational complexity of value iteration.

While an exact complexity of value iteration is elusive, it is known

to be much faster than the LP formulation [27]. Thus, its complexity

will be dominated by the LP solves that occur in BLam— the same

applies for the value iteration that runs at the end of BLam each

round.

To compute a policy for each round, BLam constructs Eq. 8 as

an LP which has 𝐾 |𝑆 | + (𝑁 −𝐾) variables, 𝐾 |𝑆 | |𝐴| constraints with
|𝑆 | terms, and (𝑁 −𝐾)𝐺𝑖 constraints with two terms. Although the

constraints associated with the (𝑁 − 𝐾) auxiliary variables only

have two non-zero coefficients, we conservatively assume that the

matrix for this LP is dense in order to adopt the best known LP

complexity result [15]. In the best case, BLam would provide tight

bounds on 𝜆𝑚𝑖𝑛 after just one iteration. So setting 𝐾 =
√
𝑁 and

assuming 𝐺𝑖 ≪ 𝑁 , the per-round complexity is

Ω(
√
𝑁 |𝑆 |2 |𝐴| + 𝑁 |𝑆 |2 + 𝑁

3

2 |𝑆 | + 𝑁 2) (9)

Where the first term is the LP setup time to add constraints (which

dominates the time to add variables) and the last three terms are the

LP solve complexity, which is approximately square in the number

of variables. Applying the same reasoning to the direct LP solve

approach, which has 𝑁 |𝑆 | variables and 𝑁 |𝑆 | |𝐴| constraints gives
the following best (and worst) case complexity

O(𝑁 |𝑆 |2 |𝐴| + 𝑁 2 |𝑆 |2) (10)

Thus, BLam has a strictly better best-case complexity in the problem
size. However, in the worst case, setting 𝐾𝑠𝑡𝑒𝑝 =

√
𝑁 , BLam would

require the full

√
𝑁 iterations to get a tight bound on 𝜆𝑚𝑖𝑛 . In

this case, the LP setup time would match the naive LP approach,

but successive solves would become more expensive. Using basic

summation, this gives a worst-case complexity of

O(𝑁 |𝑆 |2 |𝐴| + 𝑁
5

2 |𝑆 |2) (11)

Which, handily, is only

√
𝑁 worse than the naive approach. How-

ever, we will show in experiments that the typical run time and

scaling of BLam is much faster than the naive approach in practice.

5 SAMPLELAM
In some cases, especially very large problem sizes, speed can be

more critical than performance. Thus, next, we give an algorithm for
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Algorithm 3: SampleLam

Data: 𝑇, 𝑅,𝐶, 𝑁 , 𝐵, 𝛽 , 𝑟𝑚𝑎𝑥 , 𝑐𝑚𝑖𝑛
1 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 =

log(𝑁 )𝑟𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
;

2 inds = RandomChoice([1, ..., 𝑁 ], 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 );
3 T, R = T[inds], R[inds];

4 𝜆𝑖
𝑙𝑖𝑠𝑡

= [];
5 for 𝑖 = 1..., 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 do
6 𝜆𝑖 = QuickLP(𝑇 [𝑖], 𝑅 [𝑖], 𝐵

𝑁
,𝐶, 𝛽);

7 𝜆𝑖
𝑙𝑖𝑠𝑡

.append(𝜆𝑖 )

8 𝑉 (𝑖, 𝑠) = [] // 𝑁𝑥 |S| array to hold value functions

9 𝜆𝑚𝑖𝑛 =Mean(𝜆𝑖
𝑙𝑖𝑠𝑡

);

10 for 𝑖 = 1, ..., 𝑁 do
11 𝑅𝜆 = 𝑅 [𝑖];
12 for 𝑥 ∈ 1, ..., |𝐶 | do subtract action costs

13 𝑅𝜆 [𝑥] −= 𝜆𝑚𝑖𝑛 ∗𝐶 [𝑥];
14 𝑉 [𝑖] =VI(𝑇 [𝑖], 𝑅𝜆, 𝛽);
15 return V
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Figure 3: (a) 𝜆𝑖 is normally distributed about amean equal to
𝜆𝑚𝑖𝑛 (b) 𝜆𝑚𝑖𝑛 is determined by a select few "important" arms,
not equal to the sample mean. BLam is better suited for this
case.

quickly computing a heuristic estimate of 𝜆𝑚𝑖𝑛 based on sampling.

