
Learning Heuristics for Combinatorial Assignment Problems by
Optimally Solving Subproblems

Fredrik Präntare

Linköping University

Linköping, Sweden

fredrik.prantare@liu.se

Herman Appelgren

Linköping University

Linköping, Sweden

herman.appelgren@liu.se

Mattias Tiger

Linköping University

Linköping, Sweden

mattias.tiger@liu.se

David Bergström

Linköping University

Linköping, Sweden

david.bergstrom@liu.se

Fredrik Heintz

Linköping University

Linköping, Sweden

fredrik.heintz@liu.se

ABSTRACT
Hand-crafting accurate heuristics for optimization problems is often

costly due to requiring expert knowledge and time-consuming pa-

rameter tuning. Automating this procedure using machine learning

has in recent years shown great promise. However, a large number

of important problem classes remain unexplored. This paper in-

vestigates one such class by exploring learning-based methods for

generating heuristics to perform value-maximizing combinatorial

assignment (the partitioning of elements among alternatives). In

more detail, we use machine learning leveraged by generating and

optimally solving subproblems to produce heuristics that can, for

example, be used with search algorithms to find feasible solutions

of higher quality more quickly. Our results show that our learned

heuristics outperform the state of the art in several benchmarks.

KEYWORDS
Operations Research; Machine Learning; Deep Learning; Heuristic

Search; Combinatorial Optimization; Neural Networks; Inapprox-

imability; Coalition Formation; Combinatorial Auctions

ACM Reference Format:
Fredrik Präntare, Herman Appelgren, Mattias Tiger, David Bergström,

and Fredrik Heintz. 2022. Learning Heuristics for Combinatorial Assignment

Problems by Optimally Solving Subproblems. In Proc. of the 21st Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2022), Online, May 9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
A fundamental challenge in computer science is that of designing

different types of cost-effective, scalable assignment algorithms.

We consider a highly challenging and general problem of this type,

namely that of utilitarian combinatorial assignment (UCA), in which
indivisible elements (e.g., sensors, goods, agents) have to be dis-

tributed in bundles (pairwise disjoint subsets) among a set of al-

ternatives (e.g., targets, buyers, jobs) to maximize a notion of ag-

gregated expected utility. This is a central problem in artificial
intelligence (AI), operations research (OR), and game theory (GT);

with applications in for example task/resource allocation [1, 9, 32],

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

combinatorial auctions [40], multi-target tracking and sensor fu-

sion [10], and team/coalition formation [32].

Unfortunately, this problem is computationally difficult—even

under limiting restrictions. The state-of-the-art algorithms can only

compute optima to problems with extremely few elements (up to

roughly 25) [33]. Moreover, for concisely defined problems, we

show that, unless P = NP, there exists no polynomial-time approx-
imation algorithm1

that can find a feasible solution (a potentially

sub-optimal assignment) with a provably good worst-case ratio (i.e.,

the returned output is within some multiplicative factor of the opti-

mum). In light of this, it is important to experimentally investigate if,

when and how heuristic algorithms that do not provide worst-case

ratio guarantees can generate feasible solutions of high-enough

quality for problems with large-scale inputs and limited compu-

tation budgets. However, manually designing accurate heuristics,

and deciding which one to use for a specific situation—in essence

solving the algorithm selection problem manually [38]—can be ex-

tremely costly due to requiring both expert knowledge and tuning

the heuristics’ parameters. For similar reasons, existing heuristics

tend to not perform well because they are not able to exploit the

problem’s underlying distribution in a satisfyingmanner. In essence,

to challenge the state of the art without learning, one would have

to manually design a new heuristic for every problem type and/or

application. Instead, we circumvent this issue by creating a general-

purpose method that learns to exploit a combinatorial assignment

problem instance’s underlying distribution without any a priori
knowledge of it.

Automating similar procedures with learning methods has in

recent years shown great promise for many types of problems,

including (but not limited to) route-finding [11, 20], graph prob-
lems [19], boolean satisfiability [54], and tree search [28]. Moreover,

heuristic search with a learned heuristic has achieved super-human

performance in playing many difficult games with massive state

spaces. A key problem in solving such games is to have a sufficiently

good approximation of the expected utility one can achieve from

any state. Progress within the deep learning field withmulti-layered
neural networks has made learning such an approximation possible

in a number of settings [22, 47], but many remain unexplored.

1
An approximation algorithm is one that yields some provable a priori guarantee on
the quality of its output, such as on the distance of its output to optimal or the ground

truth. In contrast, e.g., neural networks, while powerful in many applications, are

function approximators that, in general, yield no approximation guarantees.

