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ABSTRACT
Motivated by a broad class of mobile intervention problems, we pro-

pose and study restless multi-armed bandits (RMABs) with network

effects. In our model, arms are partially recharging and connected

through a graph, so that pulling one arm also improves the state

of neighboring arms, significantly extending the previously stud-

ied setting of fully recharging bandits with no network effects. In

mobile interventions, network effects may arise due to regular pop-

ulation movements (such as commuting between home and work).

We show that network effects in RMABs induce strong reward cou-

pling that is not accounted for by existing solution methods. We

propose a new solution approach for networked RMABs, exploiting

concavity properties which arise under natural assumptions on the

structure of intervention effects. We provide sufficient conditions

for optimality of our approach in idealized settings and demonstrate

that it empirically outperforms state-of-the art baselines in three

mobile intervention domains using real-world graphs.
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1 INTRODUCTION
Mobile interventions are a model for providing services in which

agents are sent to different locations where they provide various

forms of interventions locally. Of particular importance are mobile

health clinics (MHCs), a model of healthcare delivery in which

mobile units deliver health services directly to target communi-

ties. MHCs are successful in reaching vulnerable populations; they

overcome typical barriers to health services access, such as limited

transportation, finances, insurance, or legal status [37]. A wide

variety of MHC services—such as primary care, prevention screen-

ings, disease management, and treatment support—have been very

successful. Their success is based on their flexibility in meeting

*
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the changing needs of target communities, and providing these

services at discounted rates or free of charge. Compared to other

healthcare service models, MHCs have been observed to provide

cost savings and cost-effectiveness [37]. Another important appli-

cation of mobile interventions is in food pantry services, which

cater to communities experiencing food insecurity by dispatching

food trucks.

Restless multi-armed bandits (RMABs) have become a widely

adopted mathematical model for studying various types of inter-

vention services [11, 16, 25, 27, 29, 31, 44]. RMABs are a model

for sequential planning problems: in each round, a planner has to

select 𝑘 out of𝑚 arms to pull. Arms transition randomly between

states, but the transition probabilities differ based on whether an

arm was pulled or not. The arms dispense rewards depending on

their state. In our motivating applications, arms represent locations,

𝑘 may represent the budget (e.g., number of available MHC units),

and rewards are the number of people positively affected by an

intervention. In this paper, we extend existing RMAB models for

interventions by considering network effects. Such network effects

often arise due to individual commuting behavior: when an MHC

visits one location, it provides interventions not only to people who

reside there, but also to others who have traveled to this location

(e.g., as a part of their routine work-related commuting). On the

flip side, the same MHC may miss people who have traveled to a

different location. Visiting one location may thus deliver an inter-

vention to residents of multiple locations, giving rise to network

effects. To the best of our knowledge, we are the first to consider

RMAB models with network effects.

Network effects lead to significant new challenges in the formal

model. Common solution approaches for RMABs treat each arm as

a Markov Decision Process (MDP) and exploit the fact that these

MDPs are coupled only through the joint budget constraint. This

weak coupling forms the basis for solutions based on index values,

which are computed separately for each of the 𝑚 arms. Policies

that select the 𝑘 arms with the highest indices can be shown to be

asymptotically optimal for several domains [21, 23, 28]. We show

that the aforementioned network effects induce a stronger coupling

between arms, making these solution approaches significantly less

effective. The main contributions of our work are (1) we present a

class of RMAB models with network effects suitable for modeling

mobile intervention domains, (2) we present a solution approach

for this class of problems and provide sufficient conditions for

the optimality of our approach, and (3) we show empirically that

our solution delivers superior performance compared to existing

approaches across multiple domains.
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2 RELATEDWORK
In the most general setting, the RMAB problem is known to be

PSPACE-hard to solve optimally [34]. However, by exploiting the

problem structure of certain restricted classes of RMABs, efficient

algorithms have been derived, sometimes with performance guar-

antees. The most popular of these is the Whittle index policy [42]

which is asymptotically optimal for indexable bandits [41] and fast

to compute if a closed form can be derived for the index. Many

works are dedicated to proving the indexability of different RMAB

subclasses and deriving closed-form or efficient approximations of

the Whittle index [4, 19, 22, 31]. Others have provided sufficient

conditions for indexability [32] or developed expensive methods for

computing policies with tighter reward bounds [3, 10]. However, all

of these methods rely on the idea that the only factor coupling the

arms are one or more budget constraints which we refer to as the

weakly coupled property. Thus, previous RMAB methods will not

be applicable for our work as the network effect strongly couples

the states, actions, transitions, and rewards of neighboring arms.

In terms of applications, RMAB models have been widely used

for scheduling problems, such as machine maintenance and re-

pair [2, 19, 40]. In these works, machines in factories are modeled

as arms, and the goal is to find the optimal schedule to visit factories

to maintain the machines. Other examples include anti-poaching

patrol planning ([35] propose a RMAB framework in which arms

are poaching targets, and playing an arm corresponds to a patrol)

or recommendation systems (e.g., for music streaming [45, 46]).

Such problems also motivated the recharging bandit model [24]. In

this model, each arm’s reward is determined by a function of the

time elapsed since the arm was last pulled. Implicitly, this resets

the arm’s reward to time 0 whenever the arm is pulled. When these

functions are increasing and concave for each arm, [24] develop a

concave program to solve the optimal frequency of pulling each

arm; the program’s value upper-bounds the value of an optimal

schedule. Scheduling the arm then becomes a pinwheel scheduling

problem [20], and [24] use a rounding scheme to approximate the

scheduling of arm pulls, while obeying the frequency restriction.

We extend this setting by allowing the arms’ rewards to be only

partially reset when the arm is selected, as well as by considering

network effects.

In the public health domain, this paper’s focus, [31] proposed

collapsing bandits to improve medication adherence through inter-

ventions on patients. [27] and [8] proposed RMABs for scheduling

cancer screenings and hepatitis treatments, respectively. In [16],

the closest RMAB application to ours, the authors model the re-

source allocation problem of delivering school-based asthma care

for children. The most important difference between our work and

theirs is that we consider network effects in the RMAB model.

