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ABSTRACT
Community HealthWorkers (CHWs) form an important component

of health-care systems globally, especially in low-resource settings.

CHWs are often tasked with monitoring the health of and interven-

ing on their patient cohort. Previous work has developed several

classes of Restless Multi-Armed Bandits (RMABs) that are com-

putationally tractable and indexable, a condition that guarantees

asymptotic optimality, for solving such health monitoring and inter-

vention problems (HMIPs). However, existing solutions to HMIPs

fail to account for risk-sensitivity considerations of CHWs in the

planning stage and may run the danger of ignoring some patients

completely because they are deemed less valuable to intervene on.

Additionally, these also rely on patients reporting their state of ad-

herence accurately when intervened upon. Towards tackling these

issues, our contributions in this paper are as follows: (1) We develop

an RMAB solution to HMIPs that allows for reward functions that

are monotone increasing, rather than linear, in the belief state and

also supports a wider class of observations. (2) We prove theoretical

guarantees on the asymptotic optimality of our algorithm for any

arbitrary reward function. Additionally, we show that for the spe-

cific reward function considered in previous work, our theoretical

conditions are stronger than the state-of-the-art guarantees. (3) We

show the applicability of these new results for addressing the three

issues pertaining to: risk-sensitive planning, equitable allocation

and reliance on perfect observations as highlighted above. We eval-

uate these techniques on both simulated as well as real data from

a prevalent CHW task of monitoring adherence of tuberculosis

patients to their prescribed medication in Mumbai, India and show

improved performance over the state-of-the-art. Full paper and code

is available at: https://github.com/AdityaMate/risk-aware-bandits.
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1 INTRODUCTION
Community Health workers (CHWs) play a key role in comple-

menting the primary health facilities, and are critical to health
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Figure 1: CommunityHealthWorker delivering an interven-
tion. Image source: Pippa Ranger

care systems globally, and especially in low-resource countries [29].

CHWs are members of the local community who serve as frontline

health workers and form the cornerstone of the bridge between

the health resources and the local communities through building

trust and a range of other activities such as outreach, providing

health education, screening and basic emergency care [33, 34]. The

effectiveness of CHWs in achieving desirable community health

outcomes through the interventions they deliver has been recog-

nized in the context of several domains such as achieving child

survival goals [10], improving child and maternal health [20, 31],

communicable and non-communicable diseases [5, 26], sexual and

reproductive health [21], etc.

A key challenge that CHWs face in effective delivery of welfare

activities is optimally managing their severely limited resources. In

the global south, each CHW may routinely be responsible for man-

aging the health outcomes of hundreds of patients. As a motivating

example, we consider the real-world CHW HMIP of monitoring

adherence for tuberculosis (TB) patients, who must complete a 6-

month medication plan. Given the resource scarcity, the CHWs can

only monitor and intervene on some 𝑘 patients from their 𝑁 -strong

patient cohort (𝑘 ≪ 𝑁 ) each day. In this situation, the CHWs must

determine the best 𝑘 candidates to intervene on each day, based on

who would likely display the highest benefits of the intervention

through improvement in their future adherence. While doing so, the

CHWs must simultaneously juggle at least three real-world consid-

erations, in addition to broadly maximizing the overall adherence

of their cohort. These may include: incorporating risk-sensitive

perspectives, ensuring no patients are left ignored for too long,

or accounting for patients who may misrepresent their adherence

status.

A naive planning approach typically implemented in practice is

to intervene on patients in a round robin fashion. However, this

strategy is likely sub-optimal because some patients may need

interventions less often than others. Previous works in AI for health

interventions [4, 16, 23] have largely focused on building assistants
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that send personalized health reminders or recommendations to

patients. However, these assume resource-rich environments in

which interventions can be launched at will, and are thus irrelevant

to the CHWs’ intervention planning problem at hand. Some recent

works in AI [17, 18, 25] have also explored intervention planning

algorithms under limited resources using the Restless Multi-Armed

Bandits (RMAB) framework. However, these are either slow or can

only optimize for aggregate cohort-level health statistics weighing

the adherence in all stages of the program equally and do not cater

to the complicated patient-specific considerations of the CHWs.

In this paper, we tackle this issue of planning the limited CHW

intervention resources in the HMIP while accommodating more

complex objectives than past work. Our theoretical analysis identi-

fies a wider class of indexable HMIPs even in the case of standard

linear rewards. We leverage these results to construct tailor-made

reward functions, designed to accommodate the real-world plan-

ner objectives outlined above. Further, we also develop additional

techniques to solve the issue pertaining to patients incorrectly

reporting/not reporting their true adherences.

Thus, our contributions in this paper are as follows: (1) We

present an algorithm for the HMIP that can admit any arbitrary,

monotonically increasing reward function and supports a wider

class of observations. (2) We prove theoretical guarantees on the

optimality of our algorithm. Further, we show that for the specific

reward definition of average cohort adherence studied in previous

work, our conditions are much wider (giving stronger results). For

example, in the average reward case, the previous optimality guar-

antees become vacuous, while our theoretical guarantees hold for

as much as 88% of the entire space of bandits. (3) We show the

applicability of these results for catering to three real-world CHW

considerations including: (i) risk-sensitive planning, (ii) fairness

protection towards patients who may otherwise be completely ig-

nored by the planning algorithms, and (iii) accounting for patients

who may misrepresent their true adherences.