Main Track AAMAS 2022, May 9–13, 2022, Online

1074

In a similar vein to these examples, we investigate and develop

the first general-purpose learning-based method for generating

heuristics for combinatorial assignment problems. We also present

theoretical and experimental foundations for using function approx-

imators, such as neural networks, to solve combinatorial assignment

problems. More specifically, our main contributions include:

• We are the first to explore and provide a method for gener-

ating UCA heuristics. This work includes i) a novel training
regime reminiscent of curriculum learning [3] and problem
reduction machine learning (see e.g., [48]), with which we are

the first to use an optimal solver to compute optimal solu-

tions to smaller “subproblems” that we aggregate to predict

optimal solutions for the full problem; ii) a general method

for generating UCA training data; and iii) a configuration
for using a state-of-the-art gradient boosted decision trees

method in addition to two easy-to-implement neural net-

work architectures for performing heuristic UCA.

• We benchmark our learning method on several problem in-

stances, and show that the heuristics it generates outperform

the state of the art in several standardized, difficult tests.

The remainder of this paper is structured as follows. We begin by

presenting related work in Section 2. Then, in Section 3, we define

important concepts and discuss UCA’s computational hardness. In

Section 4, we describe our method. In Section 5, we present our

experiments. Finally, in Section 6, we conclude with a summary.

2 RELATEDWORK
The most studied UCA applications can be divided into three areas,

and the most related combinatorial optimization problems in them

can be summarized as follows.

In AI: Coalition structure generation (CSG). A variation of

UCA in which we seek to generate a number of value-maximizing

agent groups. However, CSG does not model alternatives explicitly,

which arguably makes CSG less suitable for alternative-oriented

situations, e.g., when each group of agents should be assigned to

achieve a specific goal. [36]

In OR: The generalized assignment problem (GAP). In the

GAP, each alternative has a capacity, and the value function (defined
in Section 3) is additive, so there cannot be any synergies between

the elements. The GAP is for these reasons more similar to knapsack

problems, and the lack of synergies makes the problem easier from

a computational perspective since it yields approximability. It is

also a special case of UCA, so heuristics for UCA can be used for

the GAP (we explore this in Section 5). [6]

In GT: The winner determination problem (WDP). This is a
variation of UCA for which only a subset of the bundles are allowed.

These are given as a list of explicit “bids” that reveal how much a

number of bidders value different bundles of goods. Each valuation

is assumed to be non-negative. The goal in this problem is to find

an allocation of goods that maximizes the auctioneer’s profit. The

algorithmic literature for the WDP has focused on “small” value

functions (i.e., small bid lists). Contrastively, we are concerned

with large, exhaustive ones that are exponential in the number

of elements. While the WDP solvers can theoretically be used for

many UCA problems (more specifically those with a non-negative

value function), the best WDP solvers are unable to handle the

large number of bundles used in UCA due to being designed for

small-sized bid lists. WDP solvers are also designed to handle the

situations where no bid allocation can be found due to missing

bids, which is circumvented in UCA since its value function is

exhaustive (i.e., all allocations are allowed). [25]

Although several meta-heuristic algorithms have been proposed

for these problems [5, 50, 51, 53], no heuristic generation methods

have been devised for them. Other noteworthy special cases of UCA

include the multiple traveling salesperson problem [7], in which

the salespersons correspond to alternatives, while the elements

represent cities; spectrum repacking, which [29] explored with deep

optimization; andmany variations ofweighted matching, which [52]
surveyed from a machine learning perspective.

In addition to the aforementioned three problems, UCA is equiv-

alent to simultaneous coalition structure generation and assignment
when the indivisible elements are viewed as agents [32], and related

to multi-agent resource allocation in 𝑛-additive domains when they

are viewed as goods [9]. The state-of-the-art optimal algorithm

for these problems was developed by [33], which is thus also the

state of the art for optimal UCA. While their algorithm outperforms

industry-grade solvers like CPLEX in difficult benchmarks, it can

only solve fairly small problems, and there is no proven guarantee

that it will always terminate in less time than exhaustive search.

Apart from this work, a few heuristic UCA algorithms have been

explored, including Monte Carlo tree search, simulated annealing,
and local search [31]. A major drawback of the heuristics deployed

by these algorithms is that they are not able to learn and exploit

the underlying problem distribution.