The approach is grounded in the mathematical interpretation of

𝜆𝑚𝑖𝑛 , i.e., that 𝜆𝑚𝑖𝑛 captures the willingness to violate the budget

𝐵 given all 𝑉 𝑖 processes. In this algorithm, we will estimate our

willingness to violate the budget for each arm individually given

equal shares of the budget, solving a series of singleton LPs, then

combine that knowledge to generate an estimate for 𝜆𝑚𝑖𝑛
The algorithm is given in Alg. 3. It first chooses 𝐾 processes at

random to run through QuickLP, which solves Eq. 7 with a single

arm and modified budget
𝐵
𝑁

giving a value 𝜆𝑖 that estimates the

value of playing that arm. It then creates an estimate of 𝜆𝑚𝑖𝑛 by

taking the sample mean of 𝜆𝑖 . Finally, it uses this estimate plus

value iteration to solve for Eq. 7, which again we will use to derive

feasible policies in section 6.

Although this method is not guaranteed to converge to the value

of 𝜆𝑚𝑖𝑛 , it is very fast, and works well in practice on distributions

which have an approximately normal distribution of budget across

arms under the true 𝜆𝑚𝑖𝑛 policy. An example of such a distribution

and the SampleLam estimate of 𝜆𝑚𝑖𝑛 is given in Fig. 3a.

5.1 SampleLam: Concentration Bound and
Complexity

To understand SampleLam’s convergence properties, i.e., conver-

gence to the sample mean of 𝜆𝑖 , we derive a concentration bound

below. The derivation first relies on showing that the distribution

of 𝜆𝑖s is sub-Gaussian.

Theorem 5.1. 𝜆𝑖 are 𝜎
2

𝑛 -sub-Gaussian with 𝜎2 = 1

4

(
𝑟𝑚𝑎𝑥

𝑐𝑚𝑖𝑛 (1−𝛽)

)
2

The proof involves showing 0 ≤ 𝜆𝑖 ≤ 𝑟𝑚𝑎𝑥

𝑐𝑚𝑖𝑛 (1−𝛽) and is given

in Appendix 2. We can now use sub-Gaussianness to derive a con-

centration bound relating the number of samples to a confidence

parameter 1 − 𝛿 on the estimate of the sample mean of 𝜆𝑖 .

Theorem 5.2. The number of samples 𝑛 needed to estimate the
sample mean of 𝜆𝑖 within an error 𝜖 and with confidence 1 − 𝛿 is
lower bounded as:

𝑛 ≥ 1

2𝜖2

(
𝑟𝑚𝑎𝑥

𝑐𝑚𝑖𝑛 (1 − 𝛽)

)
2

log

(
1

𝛿

)
(12)

The proof, given in Appendix 2, uses the Hoeffding bound and

Thm. 5.1. This bound gives the insight that the greater the reward

to cost ratio, the more samples we need to well-estimate the mean.

We account for this by including a factor of
𝑟𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
in the setting

for 𝐾 in the SampleLam algorithm. The drawback of this approach

is that 𝜆𝑚𝑖𝑛 is not guaranteed to be close to the sample mean of

𝜆𝑖 in general. An adversarial case is shown in Fig. 3b in which

SampleLam would compute an arbitrarily bad estimate for 𝜆𝑚𝑖𝑛 .

Setting 𝐾 = log(𝑁 ) 𝑟𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
, the best and worst case complexity for

SampleLam is:

O
(
log(𝑁 ) 𝑟𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
|𝑆 |2 |𝐴| + 𝑁 ∗𝑉 𝐼 ( |S|, |A|)

)
(13)

Where the first term is the cost of setting up log(𝑁 ) 𝑟𝑚𝑎𝑥

𝑐𝑚𝑖𝑛
LPs, which

dominates the solve time, and the second term is the cost of the

final value iteration.

6 COMPUTING A POLICY
Finally, once 𝜆𝑚𝑖𝑛 is finalized, and the resulting value functions

from Eq. 7 have been computed, we use the value functions to com-

pute the one-step greedy policy implied by the bound. To do this,

we expand the value functions to compute the action-value function,
𝑄 , which captures the long term value for acting in a given state

in each arm. We then choose actions by solving a modified knap-

sack where 𝑄𝑖 (𝑠𝑖 , 𝑎, 𝜆𝑚𝑖𝑛) are the values subject to their respective

action costs, the budget 𝐵, and a constraint that ensures only one ac-

tion is taken per arm. The knapsack LP is given in Appendix 3, with

an algorithm for computing 𝑄𝑖 (𝑠𝑖 , 𝑎, 𝜆𝑚𝑖𝑛) from value functions.