Related Work in Network Planning Sequential resource al-

location problems on networks constitute another active area of

research. Previous works have considered the non-restless setting,

in which arms remain static when they are not pulled, such as

influence maximization [15, 38], or have studied the network ef-

fect on state transitions [17, 33] instead of on actions. To the best

of our knowledge, ours is the first work to study RMABs with

interventions that have network effects.

3 PROBLEM FORMULATION
General RMABs. RMABs are a generalization of the well-studied

multi-armed banditmodel withmany real-world applications. There

are𝑚 arms 𝑉 = {1, 2, . . . ,𝑚}; each arm 𝑣 ∈ 𝑉 can be in one of sev-

eral states 𝑠𝑣,𝑡 ∈ S at any time step 𝑡 ∈ N. At any time step, the

decision maker can pull up to 𝑘 arms. Each chosen arm 𝑣 transitions

in a Markovian fashion according to a transition matrix P𝑎 and

yields a reward 𝑟𝑣 (𝑠𝑣,𝑡 ) ≥ 0 that depends only on the state of the

arm 𝑣 at time 𝑡 . In the restless setting, arms that are not chosen

also transition, according to a different matrix P𝑝 . The elements

𝑝𝑎
𝑠,𝑠′ (𝑝

𝑝

𝑠,𝑠′ ) of the transition matrix capture the probability of tran-

sitioning from state 𝑠 to 𝑠 ′ when the arm is played (not played). Let

𝑉𝑎,𝑡 denote the set of arms being played at time step 𝑡 . The total

reward of time step 𝑡 can be expressed as 𝑅𝑡 =
∑

𝑣∈𝑉𝑎,𝑡 𝑟𝑣,𝑡 (𝑠𝑣,𝑡 ).
Each arm can be described as a two-action Markov Decision Pro-

cess (MDP) (S, {0, 1},R,P). An action of 1 denotes that the arm is

played and 0 that the arm is not played. Given the𝑚MDPs and their

initial states, the goal of this work is to find a policy for playing

a sequence of 𝑘 arms per round to maximize the average reward

𝑅 = lim𝑇→∞
1

𝑇

∑𝑇
𝑡=0

𝑅𝑡 .
1

Networked RMABs for mobile interventions. We consider

a setting where each arm 𝑣 corresponds to a location which has

a population 𝑛𝑣 ∈ N. The state 𝑠𝑣 ∈ S = {0, . . . , 𝑛𝑣} of a location
is the number of healthy individuals. Individuals can either be in

a healthy or, more generally, “good” state 𝐺 or in a “bad” state 𝐵.

Pulling an arm means visiting a location with a mobile intervention

service, thereby exposing individuals at the location to the inter-

vention. We thus consider the transition matrices for individuals,

depending on whether they receive an intervention (P𝑎𝑣 ) or not
(P𝑝𝑣 ):

P𝑎𝑣 =

𝐺 𝐵[ ]
𝐺 1 − 𝑝𝑎

𝑣,𝐺𝐵
𝑝𝑎
𝑣,𝐺𝐵

𝐵 𝑝𝑎
𝑣,𝐵𝐺

1 − 𝑝𝑎
𝑣,𝐵𝐺

, P𝑝𝑣 =

𝐺 𝐵[ ]
𝐺 1 − 𝑝𝑝

𝑣,𝐺𝐵
𝑝
𝑝

𝑣,𝐺𝐵

𝐵 𝑝
𝑝

𝑣,𝐵𝐺
1 − 𝑝𝑝

𝑣,𝐵𝐺

.

(1)

The transition probabilities are the same for all individuals with

the same home location. Below, we will consider travel by individu-

als, which may result in them being exposed to the intervention at

a different location. We stress that even in that case, an individual

with home location 𝑣 will transition according to the matrix 𝑃𝑣 .

This is because the characteristics of one’s neighborhood are an

important factor for one’s health [36], keeping in mind the intended

application domains of the model. We assume that the transition

probabilities and the initial states are known, but the transitions

are not observed. This is because while population-level health

data can be monitored, this rarely happens in real time. We omit

subscripts when they are clear from the context.

In order to account for network effects from commuting (or more

general travelling) behavior, we define a probability distribution

for individuals over locations. Let𝑤𝑢,𝑣 ∈ [0, 1] denote the probabil-
ity that an individual with home location 𝑣 is actually present in

location 𝑢 at any given moment (or that an individual from loca-

tion 𝑣 receives the intervention if location 𝑢 is visited; we assume

that individuals are sampled uniformly). Individuals can only be

1
Another frequently considered reward criterion is the discounted reward

∑∞
𝑡=0

𝛽𝑡𝑅𝑡
with 0 ≤ 𝛽 < 1.
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in one location at any given time, implying that

∑
𝑢∈𝑉 𝑤𝑢,𝑣 = 1.

The matrix W ∈ [0, 1]𝑚×𝑚 with elements𝑤𝑢,𝑣 is the weighted ad-

jacency matrix of the travelling network. Introducing the travelling

network has two effects:

(1) Not all individuals from location 𝑣 are exposed to an inter-

vention that visits 𝑣 . In expectation, only 𝑛𝑣𝑤𝑣,𝑣 individuals

from location 𝑣 will receive the intervention (transition ac-

cording to 𝑃𝑎𝑣 ) due to a visit at location 𝑣 . This property is an

important extension of the recharging bandits model [24]; in

that model, it is assumed that each intervention fully “resets”

the arm, i.e., puts all individuals into the good state.

(2) Individuals from other locations receive the intervention

when 𝑣 is visited. In expectation,

∑
𝑢∈𝑉 \{𝑣 } 𝑛𝑢𝑤𝑣,𝑢 individu-

als from other locations receive the intervention at 𝑣 .