In more general for machine learning, there has been work in

using a learned heuristic in search [2, 16]. There has also been work

in combining previous optimization methods, such as branch-and-
bound, with learning [12, 15, 24]. Another category is end-to-end
learning, in which machine learning is used to learn a function that

outputs solutions directly. While the end-to-end approach has been

applied to important problems such as the traveling salesperson
problem [19], the multi-unit winner determination problem [23], and

the propositional satisfiability problem [43], the learned heuristic

approach—which we also pursue in this paper—remains dominat-

ing [42], since it allows for combining the advantages of combina-

torial optimization with new advances in machine learning.

3 BASIC CONCEPTS AND COMPLEXITY
UCA, the problem that we investigate in this paper, is defined as

the following optimization problem.

Input: A triple ⟨𝐸,𝐴, 𝒗⟩, where 𝐸 = {𝑒1, . . . , 𝑒𝑛} is a set of elements,

𝐴 = {1, . . . ,𝑚} is a set of alternatives, and 𝒗 : 2
𝐸 × 𝐴 ↦→ R is a

function (called the value function) that maps a value (e.g., expected

utility) to every pairing of a bundle 𝐵 ⊆ 𝐸 to an alternative 𝑎 ∈ 𝐴.

Output:A combinatorial assignment (Definition 1)𝐶 = ⟨𝐵1, . . . , 𝐵𝑚⟩
over 𝐸 that maximizes its value defined with 𝑽 (𝐶) = ∑𝑚

𝑖=1 𝒗 (𝐵𝑖 , 𝑖).

Definition 1. The tuple ⟨𝐵1, . . . , 𝐵𝑚⟩ is a combinatorial assign-

ment over 𝐸 if 𝐵𝑖 ∩ 𝐵 𝑗 = ∅ for all 𝑖 ≠ 𝑗 , and
⋃𝑚

𝑖=1 𝐵𝑖 = 𝐸.

Main Track AAMAS 2022, May 9–13, 2022, Online

1075

Moreover, we overload 𝑽 (𝑃) =
∑𝑚
𝑖=1 𝒗 (𝐵𝑖 , 𝑖) to also denote

the value of a partial assignment (Definition 2) 𝑃 = ⟨𝐵1, . . . , 𝐵𝑚⟩,
and define ∥𝑃 ∥ =

∑𝑚
𝑖=1 |𝐵𝑖 |. (Note that we deliberately define the

concept of a partial assignment so that a combinatorial assign-

ment over 𝐸 is also a partial assignment over 𝐸.) We also use Π𝐸

for the set of all combinatorial assignments over 𝐸, and define

Π𝑘
𝐸
= {𝐶 ∈ Π𝐸 : |𝐶 | = 𝑘} for 𝑘 ∈ {1, . . . ,𝑚}. We use the conven-

tions 𝑛 = |𝐸 | and𝑚 = |𝐴|, and say that a combinatorial assignment

𝐶∗
is optimal if and only if:

𝑽 (𝐶∗) = max

𝐶∈Π𝑚
𝐸

𝑽 (𝐶).

Definition 2. 𝐶 is a partial assignment over 𝐸 if 𝐶 is a combi-
natorial assignment over any 𝐸 ′ ⊆ 𝐸.

While [31] already proved UCA’s NP-hardness by a reduction

from CSG to simultaneous coalition structure generation and as-

signment, we now prove that UCA is also hard to approximate. This

rules out approximation algorithms with solution guarantees as a

general-purpose option for UCA, since it provides evidence that we

are not able to construct a method that can generate a solution of

sufficiently high quality for all UCA instances in polynomial time.

This further motivates our quest to explore machine learning, since

it may enable us to handle many more problem classes without

requiring human intervention to analyze what heuristics best suit a

specific type of problem class (e.g., value distribution), or a specific

application (e.g., multi-vehicle routing).

A first observation is that the size of the input for arbitrary UCA

problems is exponential in the number of elements. More specifi-

cally, to specify an arbitrary value function you need, in worst case,

𝑚2
𝑛
entries dedicated for it in the input. Using dynamic program-

ming, one can find optimum in O(𝑚3
𝑛) [33]. This is exponential

in 𝑛, but polynomial in the input’s size O(𝑚2
𝑛), since:

𝑚3
𝑛 =𝑚2

(𝑙𝑜𝑔23)𝑛 =𝑚(2𝑛)𝑙𝑜𝑔23 .