2 BACKGROUND
2.1 Restless Multi-Armed Bandits.
An RMAB consists of 𝑁 independent arms, each consisting of an

associated 2-action Markov Decision Process (MDP) [24]. An MDP

is defined by the tuple {S,A, 𝑟 ,P}, where S denotes the state

space,A is the set of possible actions, 𝑟 is a state-dependent reward

function 𝑟 : S → R and P represents a transition function, with

𝑃𝑎
𝑠,𝑠′ representing the probability of transitioning from a current

state 𝑠 to a next state 𝑠 ′ when an action 𝑎 is taken. An MDP pol-

icy, 𝜋 : S → A is a mapping from the state space to the action

space specifying the action to be taken at a particular state. The

reward accrued by a policy 𝜋 can be measured either using the

discounted reward or the average reward criterion. The discounted

reward of a policy 𝜋 starting from an initial state 𝑠0 is defined as

𝑅𝜋
𝛽
(𝑠0) = 𝐸

[∑∞
𝑡=0 𝛽

𝑡𝑟 (𝑠𝑡 ) |𝜋, 𝑠0
]
, where 𝛽 ∈ [0, 1) is the discount

factor and actions are selected according to 𝜋 . The average reward

of a policy 𝜋 can be defined (independent of the starting state) as:

𝑅
𝜋

=
∑
𝑠∈S 𝑓 𝜋 (𝑠)𝑟 (𝑠), where 𝑓 𝜋 (𝑠) represents the average visit

frequency induced by the policy 𝜋 , or the long term fraction of time

spent in a state 𝑠 when following 𝜋 . The total reward accrued by the

planner is the sum of the total individual rewards accrued by each

of the arms (under either the discounted or average reward criteria).

The planner’s goal is to maximize her total reward summed up

across all arms.

We model the intervention planning problem as an RMAB with

each arm representing an agent (patient) with the planner (CHW)

who must decide which arms to monitor and intervene upon.

2.2 Whittle Index solution technique
Computing the optimal policy for an RMAB has been shown to be

PSPACE hard in general even when the transition dynamics are

perfectly known [22]. However, Whittle proposed a heuristic [32],

known today as the Whittle Index, that was later been shown to be

asymptotically optimal for the time average reward problem [30],

and also for other more general families of RMABs arising from

stochastic scheduling problems [8].

The main idea of the Whittle Index technique is to compute

an index for every arm at each time step that intuitively captures

the value of pulling that arm at that timestep. Such an index is

calculated for each arm independently, thus transforming the 𝑁 -

arm RMAB problem to 𝑁 smaller problems each consisting of a

single MDP. The Whittle Index policy for the RMAB is to pull the

𝑘 arms with the highest Whittle indices.

The notion of the Whittle Index is centered around the concept

of passive subsidy,𝑚. Intuitively, passive subsidy is the amount one

must pay the planner as compensation not to pull an arm. Formally,

this can be expressed through a modified reward function for each

arm, given as: 𝑟𝑚 : S ×A → R, where 𝑟𝑚 (𝑠, 𝑎 = 0) = 𝑟 (𝑠) +𝑚 and

𝑟𝑚 (𝑠, 𝑎 = 1) = 𝑟 (𝑠), where 𝑎 = 1(𝑎 = 0) for the MDP corresponds

to pulling (not pulling) an arm of the RMAB. The modified reward

function induces a corresponding value function in each state, for

each of the two actions: 𝑉𝑚 (𝑠, 𝑎 = 0) and 𝑉𝑚 (𝑠, 𝑎 = 1). The Whittle

Index𝑊 is defined as the infimum subsidy𝑚 for which the planner

is indifferent between either pulling or not pulling the arm. In other

words,𝑊 (𝑠) = inf𝑚{𝑚 : 𝑉𝑚 (𝑠, 𝑎 = 0) = 𝑉𝑚 (𝑠, 𝑎 = 1)}.
A common challenge associated with the Whittle Index solution

technique is establishing a technical condition, known as ‘index-

ability’ that guarantees the asymptotic optimality of the Whittle

Index heuristic. This condition may not be satisfied by all RMABs

and previous literature has established indexability only for specific

problem instances. A second challenge is often computing the value

of the Whittle Index itself, which can be computationally expensive

or may often need numerical approximations.

2.3 Related Work
RMABs have proved to be a popular framework for modeling lim-

ited resource planning problems in a myriad of domains. Because

establishing indexability for RMABs is very challenging, previous

works have only explored the same for specialized problem struc-

tures. [8] prove indexability results for a family of RMABs that

arise in machine maintenance and stochastic problems with switch-

ing penalties. However, they assume a deterministic action effect,

whereas we do not. [12] and [27] augment themachinemaintenance

problem by introducing either i.i.d. or Markovian stochasticity in

the reset action, and [28] study Whittle Index for general functions

of states assuming a single, fixed, reset state. [19] explore Hidden

Markov Bandits which consider partial observability with binary
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Figure 2: Belief states are arranged in two chains, one corre-
sponding to each observation. Belief state deterministically
transitions to the next belief state in the chain when passive.
𝑏0 (1) and 𝑏1 (1) (shown in black) are the reset states. [18].

state transitions, but don’t accommodate state dependent rewards

from passive arms.

Liu and Zhao [17] is a seminal work that builds off of the well-

established 2-state Elliot-Gilbert channel model [7] and computes

the Whittle Index efficiently along with a closed form. They assume

that the state transitions are unaffected by the action taken and

only accrue reward from the active arms. [1] is a recent work that

considers RMABs with “controlled restarts” giving indexability

results aswell as a closed form for theWhittle Index, but they rely on

state-independent restarts, which is narrower than the model of this

paper. [25] present a more generic approach that relies on solving

the MDP on each arm for the optimal action to compute the Whittle

Index policy. While it can thus relax many of these constraints, this

technique is very expensive computationally, and is thus very slow.

[18] is a recent work that is orders of magnitude faster while also

relaxing the restrictions of previous work. However, they fail to

account for real world risk-sensitive and fairness related planning

considerations. Additionally, they also assume perfect observability

of the patient states when acted upon, which may be unrealistic.

Despite these shortcomings, the performance guarantees only hold

for a narrow range of RMABs.

A rich body of literature has also explored risk-sensitive and

other similar learning-based perspectives to bandit planning. How-

ever, most of these consider risk and the risk-attitude in the learn-

ing stage while minimizing regret, and not in the planning stage

[2, 13, 35]. [14] and [3] are other contemporaneous works that focus

on RMAB planning with multiple available actions or model-free

approaches to learning in RMABs.