The total number of individuals reached in any location thus

depends on whether other locations are visited, and we define the

vector a𝑡 ∈ {0, 1}𝑚 , with at most 𝑘 elements equal to 1, to represent

all actions taken in round 𝑡 . The vector of expected fractions of

the populations at each location 𝑣 reached by an action vector a
is given by ŵ(a) = W · a. Letting �̂�𝑣 denote the 𝑣-th entry of ŵ,

we also define the weighted average transition probabilities for a

location 𝑣 as P̂𝑣 (a) = �̂�𝑣 (a𝑡 ) · P𝑎𝑣 + (1 − �̂�𝑣 (a𝑡 )) · P𝑝𝑣 . Further let
s𝑣,𝑡 = [𝑠𝑣,𝑡 , 𝑛𝑣 − 𝑠𝑣,𝑡 ] be the total number of individuals in the good

and bad state in location 𝑣 at time 𝑡 . By conditioning on the current

state s𝑣,𝑡 and actions, we are able to obtain a closed form expression

for the expected state in the next time step:

E(s𝑣,𝑡+1 | s𝑣,𝑡 , a𝑡 , . . . , a0) =E(s𝑣,𝑡+1 | s𝑣,𝑡 , a𝑡 )

=�̂�𝑣s𝑣,𝑡P𝑎𝑣 + (1 − �̂�𝑣)s𝑣,𝑡P𝑝𝑣
=s𝑣,𝑡 P̂𝑣 (a𝑡 ).

However, the current state is unknown according to our assump-

tions. Hence we seek an expression for the expected future state

that does not require knowledge of the current state. Consider the

expected state at time 𝑡 conditional only on the action history:

E𝑡 (s𝑣,𝑡 ) := E(s𝑣,𝑡 | a𝑡−1, . . . , a0). Using the law of total expectation,

we obtain

E𝑡+1 (s𝑣,𝑡+1) =E(s𝑣,𝑡+1 | a𝑡 , . . . , a0)
=E(E(s𝑣,𝑡+1 | s𝑣,𝑡 , a𝑡 ) | a𝑡 , . . . , a0)
=E(s𝑣,𝑡 P̂𝑣 (a𝑡 ) | a𝑡 , . . . , a0)
=E(s𝑣,𝑡 | a𝑡−1, . . . , a0)P̂𝑣 (a𝑡 ),

since s𝑣,𝑡 does not depend on a𝑡 (only on previous actions). We

thus obtain a recurrence relation for the expected state:

E𝑡+1 (s𝑣,𝑡+1) = E𝑡 (s𝑣,𝑡 )P̂𝑣 (a𝑡 ). (2)

Eq. (2) allows us to compute the future expected state using

only the current expectation and action vector. In order to fully

describe the probability distribution of a single district, one would

need

(𝑚
𝑘

)
matrices of size (𝑛𝑣 + 1) × (𝑛𝑣 + 1). Eq. (2) allows us to

substantially reduce the complexity of the problem by focusing on

the expected state. We write E𝑡 (s𝑣,𝑡 ) = b𝑣,𝑡 and use the recursion

b𝑣,𝑡+1 = b𝑣,𝑡 P̂𝑣 (a𝑡 ), where the initial state b𝑣,0 = s𝑣,0 is known

according to our assumptions.

The goal of the planner is to maximize the intervention benefit,

taken as the sum of curing effects (cure𝑣 = 𝑝𝑎
𝑣,𝐵𝐺
− 𝑝𝑝

𝑣,𝐵𝐺
) and pre-

vention effects (prevention𝑣 = 𝑝
𝑝

𝑣,𝐺𝐵
− 𝑝𝑎

𝑣,𝐺𝐵
) for those individuals

who received the intervention (cure𝑣�̂�𝑣𝑏𝑣,𝑡,2 +prevention𝑣�̂�𝑣𝑏𝑣,𝑡,1,

where 𝑏𝑣,𝑡,1 and 𝑏𝑣,𝑡,2 are the first and second element of b𝑣,𝑡 , which
are the expected total number of individuals in the good and bad

state, respectively.), summed over locations and averaged over time

steps. This criterion is chosen to align with the goals of applications

such as MHCs which are to maximize the reach of a campaign [7],

and to avoid underserving communities with a high probability of

returning to the bad state, as could happen if only the total number

of people in the good state were considered. Combining the cur-

ing and prevention effects, the reward per time step is given by:

𝑅𝑡 (a𝑡 ) =
∑

𝑣∈𝑉 �̂�𝑣 (a𝑡 )s𝑣,𝑡 (P𝑎𝑣 − P𝑝𝑣 ) · [1, 0]⊤. As discussed above,

we focus on the expected reward and obtain:

𝑅𝑡 := E𝑡 (𝑅𝑡 (a𝑡 )) =
∑
𝑣∈𝑉

�̂�𝑣 (a𝑡 )b𝑣,𝑡 (P𝑎𝑣 − P𝑝𝑣 ) · [1, 0]⊤ . (3)

We further make three assumptions that are natural in many

relevant application domains; we combine assumptions made in

prior work [31] (assumptions (1) and (2)) with input from health

experts (assumption (3)).

(1) The intervention is never bad for the individuals: Health
care interventions can help prevent disease or diagnose it

early, reduce risk factors, and manage complications. Provid-

ing opportunities for increased access to quality services and

interventions can reduce health disparities as well. Interven-

tions provided via MHCs rarely result in negative impacts

toward populations with little or no access to screening op-

portunities.

(2) The individuals are more likely to stay in the good
state than to change from the bad state to good: In most

applications, moving to the good state (curing of a disease

or access to food) is unlikely to happen spontaneously.

(3) The curing effect of the intervention is larger then the
prevention effect: MHCs mostly serve otherwise under-

served communities. Those who attend MHCs are typically

concerned about their health and may already be exhibiting

symptoms of underlying disease. This makes curing inter-

ventions generally more useful/desired than preventive mea-

sures. In food pantry applications, the prevention effect is

typically small.