Suppose we only gave 𝑘 < 𝑚2
𝑛
of the value function’s entries ex-

plicitly instead, and define the remaining values concisely (for exam-

ple as an arbitrary value)—then, canwe construct a polynomial-time

approximation algorithm with provably good worst-case guaran-

tees? This is unfortunately not possible, unless P = NP, as stated by
Theorem 1. (Note that the same result can also be achieved through

a reduction from the APX-hard WDP. This is because from a com-

plexity perspective, theWDP is the special case of UCA in which we

only allow non-negative andmonotone value functions.) A corollary

of Theorem 1’s proof is that UCA is also APX-hard2 (Theorem 2).

Note that while the general UCA problem is hard to approximate,

many important restricted instances can be approximated and/or

solved more efficiently—see for example earlier results on various

related combinatorial auction, maximum clique, and set packing

problems such as [13, 14, 26].

Theorem 1 (Inapproximability). Unless P = NP, there is no
polynomial-time algorithm that approximates UCA to a ratio of 𝑐 ≤
𝑘1−𝜖 for any 𝜖 > 0, where 𝑘 is the number of values in the input.

2
The complexity class APX is the set of optimization problems in NP that can be

approximated with an approximation guarantee that is bounded by a constant.

Proof. We follow a similar proof procedure as the one that [39]

provided for their combinatorial auctionwinner determination inap-

proximability result, with the difference that we alter their weighted
independent set (WIS) reduction so that it works for UCA. First, re-

call that in the WIS problem, the input is an undirected graph with

weighted vertices, and the output is an independent set (a subset of
the vertices that are pairwise non-adjacent) with maximum aggre-

gated weight. With this in mind, for sake of contradiction, assume

that there exists a poly-time algorithm that approximates UCA to a

ratio 𝑐 ≤ 𝑘1−𝜖 . Then, that algorithm could be used to 𝑐-approximate

the WIS problem in polynomial time. This can be shown through

the following approximation-preserving polynomial-time reduction

from the WIS to UCA. First, create one element for each edge and

one alternative for each vertex in the graph. Let 𝑰 (𝑎) be the set of
elements that represent an edge incident to the vertex represented

by the alternative 𝑎. Now define 𝒗 (𝐵, 𝑎) (UCA’s value function) to
be equal to the weight of the vertex represented by 𝑎 if the bundle

𝐵 = 𝑰 (𝑎), and 0 otherwise. This completes the reduction, which

means that the algorithm can also 𝑐-approximate the independent

set problem in polynomial time, and can then also 𝑐-approximate

the maximum clique problem. This leads to a contradiction, since

[13] and [55] showed that, unless P = NP, there exists no algorithm
that can always establish such a bound in polynomial time. □

Theorem 2 (APX-hardness). UCA is APX-hard.

Proof. This follows from Theorem 1’s proof, which provides a

linear reduction from an APX-hard problem to UCA. □

A final note is that UCA and CSG are problems that can be con-

verted into each other in polynomial time with only a polynomial

increase in the input size. From a complexity perspective, the gen-

eral cases of these problems are in this sense equivalent. However,

these conversions greatly affect the problems’ search spaces (i.e.,

their sizes and distributions), and algorithms designed for e.g., CSG

can in practice be extremely inefficient for UCA, and vice versa.

4 GENERATING HEURISTICS
In an attempt to counter UCA’s inapproximability, and to formally

express our machine learning approach to generating heuristics for

UCA, first let ⟨𝑒 ′
1
, . . . , 𝑒 ′𝑛⟩ be any permutation of 𝐸, and define:

𝑽 ∗ (𝐶) =
{
𝑽 (𝐶) if ∥𝐶 ∥ = 𝑛

max𝐶′∈𝜻 (𝐶,𝑒′∥𝐶 ∥+1) 𝑽
∗ (𝐶 ′) otherwise

, (1)

where

𝜻
(
⟨𝐵1, . . . , 𝐵𝑚⟩, 𝑒

)
=

𝑚⋃
𝑖=1

{
⟨𝐵1, . . . , 𝐵𝑖 ∪ {𝑒}, . . . , 𝐵𝑚⟩

}
,

and 𝐶 is a combinatorial assignment over {𝑒 ′
1
, . . . , 𝑒 ′∥𝐶 ∥}, where

∥𝐶 ∥ ≤ 𝑛. As a consequence of Theorem 3, UCA boils down to

computing recurrence (1). One of the main goals of this paper is

to investigate approximating this recurrence. Such approximations

can then be used in conjunction with tree/graph search algorithms

such as Monte Carlo tree search, for example in a similar fashion

as [47] did for solving difficult board games.