3 PROBLEM FORMULATION
We define the health monitoring and intervention problem (HMIP)

as follows. In this problem, the planner represents the community

health worker responsible for managing the health outcomes for

their patient cohort. The patient cohort is represented by a set of 𝑁

agents (representing arms of the RMAB), N = {1, 2, . . . 𝑁 }, whose
health outcomes are monitored by the planner. The planner must

decide which arms to pull (which patients to intervene on) each

day of the program. The health program lasts for 𝑇 discrete days.

On each day of the program, each agent can be in one of two

latent states, a ‘good’ state (1) and a ‘bad’ state (0)—denoted by

S = {1, 0}. In the context of tuberculosis adherence monitoring,

this translates to each patient being in either the adherent or the
non-adherent latent state respectively each day, for 𝑇 = 180 days

of the treatment program. Each agent follows an MDP, with states

defined by the belief value, i.e. the probability that the agent is in

the ‘good’ latent state at that time step. We assume such a belief-

state MDP over states 𝑏 ∈ B is fixed and known, but can be unique

to every agent and have arbitrary transition dynamics.

The action space, A consists of two possible actions: passive

(denoted as ‘0’) and active (denoted as ‘1’, representing an inter-

vention). The planner can intervene on at most 𝑘 agents each day

(where 𝑘 ≪ 𝑁 because of scarce resources). Let 𝑎𝑡 ∈ {0, 1}𝑁 de-

note the vector of actions chosen by the planner on a particular day.

Then such an 𝑎𝑡 must have ∥𝑎𝑡 ∥ ≤ 𝑘 because of the resource con-

straint. In case of passive actions, no observation about the agent

is available and the belief state evolves according to the standard

belief update: 𝑏 → 𝑏𝑃
𝑝

11
+ (1 − 𝑏)𝑃𝑝

01
. When an active action is

taken, the patient emits an observation 𝜔 from the observation set

Ω = {0, 1, . . . |Ω | − 1} and as a result of the intervention, transitions
to a ‘reset’ belief state. The reset state engendered by the interven-

tion, depends on whether precise observations are available. In case

of precise observations, the planner can observe the agent’s true

latent state upon intervening, leading to Ω = {0, 1}. In this case,

the agent’s belief state resets to a value 𝑃𝑎
𝜔1

depending on which

𝜔 ∈ {0, 1} was observed. In the context of TB however, assuming

perfect, reliable observations may be unrealistic in some cases as

patients may sometimes refuse to answer the CHWs’ intervention

phone calls or may not report their latent state truthfully. We cast

these events as imprecise observations of the patient’s latent state.

When observations are imprecise, since true state of the patient is

unobserved, the planner pre-defines a fixed reset belief state for

every possible observation 𝜔 ∈ Ω. These imprecise observations

are assumed to be emitted according to a fixed, known emission

matrix, 𝐸 |S |×|Ω |
unique to every patient. In our empirical analysis

in Section 5, for simplicity, we assume two such possible imprecise

observations—a positive shade and a negative shade of response

(resetting to 𝑃𝑎
1
and 𝑃𝑎

0
respectively such that 𝑃𝑎

0
≤ 𝑃𝑎

1
)—however,

our algorithm is again amenable to a multiple-observation setting.

We impose two additional natural constraints on each arm as

consistent with previous literature [17, 18] that closely simulate real

settings: (1) 𝑃𝑎
0,1

< 𝑃𝑎
1,1
; 𝑃

𝑝

0,1
< 𝑃

𝑝

1,1
; (it is more likely for a patient

to stay adhering than it is to switch from being non-adhering to

adhering) and (2) 𝑃𝑎 > 𝑃𝑝 ; 𝑃𝑎
1
> 𝑃

𝑝

1,1
; 𝑃𝑎

0
> 𝑃

𝑝

0,1
(intervention effect

is positive).

The planner’s goal is to find an intervention policy that maxi-

mizes her utility measured according to her own yardstick, defined

by the utility function U. For each patient in a belief state 𝑏 in the

MDP, we assume the planner accrues a reward 𝜌 (𝑏) for that patient
at that time step, where 𝜌 is chosen such that E[U(𝑏)] = 𝜌 (𝑏). The
planner solves for a policy that maximizes the total reward accrued,∑𝑇
𝑡=1

∑𝑁
𝑛=1 𝜌 (𝑏𝑡 ) summed up over all agents over the entire time

horizon, which is in effect tantamount to maximizing her expected

utility.

Prior work in the context of TB such as [18] considers a planner

with the goal of maximizing the overall average adherence of the

patients. For such a planner, U =

{
1 if patient adheres

0 if patient does not adhere

.

Thus E[U] = P[patient adheres] = 𝑏. Thus setting 𝜌 (𝑏) = 𝑏 for

each belief state optimizes for the average adherence objective. In

this work, we allow the planner to have an arbitrary objective that
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Figure 3: State transition diagram when a threshold policy
with thresholds 𝑢0 = 4 and 𝑢1 = 3 is implemented. Belief
stochastically resets to one of the reset states when active.

translates to the goal of maximizing the long term reward accrued,

specified by an arbitrary, monotonically increasing 𝜌 (𝑏).

4 INDEX POLICY COMPUTATION
Belief state MDP. Our analysis of the agents’ behavior is centered

around the belief state MDP that they follow. Let 𝑏𝜔 (𝑢) denote a
belief state, which is attained after being left passive for𝑢 time steps

if the observation last received (when the armwas last pulled) was𝜔 .