These assumptions are formalized in Eq. (4), for all 𝑣 ∈ 𝑉 :

𝑝
𝑝

𝑣,𝐺𝐵
≥ 𝑝𝑎𝑣,𝐺𝐵 and 𝑝𝑎𝑣,𝐵𝐺 ≥ 𝑝

𝑝

𝑣,𝐵𝐺
(4a)

1 − 𝑝𝑝
𝑣,𝐺𝐵

> 𝑝
𝑝

𝑣,𝐵𝐺
and 1 − 𝑝𝑎𝑣,𝐺𝐵 > 𝑝𝑎𝑣,𝐵𝐺 (4b)

𝑝𝑎𝑣,𝐵𝐺 − 𝑝
𝑝

𝑣,𝐵𝐺
> 𝑝

𝑝

𝑣,𝐺𝐵
− 𝑝𝑎𝑣,𝐺𝐵 (4c)

Next, we show that these assumptions entail two properties that

will prove useful later in constructing effective algorithms for the

networked RMAB problem. Specifically, consider a district 𝑣 , and

suppose that there are no interventions in adjacent districts. We

can then define the reward gain of visiting 𝑣 after 𝜏𝑣 time steps as

𝐻
upper

𝑣 (𝜏𝑣, �̂�𝑣) = (𝑝𝑝𝑣,𝐺𝐵
−𝑝𝑎

𝑣,𝐺𝐵
)�̂�𝑣𝑠𝑣,𝜏𝑣 +(𝑝𝑎𝑣,𝐵𝐺−𝑝

𝑝

𝑣,𝐵𝐺
)�̂�𝑣 (𝑛𝑎𝑣,𝜏𝑣−
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𝑠𝑣,𝜏𝑣 ) where 𝑠𝑣,𝜏𝑣 is the number of individuals in the good state at

the timewhen the arm pull happens. This function has the following

properties:

Theorem 1. Under the assumptions in Eq. (4), and assuming no
interventions in neighboring districts, 𝐻𝑢

𝑣 is a monotone increasing
concave function with respect to time 𝜏𝑣 elapsed since the last pull.

Theorem 2. Under the assumptions in Eq. (4), and assuming no
interventions in neighboring districts, 𝐻𝑢

𝑣 is a monotone increasing
concave function with respect to the expected population share �̂�𝑣

exposed to the intervention.

The proofs are deferred to the supplementary material. Theo-

rem 1 tells us that adding an extra pull to the intervention schedule

of an arm will always improve the reward. From Theorem 2, we

know that it is always preferable to intervene on a larger proportion

of the population of an arm. These results suggest that the periodic

policy is still a reasonable choice under the networked setting. The

periodic policy in the non-networked setting is motivated by the

following consideration: suppose that instead of pulling exactly 𝑘

arms, we require only that on average, 𝑘 arms are pulled in each

round. In this relaxed problem, a periodic policy with suitable peri-

ods is optimal if the reward function is concave [24].
2
Theorems 1

and 2 tell us that the reward function for the networked problem is

still concave.

4 SOLUTION APPROACHES
As discussed previously, our problem shares significant similarities

with the recharging bandits problem [24]. Both in the network-

free and networked setting, a natural solution approach is to (1)

determine the frequencies with which arms should be pulled, and

then (2) sequence the pulls optimally. Importantly, the network

effects affect both stages of the solution approach. As a result,

simple optimal (or near-optimal) policies from the non-networked

setting may be far from optimal when networks are considered.

The fact that network effects must be taken into account in

determining arm pull frequencies is easy to see. Consider a star

graph in which the central node has population 0, while the𝑚 − 1

leaf nodes have population 𝑛𝑣 = 𝑛, and — importantly — have

probability 1 of commuting to the central node.Without considering

the network/commuting effect, any policy would choose a non-

central node in each round (because the central node has population

0), whereas picking the central node in each round is clearly optimal.

Perhaps more interestingly, network effects also impact which

sets of arms should be pulled simultaneously, even keeping the

arm pull frequencies constant (and having identical arms). This is

illustrated in the following example.

Example 1. Consider the example shown in Fig. 1. We set 𝑘 = 2

and (𝑝𝑝
𝐺𝐵

, 𝑝
𝑝

𝐵𝐺
, 𝑝𝑎

𝐺𝐵
, 𝑝𝑎

𝐵𝐺
) = (𝑝𝐺𝐵, 0, 𝑝𝐺𝐵, 1). All arms in Fig. 1 are

identical. The optimal periodic policy is to select each arm every two
rounds [24]. Such a policy can be achieved without any rounding by
selecting exactly two arms in each round. However, different ways
of choosing these two arms result in policies with different rewards.
Specifically, we consider the following two policies: Policy NN: Select

2
The constrained version is then a more difficult problem that involves solving a

pinwheel problem, which is NP-hard.

two non-neighboring locations in each round. Policy NB: select two
neighboring locations in each round. We also consider two different
network scenarios with different commuting probabilities. In scenario
1, 𝑤𝑢,𝑣 = 1

2
for all (𝑢, 𝑣) ∈ 𝐸 and 𝑤𝑣,𝑣 = 0 for all 𝑣 ∈ 𝑉 , i.e., all

individuals commute to adjacent nodes. In scenario 2, 𝑤𝑢,𝑣 = 1

4
for

all (𝑢, 𝑣) ∈ 𝐸 and𝑤𝑣,𝑣 =
1

2
for all 𝑣 ∈ 𝑉 , i.e., half of the individuals

stay put. Table 1 summarizes the rewards of the two policies in the
two scenarios: In scenario 1, the policy NN is the better policy for

Scenario 1 Scenario 2

Policy NN
4𝑝𝐺𝐵−2𝑝2

𝐺𝐵

1+𝑝𝐺𝐵−𝑝2

𝐺𝐵

→ 2
4𝑝𝐺𝐵

2𝑝𝐺𝐵+1 →
4

3

Policy NB 4𝑝𝐺𝐵

2𝑝𝐺𝐵+1 →
4

3

52𝑝𝐺𝐵−32𝑝2

𝐺𝐵

13+16𝑝𝐺𝐵−16𝑝2

𝐺𝐵

→ 20

13

Table 1: Rewards of the two policies, and limits as 𝑝𝐺𝐵 → 1,
in the two scenarios.

any 𝑝𝐺𝐵 , and the relative reward difference can be as large as 2

3
. In

scenario 2, the policy NB becomes the better policy. For large 𝑝𝐺𝐵 , the
relative reward difference approaches 13

15
. In particular, we see that

the network effects must be taken into account in order to find the
optimal way to coordinate the arm pulls of different arms.