Main Track AAMAS 2022, May 9–13, 2022, Online

1076

Theorem 3 (Optimal substructure). If 𝑃 = ⟨𝐵1, . . . , 𝐵𝑚⟩ is
a partial assignment over 𝐸, it holds that 𝑽 ∗ (𝑃) = max𝐶∈Ψ 𝑽 (𝐶),
where Ψ =

{
⟨𝐵′

1
, . . . , 𝐵′

𝑚⟩ ∈ Π𝑚
𝐸

: 𝐵𝑖 ⊆ 𝐵′
𝑖
for 𝑖 = 1, . . . ,𝑚

}
.

Proof. This result follows directly by induction. □

Our approach can thus be viewed as treating a partial assignment

over 𝐸 as a “state”, and UCA as the decision-making problem where

we want to assign the unassigned elements in a way that results

in an assignment that maximizes the expected value. Our approxi-

mators attempt to estimate the maximum possible “gain” from a

specific partial assignment without conducting costly look-ahead.

Note that if we sequentially assign any remaining unassigned

elements, Theorem 3 reveals one way in which UCA relates to dy-

namic programming and reinforcement learning, since we are then

in essence trying to approximate the Q-function for a sequential

decision-making problem. Of course, this type of ordering is entirely

artificial, but it can be exploited by certain heuristic methods, such

as the ones proposed in [31]. For the same reason, i.e. since UCA

is not sequential, we expect architectures such as recurrent neural

networks and pointer networks [49] to perform worse than their

non-sequential (e.g., feedforward) counterparts. Section 5 includes

experiments that corroborates this hypothesis.

Heuristic Function Models
A key question that arises from the previous section is: which

learning-based function approximator (e.g., architecture/method)

is the one that is most suitable for approximating (1)? Naturally,

the answer depends on the context, such as the value function’s

distribution, the problem’s input size, and the time available for

training. Thus, as a proof of concept to show that our approach

to generating UCA heuristics works, we attempt to approximate

(1) using different types of approximators and benchmark them

against the state-of-the-art general-purpose heuristics. We provide

architectures for two neural networks that can be used for UCA: i)

a deep feedforward neural network (FNN), and ii) a recurrent neural
network (RNN). In addition, we also use a state-of-the-art gradient
boosting decision trees method. If our approximators outperform

the state of the art, we expect there to exist more specialized ap-

proximators that yield even better results, which can be explored

further in future work.

Note that the artificially constructed partial assignment repre-

sentations that we use henceforth are not (semantically) tabular in

the conventional sense, such as in the data sets in for example [17]

or [46]. Similar to a natural image, there are no explicit meaningful

features in either our rows, columns or the matrix elements. How-

ever, as opposed to a typical natural image or coordinate frame, no

trivial locality or smoothness in the input space is guaranteed (or

expected). Consequently, it is likely challenging to design useful

kernels, or similarity measures, for kernel-based or non-parametric

methods. A main motivation of our work is to avoid such hand-

crafted in-depth heuristic design for every interesting domain.

Feedforward Neural Network. Our first approximation for (1) uses a

𝜃 -parameterized fully connected deep neural network 𝒅𝜃 (𝑃):

𝒅𝜃 (𝑃) ≈ 𝑽 ∗ (𝑃),

where 𝑃 is a partial assignment. This network uses ReLU [22] ac-

tivation functions and a parametric number 𝑑 of 𝑤-wide hidden

layers. The input is of size𝑚𝑛+1 and consists of a vectorized binary
assignment-matrix representation of 𝑃 (Definition 3), for which each

row 𝑗 is the one-hot encoding of element 𝑒 𝑗 ’s assignment, together

with a scalar equal to its value 𝑽 (𝑃).

Definition 3. The binary assignment matrix of a partial assign-
ment ⟨𝐵1, . . . , 𝐵𝑚⟩ over {𝑒1, . . . , 𝑒𝑛} is the 𝑛×𝑚 matrix [𝑥𝑖, 𝑗], where
𝑥𝑖, 𝑗 = 1 if 𝑒 𝑗 ∈ 𝐵𝑖 , and 𝑥𝑖, 𝑗 = 0 otherwise.