Here the value 𝑏𝜔 (𝑢) represents the belief, i.e., the probability that

the agent is in the ‘good’ state. Let B denote the set of all possible

belief states, which we organize into ∥Ω∥ chains, one chain for each
possible observation as shown in Fig. 2. In this arrangement, when

passive, the MDP transitions to the next belief state (on the right)

in the same chain and when active, it jumps to one of the ‘reset’

states (shown in black). The MDP resets to the chain starting from

the 𝑏𝜔 (1) state if an observation 𝜔 was observed as a result of the

intervention. The reset probability is thus simply the probability of

observing 𝜔 , which in turn, directly depends on the current belief

state as shown in Fig. 3. The belief update when starting from an

initial belief 𝑏 and passive for 𝑢 time steps, can be obtained via the

standard belief update (as shown in [17])and is given by:

𝜏𝑢 (𝑏) =
𝑃
𝑝

0,1
− (𝑃𝑝

1,1
− 𝑃

𝑝

0,1
)𝑢 (𝑃𝑝

0,1
− (1 + 𝑃

𝑝

0,1
− 𝑃

𝑝

1,1
)𝑏)

(1 + 𝑃
𝑝

0,1
− 𝑃

𝑝

1,1
)

(1)

We use 𝜏 (𝑏) to denote the passive belief update when 𝑢 = 1.

The Whittle Index heuristic for RMABs has been shown to dis-

play strong performance, however it involves two challenges. First,

the theoretical guarantees on the performance are valid only if a

technical condition—referred to as indexability—holds good, which

we prove for our problem in subsection 4.1. Second, computation

of the index itself is challenging and can be computationally expen-

sive. We use the theoretical results of subsection 4.1, to devise a

fast algorithm to compute the Whittle Index efficiently, which we

present in Subsection 4.2.

4.1 Indexability and Threshold Optimality
Definition 1 (Indexability). An RMAB is indexable if each arm of the
RMAB is indexable. An arm is indexable if the set of passive-optimal
states of the arm, given byB∗ (𝑚) = {𝑏 : ∃ 𝜋∗ ∈ Π∗

𝑚, such that 𝜋∗ (𝑏) =
0} monotonically increases from ∅ to the entire state space as the sub-
sidy,𝑚 increases from −∞ to ∞.

The optimal action is determined by comparing the passive and

active value functions for a belief state 𝑏 as given in Eq. 2 below

and picking the action with a larger value.

𝑉𝑚 (𝑏) = max

{
𝑚 + 𝜌 (𝑏) + 𝛽𝑉𝑚 (𝜏 (𝑏))...passive
𝜌 (𝑏) + 𝛽

(
𝑏.𝑉𝑚 (𝑃𝑎

1,1
) + (1 − 𝑏)𝑉𝑚 (𝑃𝑎

0,1
)
)
...active

(2)

A common strategy to proving indexability has been to first show

that a special class of policies—‘threshold policies’—are optimal for

each arm under consideration. [18] has shown that if threshold

policies are optimal (either forward or reverse threshold, defined

below) then the RMAB is indexable; the same reasoning also ap-

plies to this work. This thus shifts the indexability heavy lifting to

proving optimality of threshold policies for our problem.

Definition 2 (Threshold Policies). A policy 𝜋 is a forward (reverse)
threshold policy if there exists a threshold 𝑏𝑡ℎ such that 𝜋 (𝑏) = 0

(𝜋 (𝑏) = 1) if 𝑏 > 𝑏𝑡ℎ and 𝜋 (𝑏) = 1 (𝜋 (𝑏) = 0) otherwise.

Consider the reward of a belief state 𝑏 to be given by a non-

decreasing function, 𝜌 (𝑏). Note that in a standard Collapsing Bandit
[18], 𝜌 (𝑏) = 𝑏. Let Δ𝑎 = (𝑃𝑎

11
− 𝑃𝑎

01
) and Δ𝑝 = (𝑃𝑝

11
− 𝑃

𝑝

01
) in all of

the analysis in the rest of the paper. Let 𝜌 ′𝑚𝑎𝑥 =𝑚𝑎𝑥𝑏∈[0,1]
𝑑 (𝜌 (𝑏))

𝑑𝑏
,

and 𝜌 ′
𝑚𝑖𝑛

=𝑚𝑖𝑛𝑏∈[0,1]
𝑑 (𝜌 (𝑏))

𝑑𝑏
.

Theorem 1 (Forward Threshold Optimality). Consider a
belief-state MDP corresponding to an arm in an RMAB with some
non-decreasing reward function given by 𝜌 (𝑏) and transition matrix
given by 𝑃 . For any subsidy𝑚, there is a forward threshold policy
that is optimal if:

Δ𝑝 (1 − 𝛽 max{Δ𝑝 ,Δ𝑎})
Δ𝑎 (1 − 𝛽 min{Δ𝑝 ,Δ𝑎})

≥ 𝜌 ′𝑚𝑎𝑥

𝜌 ′
𝑚𝑖𝑛

(3)

Proof Sketch. Optimality of a forward threshold policy implies

that if the optimal action at a belief 𝑏 is passive, then it must be so

for all 𝑏 ′ > 𝑏. To accomplish this, we derive conditions which, if

enforced, restrict the derivative of the passive action value function

to be greater than the derivative of the active action value function

w.r.t. 𝑏—thus implying forward threshold optimality. To arrive at

such conditions, we first derive both upper and lower bounds on

𝑉𝑚 (𝑏1) −𝑉𝑚 (𝑏2) ∀ 𝑏1, 𝑏2 . The key challenge is to then show that

these bounds themselves imply tighter upper and lower bounds.

We do this recursively for the new, tighter bounds and repeat this

process an infinite number of times, arriving at tighter bounds each

time and find that the bounds converge, which then leads us to the

result. The full proof is in Appendix A of the full paper. □

Theorem 2 (Reverse ThresholdOptimality). Consider a belief-
state MDP corresponding to an arm in an RMAB with some non-
decreasing reward function given by 𝜌 (𝑏) and transition matrix given
by 𝑃 . For any subsidy𝑚, there is a reverse threshold policy that is
optimal if:

Δ𝑝 (1 − 𝛽 min{Δ𝑝 ,Δ𝑎})
Δ𝑎 (1 − 𝛽 max{Δ𝑝 ,Δ𝑎})

≤
𝜌 ′
𝑚𝑖𝑛

𝜌 ′𝑚𝑎𝑥

(4)

Proof Sketch. The proof follows similar reasoning as Thm.1.