Policy NN: Policy NB:

Budget: 2/each round Pulled

Not pulled

Figure 1: Example for how network combinatorial effects af-
fect the reward of periodic policies.

Our proposed solution consists of two parts. In Section 4.1.1, we

present an approach to obtain the optimal visiting period for each

district. In Section 4.1.2, we illustrate our approach for synchroniz-

ing the arm pulls to optimize reward coupling.

4.1 Proposed approach
Despite the addedmodel complexities compared to the non-networked

Recharging Bandits model, our problem preserves similar concavity

properties. In a similar vein as [24], we thus aim to provide periodic

policies for the networked RMAB problem, i.e., policies that repeat

after 𝑇 time steps. This not only facilitates scheduling, but can also

reinforce intervention benefits in MHC domains [43]. Exhaustively

searching the action space of size

(𝑚
𝑘

)𝑇
is clearly impractical for

reasonable problem sizes𝑚. Fortunately, we can reduce the search

space by exploiting the concavity we proved in Theorem 1.

4.1.1 Obtaining Visiting Periods. Let 𝑥𝑣 be the fraction of times

that arm 𝑣 is chosen. When 1/𝑥𝑣 is integral, it can easily be shown

that pulling the arm every 1/𝑥𝑣 rounds will maximize reward due

to the concavity of the reward function [24]. Define the period of

pulling 𝜏𝑣 = 1/𝑥𝑣 ∈ {1, 2, 3, . . . ,𝑇 }, meaning that 𝑣 is visited every

𝜏𝑣 time steps. Let 𝑇 be the maximum period considered, which

could be a month, a season, or a year, depending on the application.

Our goal is to find the optimal time period for each arm, subject
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to the sum of intervention frequencies being at most the budget∑
𝑣∈𝑉 𝑥𝑣 ≤ 𝑘 .

Suppose that a policy pulls arm 𝑣 every 𝜏𝑣 time steps and follows

some schedule 𝜋 : 𝑡 → a𝑡 . We define P∗𝑣 (𝜏𝑣, 𝜋) =
∏𝜏𝑣

𝑡=0
P̂𝑣 (𝜋 (𝑡))

as the transition matrix of the expected state vector right before

the next arm pull. Note that the reward gained from pulling an

arm 𝑣 will depend on whether neighboring arms have recently

been pulled, as this would imply that some share of 𝑣 ’s population

has already been exposed to the intervention. For a given 𝜏𝑣 , the

reward gained from pulling 𝑣 is minimized when all neighboring

arms are visited in every round and maximized when no locations

other than 𝑣 are visited. We denote these two policies by 𝜋 ℓ and 𝜋𝑢 ,

respectively. We can thus bound the average reward gained from

pulling arm 𝑣 every 𝜏𝑣 rounds (defined as 𝐻𝑣 (𝜏𝑣)) as:
1

𝜏𝑣
b̄ℓ𝑣P∗𝑣 (𝜏𝑣, 𝜋 ℓ )n𝑣,𝐺 ≤ 𝐻𝑣 (𝜏𝑣) ≤

1

𝜏𝑣
b̄𝑢𝑣P∗𝑣 (𝜏𝑣, 𝜋𝑢 )n𝑣,𝐺 ,

where b̄ℓ𝑣 (b̄𝑢𝑣 ) is the steady state of P∗𝑣 (𝜏𝑣, 𝜋 ℓ ) (P∗𝑣 (𝜏𝑣, 𝜋𝑢 )), which
is also its eigenvector corresponding to its smallest eigenvalue.

P∗𝑣 (𝜏𝑣, 𝜋) is the 𝜏𝑣-step transition matrix of arm 𝑣 given the policy

of other arms 𝜋 .

Given the upper bound 𝐻
upper

𝑣 (𝜏𝑣) = 1

𝜏𝑣
b̄u

vP∗𝑣 (𝜏𝑣, 𝜋𝑢 )n𝑣,𝐺 , we

can construct the reward table for each arm 𝑣 by calculating the

upper bound of each possible 𝜏𝑣 . Finding the optimal period for

each arm thus becomes an optimization problem

max

∑
𝑣∈𝑉

𝐻
upper

𝑣 (𝜏𝑣) s.t.

∑
𝑣∈𝑉

𝑥𝑣 ≤ 𝑘.

We explicitly write the optimization problem as a MILP with

integer variables 𝑥𝑣,𝑡 ∈ {0, 1} for all 𝑣 ∈ 𝑉 , 𝑡 ∈ {1, 2, . . . ,𝑇 }. 𝑥𝑣,𝑡 = 1

denotes that location 𝑣 has a period of 𝑡 . In the MILP, we write

𝐻𝑢
𝑣 (𝑡) := 1

𝑡 b̄u
vP∗𝑣 (𝑡, 𝜋𝑢 )n𝑣,𝐺 for all 𝑣 and 𝑡 .