Recurrent Neural Network. Our second approximator consists of a

RNN 𝒓𝜃 (𝑃) with parameters 𝜃 that approximates (1) as follows:

𝒓𝜃 (𝑃) ≈ 𝑽 ∗ (𝑃),

where 𝑃 = ⟨𝐵1, . . . , 𝐵𝑚⟩ is a partial assignment. It sequentially feeds

triples 𝑇1, . . . ,𝑇∥𝑃 ∥ to a recurrent network with hidden states of

dimension𝑤 . Each triple 𝑇𝑖 = ⟨𝛼𝑖 , 𝛽𝑖 , 𝛿𝑖 ⟩ consists of:
• an element 𝛼𝑖 ∈

⋃𝑚
𝑗=1 𝐵 𝑗 , with 𝛼𝑖 ≠ 𝛼𝑘 for 𝑖 ≠ 𝑘 ;

• the alternative 𝛽𝑖 ∈ 𝐴 for which 𝛼𝑖 ∈ 𝐵𝛽𝑖 ; and

• a value 𝛿𝑖 , which is the gain (Definition 4) of assigning 𝛼𝑖 to

𝛽𝑖 over the partial assignment ⟨𝑄1, . . . , 𝑄𝑚⟩, where

𝑄 𝑗 = 𝐵 𝑗 \ {𝛼𝑖 , . . . , 𝛼 ∥𝑃 ∥}

for 𝑗 = 1, . . . ,𝑚. (So 𝛼𝑖 , . . . , 𝛼 ∥𝑃 ∥ are left “unassigned”.)

The RNN’s output is then processed through a parametric number

of fully-connected layers with ReLU activation functions.

Definition 4. The gain of assigning 𝑒 ∈ 𝐸 to 𝑎 ∈ 𝐴 over the
partial assignment 𝑃 = ⟨𝑃1, . . . , 𝑃𝑚⟩ is defined as the value:

𝑽
(
⟨𝑃1, . . . , 𝑃𝑎 ∪ {𝑒}, . . . , 𝑃𝑚⟩

)
− 𝑽 (𝑃).

To generate a set of such triples from a partial assignment 𝑃 , all

one needs is an arbitrary permutation of the element set (which can

be generated in O(𝑛)), together with some basic, efficient compu-

tations to compute the triples’ different gains. This approach thus

allows us to make use of every element’s precedent contribution.

(Ideally, one would perhaps instead like to use all possible permuta-

tions of the element set and average over them—this is however, in

general, an extremely costly computation, and involves what corre-

sponds to computing all elements’ different Shapley values [44].)

Gradient Boosting Decision Trees. Our third approximator consists

of the gradient boosting decision trees method XGBoost [8]. XG-
Boost and similar methods have shown great promise on certain

domains, in particular on tabular data [17, 18, 45], where these

methods often outperform deep neural networks. XGBoost has

also achieved state-of-the-art results on a large number of different

machine learning challenges [8].

We use an agent assignment vector (Definition 5), together with

a scalar value (in the same manner as for the FNN), as input for

XGBoost. This input characterization made XGBoost perform much

better than when using a binary assignment matrix in early experi-

ments, which was not the case for the FNN.

Definition 5. The agent assignment vector of a partial assign-
ment ⟨𝐵1, . . . , 𝐵𝑚⟩ over {𝑒1, . . . , 𝑒𝑛} is the 𝑛-sized vector [𝑥 𝑗], where
𝑥 𝑗 = 𝑖 if 𝑒 𝑗 ∈ 𝐵𝑖 , and 𝑥 𝑗 = 0 otherwise.

Main Track AAMAS 2022, May 9–13, 2022, Online

1077

Training Paradigm
Our training procedure incorporates generating a data set D, split

into training/validation sets (we use a 90%/10% split in our experi-

ments), that consists of pairs ⟨𝑃, 𝑽 ∗ (𝑃)⟩, with every 𝑃 being a size-𝑚

partial assignment over 𝐸. Each such pair’s partial assignment is

randomly chosen from Π𝑚
𝐸𝑖
, where 𝐸𝑖 ⊂ 𝐸 is a uniformly drawn

subset from {𝑋 ⊆ 𝐸 : |𝑋 | = 𝑖}, for 𝑖 = 𝑛 − 1, . . . , 𝑛 − 𝜅, where

𝜅 ∈ {1, . . . , 𝑛 − 1} is a freely chosen training data parameter. In our

experiments, D consists of exactly 10
4
such pairs for every 𝑖 , so

|D| = 10
4𝜅 . Note that it is only tractable to compute 𝑽 ∗

if 𝜅 is kept

small, since in such cases we only have to search a tree with depth

𝜅 and branching factor𝑚 to compute 𝑽 ∗
. For this reason, we con-

strain ourselves to𝜅 = 10 in this work.We obtain the optimal values

with the state-of-the-art optimal algorithm [33], which solves prob-

lems of small sizes (e.g., with 𝑛 ≤ 10) in milliseconds. This way

of generating training data directly from the problem itself—by

exploiting the problem’s optimal substructure property—allows us

to decide ourselves how much data we want to use for training,

thus mitigating the machine learning data sparsity problem (i.e.,

the lack of sufficient training data).