The final sufficiency condition obtained is such that when imposed,

it restricts the derivative of the active action value function to

be always greater than the derivative of the passive action value

Main Track AAMAS 2021, May 3-7, 2021, Online

883



function w.r.t. 𝑏. Complete proof is given under Appendix B in the

full version of the paper. □

4.2 Fast Index Algorithm
Optimality of forward threshold policies forms the cornerstone

of the fast Whittle Index computation algorithm. Recall that the

Whittle Index of a belief state 𝑏 is the infimum subsidy 𝑚 such

that the active and passive actions are both equally optimal to take

at 𝑏. The key idea is to express the passive (active) action value

function for a belief state 𝑏 in a closed form by leveraging the

forward threshold optimal structure.

The natural constraints imposed on the transition matrix at each

arm (as mentioned in Sec. 3) ensure that 𝜏𝑢 (𝑏) is a monotonic func-

tion of 𝑢. The fast algorithm presented below is guaranteed to be

optimal for patients (RMAB arms) whose belief monotonically de-

creases with time (𝑢) and for whom forward threshold policies are

optimal. A forward threshold policy with a belief threshold of𝑏𝑡ℎ in-

duces aMarkov chain over the belief states as shown in Fig. 3. Such a

𝑏𝑡ℎ determines a tuple of thresholds, 𝑈 (𝑏𝑡ℎ) = (𝑢0, 𝑢1, . . . 𝑢 ∥Ω ∥−1),
where 𝑏𝜔 (𝑢𝜔 ) specifies the threshold state for the chain corre-

sponding to the observation 𝜔 . The threshold belief state is the

first belief state of the chain where the optimal action is active. For

the two-observation case, let (𝑢0, 𝑢1) be the thresholds correspond-
ing to the 0 and 1 chains respectively. A forward threshold policy

with thresholds (𝑢0, 𝑢1) induces a corresponding visit frequency

𝑓 (𝑢0,𝑢1) (𝑏) over the belief states. This 𝑓 (𝑢0,𝑢1) (𝑏) is the eigenvector
solution for the equation 𝑓 𝑀 = 𝑓 , where𝑀 is the state transition

matrix over the belief states.𝑀𝑏𝑏′ denotes the transition probability

from belief state 𝑏 to belief state 𝑏 ′ and is completely determined

by thresholds (𝑢0, 𝑢1) as:

𝑀𝑏𝑏′ =


1 if 𝑏 ′ = 𝜏 (𝑏) and 𝑏 ′ ≥ 𝑏𝜔 (𝑢𝜔 ) for 𝜔 ∈ {0, 1}
𝑏 if 𝑏 ′ = 𝑏1 (1) and 𝑏 = 𝑏𝜔 (𝑢𝜔 ) for 𝜔 ∈ {0, 1}
1 − 𝑏 if 𝑏 ′ = 𝑏0 (1) and 𝑏 = 𝑏𝜔 (𝑢𝜔 ) for 𝜔 ∈ {0, 1}
0 otherwise

(5)

The visit frequencies 𝑓 (𝑢0,𝑢1) (𝑏) so determined, coupled with the

known reward function 𝜌 (𝑏), determine the overall reward of this

threshold policy with a subsidy𝑚, under the average reward crite-

rion, given by 𝐽
(𝑢0,𝑢1)
𝑚,𝜌 =

∑
𝑏∈B 𝑓 (𝑢0,𝑢1) (𝑏)

(
𝜌 (𝑏) +𝑚.1{𝑏>𝑏𝑡ℎ }

)
.

For a belief state 𝑏, the active and passive action value func-

tions correspond to the average rewards of two threshold policies

with thresholds of 𝑏 and 𝑏 + 𝜖 (where 𝜖 → 0) respectively. Thus,

finding the Whittle Index for which the active and passive value

functions are equal is same as finding the subsidy𝑚 that satisfies

𝐽
𝑈 (𝑏)
𝑚,𝜌 = 𝐽

𝑈 (𝑏+𝜖)
𝑚,𝜌 . Note that changing the threshold to 𝑏 + 𝜖 affects

the threshold belief state only on the current chain. We use this idea

to construct the fast Whittle Index computation algorithm (Alg.1).

4.3 Application to Collapsing Bandits
Our theoretical results also generalize and improve upon the current

state-of-the-art guarantees explored for the HMIP, as we demon-

strate in this section. Collapsing bandits (CoBs) [18] are a sub-case

of the risk-sensitive bandits considered in this paper, with reward

function 𝜌 (𝑏) = 𝑏. The conditions of Thms. 1 and 2 yield novel

sufficiency conditions when 𝜌 (𝑏) = 𝑏, that are wider than those

Algorithm1: Risk-sensitive Index Computation Algorithm

1: Initialize pointers to heads of chains, 𝑢0 = 1, 𝑢1 = 1.

2: while 𝑢0 < 𝑇 or 𝑢1 < 𝑇 do
3: Compute𝑚1 :=𝑚 such that 𝐽

(𝑢0,𝑢1)
𝑚,𝜌 = 𝐽

(𝑢0,𝑢1+1)
𝑚,𝜌

4: Compute𝑚0 :=𝑚 such that 𝐽
(𝑢0,𝑢1)
𝑚,𝜌 = 𝐽

(𝑢0+1,𝑢1)
𝑚,𝜌

5: Set 𝑖 = argmin{𝑚0,𝑚1} and𝑊 (𝑏𝑖 (𝑢𝑖 )) =𝑚𝑖

6: Increment 𝑢𝑖
7: end while

Figure 4: For 𝜌 (𝑏) = 𝑏, the theoretical guarantees presented
in this paper hold for awider range of processes as compared
to the state-of-the-art conditions of Mate et al. [18].

presented in Mate et al. [18]. For example, under the average reward

criterion (or 𝛽 = 1), as shown in Fig. 4, the conditions of Mate et al.