Maximize 𝑅

subject to

∑
𝑣

∑𝑇
𝑡=1

𝑥𝑣,𝑡
𝑡 ≤ 𝑘 (budget)∑𝑇

𝑡=1
𝑥𝑣,𝑡 ≤ 1 for all 𝑣 (periods)

𝑅 ≤ ∑
𝑣∈𝑉

∑𝑇
𝑡=1

𝑥𝑣,𝑡𝐻
𝑢
𝑣 (𝑡) (reward)

𝑥𝑣,𝑡 ∈ {0, 1} for all 𝑣, 𝑡 .

(5)

The MILP (5) has 𝑂 ( |𝑉 |𝑇 ) constraints. Its implementation can

be found in the source code provided. The first constraint captures

that the chosen periods/frequencies allow a fractional solution of at

most 𝑘 visits per time step. The second set of constraints captures

that each location has only one period. The third constraint bounds

the reward. From the MILP solution, for each 𝑣 , the period 𝜏𝑣 can

be obtained as the (at most one) 𝑡 such that 𝑥𝑣,𝑡 = 1. If 𝑥𝑣,𝑡 = 0 for

all 𝑡 for a particular 𝑣 , then the arm is never worth pulling and can

be discarded from the candidate pool.

The MILP can be adjusted to take fairness considerations into

account as well. We list a few examples here; further details are

discussed in the appendix:

• To achieve a minimum visiting frequency of 𝑓min, we can

replace 𝑇 with 𝑇min = 1/𝑓min.

• To ensure that individuals from each node 𝑣 have sufficient

access to the intervention (either at 𝑣 or a neighboring node),

we can add the constraints

∑
𝑢∈𝑉

∑𝑇
𝑡=0

𝑤𝑢,𝑣𝑥𝑢,𝑡
𝑡 ≥ 𝐿 for all 𝑣 .

• To encourage the algorithm to increase the smallest node

rewards, we can replace the reward with the alternative

welfare function 𝑅 ≤ ∑
𝑣∈𝑉

∑𝑇
𝑡=1

𝑥𝑣,𝑡 (𝐻
𝑢
𝑣 (𝑡 )
𝑛𝑣
)𝛼/𝛼 for 𝛼 ≤ 1.

4.1.2 Finding optimal node sets to account for reward coupling. As
illustrated in Example 1, the combinatorial effects of pulling arms

in the networked RMAB problem induce reward coupling between

the MDPs of the arms. In contrast to non-networked recharging

bandits, the choice of which set of arms with equal optimal periods

to pull in the same rounds thus matters in networked bandits. The

potential loss in reward here stems from the fact that when two

arms that are both neighboring arms of a third arm are intervened

on in different time steps, they will deliver the intervention in part

to the same individuals in the third arm.

In any time step 𝑡 , for any pair of arms that is pulled simulta-

neously, we seek to maximize the overlap between the shares of

populations in the set of arms that are neighbors of both arms. For

a pair of arms (𝑣, 𝑣 ′), this intervention overlap can be computed

as

∑
𝑢∈𝛿 (𝑣)∩𝛿 (𝑣′) 𝑤𝑣,𝑢𝑤𝑣′,𝑢 . If (and only if) the optimal periods 𝜏𝑣

and 𝜏𝑣′ are coprime to each other, this intervention overlap is inde-

pendent of when the arms are intervened on. (As an example, two

arms with periods 2 and 3 will be pulled together every six rounds,

regardless of when the policy starts pulling each arm.) If the periods

𝜏𝑢 and 𝜏𝑣 have a common factor, on the other hand, they can never

be pulled together if they are out of sync. (Arms with periods 2

and 4 will never be pulled together if their sequences start one

time step apart.) We would thus be losing out on the reward gains

from pulling the arms together every lcm(𝜏𝑢 , 𝜏𝑣) rounds. In order

to minimize this loss, we construct an undirected graph 𝐺 (𝑉 , 𝐸)
with the following edge weights:

�̄�𝑣,𝑣′ (𝜏𝑣, 𝜏𝑣′) =
{∑

𝑢∈𝛿 (𝑣)∩𝛿 (𝑣′)
𝑤𝑣,𝑢𝑤𝑣′,𝑢
lcm(𝜏𝑣 ,𝜏𝑣′ ) if gcd(𝜏𝑣, 𝜏𝑣′) > 1

0 otherwise

(6)

The weight of the cut between the selected and unselected arms

on 𝐺 equals the average reward loss due to the intervention over-

lap. We can thus select the arm set to pull by minimizing the cut

between the selected node set (of size 𝑘) and the unselected node

set. Graph partition problems with node cardinality constraints

are generally NP-hard [39]. We use a heuristic based on spectral

graph partitioning, by considering the 𝑘 nodes with the largest

or smallest value in the eigenvector corresponding to the second-

smallest eigenvalue of 𝐿 (also known as the Fiedler vector), where

𝐿 denotes the Laplacian of the graph 𝐺 . The ENGAge (Efficient

Network Geography Aware scheduling) Algorithm (Algorithm 1)

outputs an intervention policy based on this approach.

4.2 Analysis
We start by analyzing the complexity of the solution approach de-

scribed above. The concave MILP (5) can be solved efficiently using

time 𝑂 ( |𝑉 |𝑇 log( |𝑉 |𝑇 )), by sorting the set of slopes of segments,

corresponding to the different 𝐻𝑢
𝑣 (𝑡). Details are given in [24]. In

our implementation, we instead use an off-the-shelf MILP solver.

While its worst-case running time is larger, as our experiments

show, it runs very efficiently in practice. Calculating the Laplacian

𝐿 requires finding common neighbours (𝑂 ( ˆ𝑑 |𝐸 |) by [6], where
ˆ𝑑 is
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Figure 2: Average reward in three different domains under different budget constraints.
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the maximum degree in𝐺) and then computing their gcd (𝑂 (log𝑇 )
using the Euclidean algorithm). The overall cost of computing the

Laplacian is thus 𝑂 ( ˆ𝑑 |𝐸 | log𝑇 ). Again, our actual implementation

is less efficient in terms of worst-case complexity, but runs fast in

practice nonetheless. Finding a Fiedler vector takes time 𝑂 ( ¯𝑑 |𝑉 |)
using Lanczos’ algorithm [26], where

¯𝑑 is the average degree of 𝐺 .