For each function approximator 𝒇𝜃 ’s parameters 𝜃 are then opti-

mized over the training data to minimize:

E⟨𝑃,𝑽 ∗ (𝑃) ⟩∼D
[(
𝑽 ∗ (𝑃) − 𝒇𝜃 (𝑃)

)
2

]
.

5 EVALUATION AND EXPERIMENTS
The main goals with our benchmarks are to investigate how dif-

ferent input sizes, value distributions, and function approximators

affect our heuristic generation method, and how the generated

heuristics compare to the state of the art. To accomplish these goals,

and in accordance with established practices in combinatorial opti-

mization, we benchmark our method with standardized problem

distributions that generate difficult problem instances for combi-

natorial assignment and weighted partitioning. We also introduce

three application-focused benchmarks based on the three major

domains for combinatorial assignment that we outlined in Section 2.

The first five distributions that we use for benchmarking are

NPD (normal probability distribution), UPD (uniform probability

distribution), SNPD (sparse NPD), SUPD (sparse UPD), andNRD (nor-

mal relational distribution). These generate some of the most dif-

ficult known problems for the state-of-the-art UCA solvers (see

e.g., [31, 33]). Variations of them have also been used extensively

to benchmark various approaches for solving a number of different

problems related to UCA in operations research, algorithmic game

theory, and multi-agent systems, including coalition formation and

combinatorial auctions [27, 31–34, 37, 41, 50]. In more detail, they

generate problem instances as follows:

• NPD: 𝒗 (𝐵, 𝑎) ∼ N (𝜇1, 𝜎2);
• UPD: 𝒗 (𝐵, 𝑎) ∼ U (0, 1);
• SNPD: 𝒗 (𝐵, 𝑎) ∼ N (𝜇1, 𝜎2) with probability 0.01, otherwise

draw 𝒗 (𝐵, 𝑎) ∼ N (𝜇2, 𝜎2);
• SUPD: 𝒗 (𝐵, 𝑎) ∼ U (0, 1) with probability 0.01, otherwise

draw 𝒗 (𝐵, 𝑎) ∼ U (0, 0.1); and
• NRD: 𝒗 (𝐵, 𝑎) = ∑

{𝑒1,𝑒2 }∈(𝐵
2
) 𝒓

(
{𝑒1, 𝑒2}, 𝑎

)
;

for all 𝐵 ⊆ 𝐸, and 𝑎 ∈ 𝐴, where 𝜎 = 0.1, 𝜇1 = 1, 𝜇2 = 0.1, and

𝒓
(
{𝑒1, 𝑒2}, 𝑎

)
∼ N (𝜇𝑟 , 𝜎2𝑟), with 𝜇𝑟 = 0, 𝜎𝑟 = 0.1, for all 𝑒 ∈ 𝐸,

{𝑒1, 𝑒2} ∈
(𝐸
2

)
, and 𝑎 ∈ 𝐴. Note that, out of these distributions, NRD

is the only one that generates problem instances that can be repre-

sented in a size that is polynomial in the number of elements. More

precisely, this requires O(𝑚𝑛2) memory per problem instance. Also,

the class of problems with value functions that are representable

concisely in this form is NP-hard [9]. Intuitively, if the elements are

viewed as agents, and the alternatives as tasks, an interpretation

of 𝒓
(
{𝑒1, 𝑒2}, 𝑎

)
is that it represents how well the agent 𝑒1 ∈ 𝐸 can

collaborate with 𝑒2 ∈ 𝐸 when performing task 𝑎 ∈ 𝐴; NRD simply

assumes that this relation is normally distributed.