[18] become vacuous, whereas the new conditions derived here

guarantee indexability for 88% of the entire space of CoBs.

Theorem 3. Consider a belief-state MDP corresponding to an arm
in a standard Collapsing Bandit. For any subsidy𝑚, there is a forward
threshold policy that is optimal if:

Δ𝑎 ≤ Δ𝑝 and Δ𝑎 + Δ𝑝 ≤ 1

𝛽
(6)

Intuitively, this condition requires that the action impact of both,

passive and active actions in the "bad" state must not be too low

(ensuring Δ𝑎 and Δ𝑝 are not too large) and further, the active action

impact must be large (making Δ𝑎 small). To prove the theorem, we

show using simple algebraic manipulations that the condition of

Eq. 6 satisfies the condition of Thm.1 when 𝜌 (𝑏) = 𝑏. Complete

details of the proof are available in Appendix C of the full paper.

Theorem 4. Consider a belief-state MDP corresponding to an arm
in a Collapsing Bandit. For any subsidy𝑚, there is a reverse threshold
policy that is optimal if:

Δ𝑝 ≤ Δ𝑎 and Δ𝑝 + Δ𝑎 ≤ 1

𝛽
(7)

Intuitively, this condition requires that the action impact under

both, passive and active actions in the "bad" state must not be too

small (ensuring Δ𝑎 and Δ𝑝 are not too large) and further, the passive

action impact must be large (making Δ𝑝 smaller than Δ𝑎).
Note that both Thm. 3 and Thm. 4 define conditions for the

discounted reward case, however, substituting 𝛽 = 1 yields the

sufficient conditions for the average reward criterion because the

MDP is value-bounded (proof using Dutta’s Theorem [6] is given

in Appendix E in the full version of the paper).
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Corollary 1. Collapsing Bandits are indexable if:

Δ𝑝 + Δ𝑎 ≤ 1

𝛽
. (8)

From Thms. 3 and 4, we see that all CoBs satisfying the above

condition have at least either a forward threshold policy or a reverse

threshold policy as optimal. From Thm. 1 of Mate et al. [18], this

implies that they must be indexable.

Corollary 2. Collapsing bandits are indexable under either the av-
erage reward or the discounted reward criteria (for any 𝛽) if

Δ𝑝 + Δ𝑎 ≤ 1. (9)

Remark 1. Corollary 2 proves that Conjecture 1 of [18] must be true
for at least 88% instances of Collapsing Bandits.

Remark 2. For 𝛽 < 1

2
, the condition of Corollary 1 reduces to being

“Always True”, thus subsuming the previous results of an indexability
guarantee for 𝛽 < 1

2
established by Qian et al. [25] and others.

5 HANDLING IMPRECISE OBSERVATIONS
Real-world patients may misrepresent their adherence state or may

sometimes simply not answer the CHW’s calls, especially when

not adhering to the prescribed dosage. In such cases, the inter-

vention cannot be fully delivered, nor can the latent state be per-

fectly observed. We account for these uncertainties stemming from

‘imprecise’ observations by absorbing it in our RMAB planning

framework, making it more amenable to real-world deployment.

5.1 Belief Dynamics
When precise binary observations of ‘good’ or ‘bad’ are unavailable,

the planner may not get to directly observe and make confident

conclusions about the latent state of the patient. Instead, the plan-

ner may only receive an observation 𝜔 ∈ Ω that she associates

uniquely with a corresponding likely belief about the patient’s la-

tent state in the next step using her previous historical experience

and field expertise. For example, in practice, for ∥Ω∥ = 4, these

may correspond to either a confident positive, hesitant positive, a

negative or no response from the patient. We remove the reliance

on perfect observations from the patient, by including the human

planner in the loop and allowing her to define her own belief state

MDP for the patient, including the set of possible observations Ω
as well as their respective reset belief states, 𝑃𝑎𝜔 . The observation

probabilities and reset dynamics are explained further below.

We assume the planner observes an observation from the ob-

servation set Ω = {0, 1, ...∥Ω∥ − 1} every time a patient is inter-

vened upon. We define the observation function, Θ𝜔 (𝑏) as the
probability that the planner observes the evidence 𝜔 from the arm,

when in a belief state 𝑏 prior to the intervention. Thus, naturally

the sum of the observation functions over all possible evidences

must be equal to 1, giving:

∑𝜔=∥Ω ∥−1
𝜔=0

Θ𝜔 (𝑏) = 1. Such an obser-

vation function can be either estimated by the planner directly or

obtained via an emission matrix, either of which is specified by

the planner from her historical experience. Such an emission ma-

trix (and consequently the observation function) may be uniquely

defined for each patient. Let E denote the emission matrix of a

𝑏0(1)

𝑏1(1)

𝑏𝜔 (1)

. . .

𝑏0(2)

𝑏2(2)

𝑏𝜔 (2)

. . .

𝑏0(3)

𝑏2(3)

𝑏𝜔 (3)

. . .

𝑏0(4)

𝑏2(4)

𝑏𝜔 (4)

. . .

.. . . .

.. . . .

.. . . .

.. . . .

Θ0 (𝑏𝜔 (3))

Θ1 (𝑏𝜔 (3))

Θ𝜔 (𝑏𝜔 (3))

Figure 5: Multiple observations lead to a multiple-chain or-
ganization of belief states, with each observation having its
corresponding reset state. An active action resets the belief
state to 𝑏𝜔 (1) if observation 𝜔 is observed.

patient, as given by E =

[
𝑒00 𝑒01 . . . 𝑒

0∥Ω ∥−1
𝑒10 𝑒11 . . . 𝑒

1∥Ω ∥−1

]
where 𝑒𝑠𝜔 rep-

resents the probability of emitting the observation 𝜔 when the

true state of the patient is 𝑠 . For such an emission matrix E, the
corresponding observation function Θ𝜔 (𝑏), can then be obtained

as: Θ𝜔 (𝑏) = P(𝜔 |𝑏) = 𝑏𝑒1𝜔 + (1 − 𝑏)𝑒0𝜔 Note that here Θ𝜔 (𝑏)
is a linear in 𝑏 and has a derivative independent of 𝑏, given by

Θ′
𝜔 (𝑏) = (𝑒1𝜔 − 𝑒0𝜔 ) = Δ𝑒𝜔 (say).