7 EXPERIMENTS
We test our algorithms on two synthetic settings. In each, we com-

pare the discounted sum of rewards, using discount factor 0.95,

averaged over all arms 𝑁 , over 𝐿 = 40 rounds. All results are av-

eraged over 25 simulations. We compare our methods against the

following baselines: Nobody: Take 𝑎0 which has no cost on every

arm; VfNc: Solves Eq. 7 with 𝜆 = 0, effectively ignoring all future

constraints, then follows Section 6; Hawkins: Solves Eq. 7 directly
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using an LP solver, then follows Section 6. We also include several

versions of BLam using various stopping criterion 𝜖 , noted in each

plot as BLam{𝜖}. Larger 𝜖 will lead to faster running times but looser

bounds on 𝜆𝑚𝑖𝑛 , and thus worse performance in general. All algo-

rithms were implemented in Python 3.6 and use Gurobi version

9.0.3 to solve LPs via the gurobipy interface. All value iterations

were computed using a lightly modified version of pymdptoolbox

version 4.0b3 [8].

First, we explore an example distribution where VfNc and Haw-

kins fail arbitrarily in terms of performance and runtime respec-

tively. In this distribution, there are three types of agents: (1)
Greedy: Must take increasingly expensive actions to collect in-

creasingly high reward. Once the required action is not taken, the

agent never produces reward again. This is modeled with a single

chain of states, each with unit-increasing reward, reachable only by

an action with unit-increasing cost. Failure to take the next action

leads to a dead state. (2) Reliable:Must take the cheapest non-zero

action every round to achieve reward 1. If the arm is not played for

any round, it never produces reward again. This is modeled with a

simple 2-state chain, in which the final state recurs with the proper

action, otherwise it goes to a dead state. (3) Easy: Always gives
reward of 1 regardless of action. We make the proportion of (1) and

(2) equal and set the budget so that all of (1) or (2) could be played

(or some mix), but not more. Clearly, the optimal policy is to always

play the Reliable agents since committing to the Greedy agents will

eventually leave the planner only collecting reward from the Easy

agents. However, the Greedy agents will look most attractive to

VfNc since, without accounting for cost constraints, it will wrongly

assume it can always pay the future cost to obtain increasingly

larger reward. Hawkins and BLam, using their constraint-based

reasoning, will instead commit to the Reliable agents. However,

BLam will automatically detect the significant structure within the

problem, such as the existence of Easy agents as well as a simple

form for the 𝑉 𝑖 of Reliable agents, to build tight bounds on the La-

grange policy using only a small subset of agents in the coupled LP,

leading to a significant speedup over Hawkins. The performance

and runtimes of the algorithms tested on a population with 0.25,

0.25, 0.5 mix across Greedy, Reliable, and Easy agents with a budget

of 0.25𝑁 and 30 actions (subsequently, 31 states) are shown in Fig. 4

and 5 confirming these insights. For BLam, all arms used test points

𝐺𝑖 = {0}. Here, SampleLam gives good but variable performance

in exchange for running approximately twice as fast as BLam.
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Figure 4: Ignoring future constraints leads to bad policies.
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Figure 5: BLam and SampleLam scale better than Hawkins.

Finally, we test our algorithms on a more rigorous simulation

motivated by a real-world public health care challenge, namely,

tuberculosis care in India. In this real-world setting, a single com-

munity health worker manages up to 200 patients throughout the

course of their 6-month antibiotic regimen, monitoring and encour-

aging patients to take their daily medications. The health worker

has a range of actions they can take on each patient aimed at improv-

ing their adherence, each with varying cost and effectiveness: call

the patient (cheap), visit the patient in their home (semi-expensive),

escalate the patient (very expensive). Because the worker’s time

and resources are limited, the number and types of actions they

can take each day across all patients are also limited.

We model this problem as follows. In the simulation, each pa-

tient state is a tuple of (adherence level, treatment phase, day of

treatment). The first entry captures the patient’s previous 𝑑 days of

adherence. The second entry is binary and captures the "phase" of

treatment: the intensive phase which lasts for the first 𝐼𝑃𝐿 rounds,

and the continuation phase which lasts from round 𝐼𝑃𝐿 to the end.