The rest of the planning takes time 𝑂 ( |𝑉 |𝑇 ). Thus, the total time

complexity of our algorithm is 𝑂 ( |𝑉 |𝑇 log( |𝑉 |𝑇 ) + ˆ𝑑 |𝐸 | log𝑇 ).
In Section 5, we experimentally evaluate the performance of our

algorithm on various graphs from real-world domains. We now

turn to analyzing sufficient conditions that guarantee optimality

for various cases that we will discuss below.

First consider the case of homogeneous nodes and edge weights,

i.e., all nodes have the same populations and transition probabilities

between states, and all edges have the same commute probabilities.

If we replace the eigenvector-based heuristic in ENGAge with an

oracle that optimally solves the min-cut problem with cardinality

constraints, then ENGAge outputs the optimal policy for arbitrary

graphs of 𝑁 nodes whenever 𝑘 |𝑁 . This is because in this case, the

cut on the constructed graph measures the exact reward loss of the

schedule. Solving the min-cut problem optimally will then lead to

the optimal scheduling.

Next, consider the special case in which the graph 𝐺 has 𝛾 con-

nected components 𝐶1, . . . ,𝐶𝛾 , each of size |𝐶𝑖 | = 𝑘 . Furthermore,

we assume that all elements of the same component have the same

optimal period; that is, if 𝑢, 𝑣 ∈ 𝐶𝑖 , then 𝜏𝑢 = 𝜏𝑣 . For 𝛾 ≥ 2, note

that 𝐿 is positive semidefinite as 𝐺 is undirected for arbitrary in-

put graphs 𝐺 by construction. The smallest eigenvalue 0 will have

multiplicity 𝛾 in the Laplacian 𝐿. Thus, |Λ| = 𝛾 , and it is known

that each component 𝐶𝑖 has a corresponding Fiedler vector sup-

ported entirely on 𝐶𝑖 [30]. Hence, in each iteration, Algorithm 1

will select exactly all members of one component. As there are
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Algorithm 1 ENGAge

1: 𝑉
candidate

← 𝑉 and 𝑉wait ← ∅.
2: Compute periods 𝜏𝑣 using the MILP (5).

3: Construct the new graph𝐺 (𝑉 , 𝐸) according to Eq. (6) and com-

pute its Laplacian 𝐿.

4: Find the set Λ of Fiedler vectors of 𝐿 (more than one in case of

eigenvalue multiplicity).

5: for 𝑡 = 1, . . . ,𝑇 do
6: for 𝑣 ∈ 𝑉wait do
7: Timer(𝑣) ← Timer(𝑣) − 1.

8: if Timer(𝑣) = 0 then
9: Move 𝑣 from 𝑉wait to 𝑉candidate.

10: 𝑉𝑎 (𝑡) ← ∅.
11: for all 𝜂 ∈ Λ do
12: Find the sets of nodes with 𝑘-th largest and smallest el-

ements in 𝜂: Specifically, let 𝜂 (𝑘) denote the 𝑘-th largest

entry of 𝜂, set 𝑉 ← {𝑣 ∈ 𝑉
candidate

| 𝜂𝑣 ≤ 𝜂 (𝑘) } and
𝑉 = {𝑣 ∈ 𝑉

candidate
| 𝜂𝑣 ≥ 𝜂 (𝑚−𝑘+1) }.

13: If |𝑉 | > 𝑘 or |𝑉 | > 𝑘 , reduce the set size to 𝑘 by arbitrarily

removing tied nodes at the cutoff threshold.

14: Update𝑉𝑎 (𝑡) to the set 𝑆 that minimizes the cut:𝑉𝑎 (𝑡) ←
argmin𝑆 ∈{𝑉 ,𝑉 ,𝑉𝑎 (𝑡 ) } 𝑐 (𝑆). Here, 𝑐 (𝑆) denotes the cut ca-
pacity of the node set 𝑆 in 𝐺 (and is defined as∞ for the

empty set). Arbitrarily break ties.

15: Move 𝑉𝑎 (𝑡) from 𝑉
candidate

to 𝑉wait, and set Timer(𝑣) ← 𝜏𝑣
for these arms.

16: return 𝑉𝑎 (𝑡) as arms to pull at time 𝑡 for all times 𝑡 = 1, . . . ,𝑇 .

no links between nodes in different components by definition, all

members of a component will be fully intervened on. Our prob-

lem thus reduces to a pinwheel problem with 𝛾 arms and optimal

periods 𝜏𝑖 for 𝑖 = 1, . . . , 𝛾 . Pinwheel problems are known to be

NP-hard in general [13], but optimal solutions are known to exist

in special cases where all periods are multiples of one another and∑𝛾

𝑖
𝜏𝑖 ≤ 𝑘 [20]. The optimal solution in these cases can be obtained

by a simple greedy policy (see [13]) which is realized by the sets

𝑉wait of our algorithm. The latter condition is guaranteed by the

setup of ENGAge; hence, our proposed approach will output an

optimal schedule in those cases. For 𝛾 = 1, the same conclusion

follows trivially, because the algorithm can visit all locations in

each time step.

Based on the above analysis, ENGAge will output the optimal

policy in the following settings, among others: (1) Complete graphs

with equal edge weights, identical nodes, and 𝑘 |𝑁 . (2) Graphs with

multiple connected components, each of size 𝑘 , with equal edge

weights and identical nodes. (3) Rings with edge weights 1/2, iden-
tical nodes, and 𝑘 = 𝑁 /2. (4) 𝑑-dimensional Hypercubes with edge

weights 1/𝑑 , identical nodes, and 𝑘 = 𝑁 /𝑑 . (5) Bipartite or multipar-

tite graphs with partitions of size𝑘 , identical node degrees, and edge

weights summing to 1 for all nodes. (6) Strongly 𝑑-regular graphs

with equal edge weights and identical nodes. These are illustrative

examples of graphs where our algorithm is guaranteed to perform

optimally. In the next section, we will empirically show that it

Table 2: Properties of the network data sets.