The planner defines a unique, fixed reset state 𝑃𝑎𝜔 for each ob-

servation, 𝜔 ∈ Ω. When the planner intervenes on a patient and

receives an observation 𝜔 , the patient’s belief state resets to 𝑃𝑎𝜔 ,

independent of the current belief. Further, given that the observa-

tion 𝜔 appears with a probability Θ𝜔 (𝑏) as established earlier, the

passive and active action value functions can now be expressed as:

𝑉𝑚 (𝑏) = max

{
𝑚 + 𝜌 (𝑏) + 𝛽𝑉𝑚 (𝜏 (𝑏))...passive
𝜌 (𝑏) + 𝛽

( ∑
𝜔 Θ𝜔 (𝑏) .𝑉𝑚 (𝑃𝑎𝜔 )

)
...active

(10)

where

∑𝜔=∥Ω ∥−1
𝜔=0

Θ𝜔 (𝑏) = 1

5.2 Threshold Optimality
For the setting with two possible observations (∥Ω∥ = 2), we derive

conditions, which, if satisfied, guarantee the optimality of forward

and reverse threshold policies as in previous sections. Let 𝜔 = 1

(𝜔 = 0) be the observation corresponding to a positive (negative)

response to the intervention and have a reset belief state of 𝑃𝑎
1
(𝑃𝑎

0
).

The observation functions {Θ𝜔 (𝑏)}𝜔=0,1 can be expressed using a

single parameter and given by Θ1 (𝑏) = Θ(𝑏) and Θ0 (𝑏) = 1−Θ(𝑏).
We also let Δ𝑒 = Θ′(𝑏) = (𝑒11 − 𝑒01).

Theorem 5 (Forward Threshold Optimality). Consider a
belief-state MDP corresponding to an arm in an RMAB with some non-
decreasing reward function given by 𝜌 (𝑏), transition matrix given
by 𝑃 and an observation function, Θ(𝑏) for a belief state 𝑏. For any
subsidy𝑚, there is a forward threshold policy that is optimal if:

Δ𝑝 (1 − 𝛽 max{Δ𝑝 , (Δ𝑎 .Δ𝑒 )})
Δ𝑎 (1 − 𝛽 min{Δ𝑝 , (Δ𝑎 .Δ𝑒 )})

≥ 𝜌 ′𝑚𝑎𝑥

𝜌 ′
𝑚𝑖𝑛

(11)

where Δ𝑒 = Θ′(𝑏) for a linear Θ(𝑏) such as in the example above.
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Theorem 6 (Reverse ThresholdOptimality). Consider a belief-
state MDP corresponding to an arm in an RMAB with some non-
decreasing reward function given by 𝜌 (𝑏), transition matrix given
by 𝑃 and an observation function, Θ(𝑏) for a belief state 𝑏. For any
subsidy𝑚, there is a reverse threshold policy that is optimal if:

Δ𝑝 (1 − 𝛽 min{Δ𝑝 , (Δ𝑎 .Δ𝑒 )})
Δ𝑎 (1 − 𝛽 max{Δ𝑝 , (Δ𝑎 .Δ𝑒 )})

≤
𝜌 ′
𝑚𝑖𝑛

𝜌 ′𝑚𝑎𝑥

(12)

where Δ𝑒 = Θ′(𝑏) for a linear Θ(𝑏) such as in the example above.

6 EXPERIMENTAL EVALUATION
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Figure 6: Risk-Aware Whittle optimizes for the objectives
the planner cares about, and avhieves much higher utility
than Threshold Whittle, even while scoring lower on av-
erage adherence—a metric that previous approaches to the
HMIP focus on.

We explore several suitable reward functions 𝜌 (𝑏), tailor-made

for each of the specific CHW planning considerations at hand.

We demonstrate the effectiveness of our approach for addressing

at least three real-world objectives evaluating our algorithm on

both real and simulated data. We use real tuberculosis medication

adherence monitoring data, consisting of records of patients in

Mumbai, India, obtained from [15] and run simulations following

the same data imputation steps as [18] for consistency. We compare

the following algorithms: Risk-Aware Whittle is the algorithm
presented in this paper. Threshold Whittle is the SOTA fast al-

gorithm presented in [18], our primary baseline, which has been

shown to display near-optimal performance. Random selects 𝑘 pa-

tients to call at random. Myopic calls the 𝑘 patients that maximize

the expected adherence at the immediate next time step. ‘Every-
body’ is an unattainable upper baseline that simulates the effect

of intervening on everybody everyday. Wherever applicable, we

measure performance using ‘intervention benefit’, which scales

the reward from 0% (corresponding to no interventions) to 100%

(corresponding to Threshold Whittle unless indicated otherwise)

and is given by 𝐼 .𝐵.(𝐴𝐿𝐺) = 𝑅
𝐴𝐿𝐺−𝑅No intervention

𝑅
Threshold Whittle−𝑅No intervention

where 𝑅 is

the average reward of the algorithm. All results are measured over

50 independent trials.

6.1 Risk-sensitive planning
Real-world health workers may be risk-averse and prefer to con-

solidate the well-being of at least some of their patients rather

than being unsure about the health outcomes of the entire patient

cohort. For example, in case of the TB treatment, the medication

program may be effective only if completed with a high degree of

adherence. In such a case, the CHW may want to prioritize max-

imizing the number of patients who complete the program with

a high adherence rate. To account for risk-averseness, we employ

a convex reward function, 𝜌 (𝑏) = 𝑒𝜆𝑏 for 𝜆 = 20 in our algorithm

and measure its impact. We run a simulation for 𝑁 = 100 patients

and 𝑘 = 20 calls per day, with patient transition matrices drawn

from a fixed simulated distribution.