During the intensive phase, patients tend to have better adherence

and are more responsive to intervention. During the continuation

phase, both effects tend to degrade and patients may drop out (i.e.,

adherence of 0). The final entry captures time and can take any

of 𝐼𝑃𝐿 + 2 values. The first 𝐼𝑃𝐿 values count days in the inten-

sive phase and the next two are recurrent states that represent the

continuation phase and the dropout state.

In one relevant dataset that captured daily treatment adherence

of TB patients in India over the course of a year [16], patients

followed four distinct modes: (1) High adherence: adhere daily re-
gardless of health worker action. This makes up the majority of the

data; (2) Low adherence: Very low adherence regardless of health

worker action. (3) Receptive patients: Irregular adherence but

can benefit from intervention. On average, their adherence drops

during the continuation phase, suggesting that interventions be-

come less effective. (4) Dropout patients: Like receptive patients
but have probability of dropping out during the continuation phase.

We implement each of these patient types in our simulation and

include them in the following mix respectively: 0.64, 0.01, 0.175,
0.175. This mix matches the number of High and Low adherence

patients observed in the data, and splits the remaining portions

evenly. At the start of simulation, each patient is in the maximum

adherence state since in the real world, patients begin treatment in

person. We run experiments with 𝑑 = 3, 4, 5 adherence levels and
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Figure 6: Rewards (top row) and runtimes (bottom row) on the health care dataset with budget 0.1𝑁 . Columns represent 𝑑 =

3, 4, 5 adherence levels, respectively. At all values of 𝜖, BLam significantly outperforms VfNc. Further, the Hawkins LP scales
quadratically in the number of states on each arm, while BLam identifies problem structure that keep the underlying LPs
small, making speedups more dramatic as the problem size increases.

set 𝐼𝑃𝐿 = 2𝑑 . The health worker’s action types are as follows: (1)
No action: Take no action (c=0); (2) Call: Moderately increased

probability that patient will increase adherence state by 1 (c=1). (3)
Visit: Significant increased probability that patient will increase

adherence state by 1 (c=2). (4) Escalate: Near-certain probability

that patient will return to the maximum adherence state. If a patient

is in the dropout state, there is a small probability they return to

the continuation phase (c = B). Finally, rewards are defined as

(adherence level)/𝑑 , so more rewards are received for patients at

higher adherence levels.

We simulate this setting for many parameter combinations. For

BLam we report results using test points 𝐺𝑖 = {0, 0.1, 0.2, 0.5},
though we found that, in general, most sets of 3 or 4 evenly spaced

points worked well. Fig. 6 shows the performance and runtime for

the dataset with budget of 0.1𝑁 for 𝑑 = 3, 4, and 5 adherence levels.

With such a small budget, the tradeoff between individual actions

is important. In Fig. 6 we see that all versions of BLam significantly

outperform VfNc. Crucially, all versions of BLam also scale much

better than Hawkins. In fact, as the number of states in the under-

lying problem grows the speed ups become even more dramatic

ranging from a 2 times speedup with 𝑑 = 3 to a 5 times speedup

with 𝑑 = 5. This is because the Hawkins LP scales quadratically

in the number of states of each arm, while the BLam algorithms

are able to identify problem structure that keep the underlying

LPs small with its bounding techniques, making speedups more

dramatic as the problem size increases.

In Appendix 4, we run experiments varying the budget between

0.1𝑁, 0.2𝑁, 0.5𝑁 , with 𝑑 = 4 adherence levels. As the budget in-

creases, resources are less constrained, so all methods tend to col-

lapse to the same reward. However, again, BLam’s adaptivity allows

it to recognize when the problem is less constrained to automati-

cally converge even more quickly to the optimal solution.

These results demonstrate the exemplary ability for our approach

to scale well without sacrificing performance on a dataset whose

technical structural conditions have no been established a priori.

That is, our algorithm can perform exceptionally with minimal tun-

ing, while avoiding undertaking the considerable effort of deriving

an index policy and the existence thereof.

8 CONCLUSION
Our work makes available multiple avenues for computing well-

performing policies on new (MA)
2
RBs at scale. We demonstrate

that our algorithms offer vast speedups and can be readily adapted

to new problems without the need for the user to first arduously

derive a problem-specific index policy, as was previously the case.

These advances make multi-action MARBs newly accessible, laying

the groundwork for wider study of this important framework.
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