Network |𝑉 | average average degree

degree centrality

Boston 431 2.92 0.005

Daniels County 631 2.53 0.008

Los Angeles 561 2.85 0.001

outperforms existing methods in more general settings, including

real-world graphs.

5 EXPERIMENTAL EVALUATION
We perform experiments comparing our algorithm to baselines in a

variety of real-world application scenarios. We begin by describing

the application domains and their properties:

Mobile Health Clinics in urban areas: This domain setting is

modeled on MHCs that are an important part of urban health care

programs. Specifically, we consider a graph of the city of Boston

(where such MHCs are used by non-profit organizations [14]), col-

lected from [12]. The graph consists of 431 locations that are used

as bandit arms. The populations 𝑛𝑣 and transition probabilities

(𝑝𝑝
𝑣𝐺𝐵

, 𝑝
𝑝

𝑣𝐵𝐺
, 𝑝𝑎

𝑣𝐵𝐺
, 𝑝𝑎

𝑣𝐺𝐵
) are generated from uniformly random

distributions subject to the assumptions introduced in the problem

formulation section
3
.

Mobile Health Clinics in rural areas: In contrast to urban

areas, rural areas are characterized by a larger number of less con-

nected smaller communities, and may experience lower overall

levels of access to health services. We model this domain using a

graph of Daniels County, MT, with 631 locations, taken from [12].

Daniels County is considered one of the most rural counties in

the US, as measured by the index of relative rurality [1]. We mod-

ify the previous setting to set a large portion of districts to have

communities with relatively small population, to account for the

characteristics described before.

Mobile Food Pantry: Due to a limited choice of means of trans-

portation, residents of many socially disadvantaged neighborhoods

can only access food within shorter distances; as a result, healthy

food options are often limited. Mobile food pantries (MFPs) have

become an important source of healthy food for these communi-

ties [5]. In the MFP scenario, the Los Angeles city graph with 561

locations collected from [12] is used, as food insecurity is an impor-

tant issue in Los Angeles. In this scenario, it is assumed that there

is no prevention effect (𝑝𝑎
𝐺𝐵

= 𝑝
𝑝

𝐺𝐵
), as the provided food needs to

be fresh and will only be distributed to individuals in bad states.

We compare our algorithm to three baseline algorithms. Random

selects 𝑘 locations uniformly at random in each time step. Myopic

selects the locations with maximum reward in the current time

step. Recharging is the rounding scheme scheduling provided

in [24]. All experiments are conducted on a system with 6 cores,

2.60 GHz Intel CPU, and 16 GBs of RAM for 30 simulations over

100 time steps for each trial. All figures include approximate 95%

confidence intervals as error bars. Figures 2a–2c show the average

reward collected with different budgets of 𝑘 ∈ {10, 20, 30} arms,

3
While we have access to real-world street graph data, we do not have access to

population and commuting data at a matching granularity.
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for the three domains described above. Our algorithm consistently

outperforms all baselines. Recharging mostly performs second-

best, though in the urban MHC setting, it is slightly worse than

Random. Figure 5c shows the average runtime per simulation in

seconds. Interestingly, Myopic is the slowest algorithm, because

it has to compute the reward for each node in each round, while

ENGAge and Recharging use pre-computed period tables.

We further analyze the sensitivity of these results to several

modeling parameters. Figure 5a shows the performance of the al-

gorithms for different densities for a synthetic domain based on a

spatial preferential attachment model [9, 18]. The results are non-

monotonic for the ENGAge algorithm. A possible explanation could

be that there might exist a level of optimum connectivity, below

which adding more links will increase the intervention benefit by

spreading interventions more widely, and above which adding more

links will cause too much overlap between the populations that are

intervened on in different time steps. Figures 3 and 4 show that

ENGAge consistently outperforms the baselines across multiple

values for cure and prevention rates in all domains.

We also analyze the impact of our algorithm on the most disad-

vantaged communities, i.e., those experiencing the highest risk of

transitioning to the bad state, or which have small probability of

recovering from the bad state. Figure 5b shows the average inter-

vention frequencies for the 15% communities with the highest risk

(𝑝
𝑝

𝐺𝐵
) and lowest chance of recovery (𝑝

𝑝

𝐵𝐺
). All algorithms except

Random intervene on the most disadvantaged communities dispro-

portionately more often, showing that they are not discriminating

against them. This is thanks to the design of the reward criterion

that measures intervention benefit for individuals receiving the

intervention.

Finally, we conduct a sensitivity analysis of the ENGAge al-

gorithm against graph perturbations. Figure 6 is constructed as

follows: Starting with the real-world graphs from the three do-

mains, we add perturbations by removing a given percentage of the

edges, and adding back the same number of edges randomly. In the

optimization, we then use the perturbed graph, while the original,

unperturbed graph is used to compute the rewards. Overall, we

observe that perturbing 𝑥% of edges generally reduces reward by

less than 𝑥%. For example, with a graph perturbation of 15%, the

performance reductions in the urban, rural and food settings are

6%, 13%, and 14%, respectively.

6 CONCLUSION
We present a networked RMAB model motivated by mobile in-

terventions; our model captures network effects stemming from

traveling behavior. Our model was built based on the input of do-

main experts in mobile health interventions. To the best of our

knowledge, this is the first paper addressing the challenge of sched-

uling multiple interventions with network effects in the RMAB

model. Network effects induce strong reward coupling between

arms, substantially complicating the analysis of the RMAB. We

propose the ENGAge (Efficient Network Geography Aware sched-

uling) algorithm that takes reward coupling and network effects

into account. We provide sufficient conditions for optimality and

show that our algorithm outperforms several baselines empirically

in three real-world domains and synthetic domains with varying

properties.
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