Fig. 6 shows the tradeoff between the utility to the planner and

the average adherence of the patient cohort. Algorithms studied in

previous work only focus on maximizing the average patient adher-

ence, which unfortunately may not be perfectly aligned with the

objectives the CHWs value the most. Our algorithm, on the other

hand directly optimizes for the CHW’s objectives, and achieves

a much higher utility than the state-of-the-art, Threshold Whit-

tle even while yielding a lower average adherence, which is less

valuable to the planner, and is thus a bad yardstick to measure

performance.

Fig. 7b(right) shows the histogram of time spent by patients in a

belief state over the duration of the program. The convex reward

function imposed by Risk-Aware Whittle “scoops out” patients

from the moderate belief zone, pushing part of these towards the

high-belief zone, boosting the number of patients adhering with

high confidence, towards realizing the objectives the planner cares

about. This effect is also manifested in the adherence histogram

of Fig. 7b(left), which shows the total days adhered to on the x-

axis and the corresponding number of patients with that score on

the y-axis. Fig. 8(b) plots the number of patients completing the

program high degree of adherence (defined as adherent for > 90%

days in the program). Risk-aware Whittle shows a steep increase

over Threshold Whittle in the number high-adherence patients.

6.2 Fairness towards Patients: Real Data
A specific fairness concern faced by CHW planning algorithms is

that some patients may be completely ignored by the algorithm

because it deems them less valuable to intervene on. Even though

it may be optimal when measured with the yardstick of average

cohort outcome, such an algorithm may be socially unacceptable.

To address this issue, we use a concave reward function soliciting

risk-seeking behavior through which the planner intervenes on

patients that may be sub-optimal in expectation. Such a reward

function imposes a large negative reward on lower belief values,

making the algorithm intervene on these patients in a bid to bring

them to moderate belief states. We employ 𝜌 (𝑏) = −𝑒 (𝜆 (1−𝑏)) with
𝜆 = 20 as the concave reward function. We use the real TB ad-

herence data from Mumbai to draw patient transition matrices for

𝑁 = 100 patients and a budget 𝑘 = 20 calls per day to run the

simulation.

Fig. 7a(right) shows the histogram of time spent by patients in

possible belief states. The effect of the risk-seeking reward function

is to transfer patients from very low and very high belief values

and to spread them over the moderate belief values. Fig. 7a(left)

plots the histogram of adherence of patients and shows the effec-

tiveness of this algorithm in nearly wiping out the spike at 𝑥 = 0,

representing the patients who never interact with the CHW. This is

corroborated by Fig. 8(a) which plots the number of patients with
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Figure 7: (a) ThresholdWhittle ignoresmany patients leaving them at a very low adherence (see blue spike at 𝑥 = 0).
Risk-Aware Whittle removes the blue spike, redistributing these patients towards moderate belief values. (b–left:)
Risk-Aware Whittle boosts the number of patients completing treatment with high adherence rates. (b–right:)
Risk-Aware Whittle better caters to risk-averse planners, who prefer having patients in the high belief zone.
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Figure 8: Risk-Aware Whittle is significantly better at tack-
ling the specific concerns of the CHW. (a) shows a sharp de-
crease in the number of patients with a severely low adher-
ence rate. (b) shows a significant jump in the number of pa-
tient finishing the treatment with a high adherence score.

very low adherence (defined as < 5% days of adherence) and shows

substantial decrease under the Risk-Aware Whittle algorithm as

against the Threshold Whittle algorithm.

6.3 Imprecise Observations
We next evaluate empirically, the performance of our algorithm

when precise observations of their latent states are not available

from patients like in real-world. To model this, we assume pa-

tients emit two possible observations: ‘0’ (denoting a negative re-

sponse such as not answering the CHW’s call at all or responding

prevaricatively) and ‘1’ indicating a positive response to the in-

tervention. We simulate using an emission matrix given by E =[
𝑒00 = 1 − 𝑃𝑙𝑖𝑒0 𝑒01 = 𝑃𝑙𝑖𝑒0
𝑒10 = 𝑃𝑙𝑖𝑒1 𝑒11 = 1 − 𝑃𝑙𝑖𝑒1

]
parameterized by 𝑃𝑙𝑖𝑒0(1) , cap-

turing the probability that patients misrepresent when in a true

latent state of 0(1). In Fig. 9 we fix 𝑝𝑙𝑖𝑒1 = 0.01 as the small prob-

ability that the intervention goes unanswered when the patient

is adherent and vary 𝑝𝑙𝑖𝑒0, from [0, 0.7] the probability of giving

a false observation when non-adherent . We measure the perfor-

mance on the 𝑦-axis, as improvement in the overall adherence in

terms of “intervention benefit” (defined previously), normalized

w.r.t ‘Threshold Whittle’ as the baseline fixed at 𝑦 = 100%. Fig-

ure shows, our algorithm outperforms Threshold Whittle, which

doesn’t account for imprecise observations and thus grapples with

incorrect belief values.
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Figure 9: Risk-AwareWhittle beats ThresholdWhittle when
patients misrepresent their adherence states.

7 DISCUSSION AND CONCLUSION
Mitigating bias in socio-technical systems such as ours, is an im-

portant issue [9, 11]. We rely on the human in the loop to ensure

that more complex human objectives can be addressed, and provide

flexibility to admit other objectives, which for example, may be

more ethical or fair as against the specific examples considered

here. The human-in-the-loop and other stakeholders situated in the

community may be able to better assess the needs of the community

and may collectively provide a better perspective on the objective.

To conclude, we propose a new RMAB-based planning frame-

work that allows for planning health interventions while accommo-

dating the real-world objectives of the health workers effectively.

We prove theoretical guarantees on the performance of our algo-

rithm that apply to a more general class and are stronger than the

guarantees for the specific sub-case studied previously. Through

empirical results, we demonstrate the effectiveness of our algo-

rithm in achieving improved health outcomes, addressing three

real-world planning challenges faced by the health workers.
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