To make our experiments as exhaustive as possible, and to show

that our approach works for several different types of applications,

we also introduce three additional difficult distributions that emu-

late the GAP, the WDP, and the CSG problem (that we discussed

thoroughly in Section 2). As a corollary, they illustrate how some

important variations of these problems are related and reduces

to each other via the UCA problem’s value function. We define

these distributions, denoted GAPU (GAP uniform),WDPR (WDP

random), and CSGU (CSG uniform), as follows:

• GAPU: 𝒗 (𝐵, 𝑎) = ∑
𝑒∈𝐵

{
𝒑(𝑒, 𝑎)

}
if

∑
𝑒∈𝐵

{
𝒘 (𝑒, 𝑎)

}
≤ 𝒄 (𝑎),

𝒗 (𝐵, 𝑎) = 0 otherwise (exceeds capacity);

• WDPR: 𝒗 (𝐵, 𝑎) = 𝒃 (𝐵, 𝑎); and
• CSGU: 𝒗 (𝐵, 𝑎) = 𝒖 (𝐵);

for all 𝐵 ⊆ 𝐸, and 𝑎 ∈ 𝐴, where:

• (Capacity) 𝒄 (𝑎) ∼ U (0, 1

𝑚);
• (Profit) 𝒑(𝑒, 𝑎) ∼ U (0, 1);
• (Weight)𝒘 (𝑒, 𝑎) ∼ U (0, 1𝑛);
• (Bid price) 𝒃 (𝐵, 𝑎) ∼ U (0, 1) for 1000 (uniformly) random

bundle-to-alternative draws (representing 1000 bids), else

𝒗 (𝐵, 𝑎) = 0 (representing that the bid was not given); and

• (Alternative invariance) 𝒖 (𝐵) ∼ U (0, 1);
for all 𝑒 ∈ 𝐸, 𝐵 ⊆ 𝐸, and 𝑎 ∈ 𝐴. Problem instances generated with

GAPU and WDPR can be stored compactly—we do not need an

exponential number of values in the number of elements to define

them—and they correspond to highly difficult GAP and WDP in-

stances that allow free disposal (i.e., elements can freely be thrown

away). Note that WDPR is equivalent to the problem benchmark

called random that was first proposed in [39] for combinatorial

auctions. Finally, CSGU follows the reduction given in [31], thus

corresponding to one of the more difficult CSG benchmark distribu-

tions proposed by [21], which was subsequently used in e.g., [35, 37]

to benchmark some of the current state-of-the-art CSG algorithms.

Benchmark Setup
Wegenerate a number of new test sets used solely for benchmarking.

For each problem, we generate test sets T𝑖 , consisting of 20 random
partial assignments over 𝐸 with 𝑖 unassigned elements, for 𝑖 =

1, . . . , 𝑛 − 1. This enables us to benchmark how well our learned

heuristic functions generalize to predicting the gain of unseen

partial assignments, for which some even have fewer assigned

elements than those that exist in the training/validation sets.

Note that while it would be interesting to gauge our learned

approximators’ performances against other heuristics when the

optimal cannot be obtained, this is not possible to do without first

integrating the heuristics in a full-fledged solver. The reason for this

is that there is no value to compare the heuristics’ prediction quality

Main Track AAMAS 2022, May 9–13, 2022, Online

1078

to unless the ground truth can be computed (which is not possible

for large 𝑛). In other words, in such cases we cannot know which

heuristic is best unless we use them to find a “complete” combina-

torial assignment first. This would naturally require benchmarking

the different heuristics with various algorithms, which we hope to

do as future work. Also, for the same reason, it is at the moment not

possible to benchmark against industry-grade solvers like for exam-

ple Gurobi and CPLEX (which have already been shown to perform

subpar compared to the state-of-the-art algorithm [33]). Note that

another reason to not benchmark heuristics by integrating them in

a solver is to avoid algorithm bias, i.e., the phenomenon that cer-

tain heuristics perform better with some algorithms—a well-known

problem in heuristic design.

The heuristics that we benchmark against are based on the state-

of-the-art UCA heuristics [31], namely a local search heuristic (abbre-
viated LS), and a hybrid local search/greedy heuristic (LSG for short).

Both of them are myopic, and they outperform more advanced

heuristics in all previously tried benchmarks. We also introduce

and use two baseline (naïve) heuristics: PV, which uses a partial

solution’s value as an approximation for (1), and RR, which assigns

unassigned elements randomly and uses the value of the gener-

ated solution for the same purpose. Monte Carlo methods are often

based on similar approaches. The worst-case execution times for

single LS, LSG, PV, and RR predictions are O
(
𝑚𝑛𝒈(𝒗)

)
, O

(
𝑚𝑛𝒈(𝒗)

)
,

O(𝑚), O(𝑛 +𝑚), respectively. The function 𝒈(𝒗) represents the
number of local improvements that are required for LS and LSG

to reach local optima. In worst-case, 𝒈(𝒗) ∈ O(𝑚𝑛). However, in
practice, 𝒈(𝒗) is typically small. FNN, RNN, and XGBoost generate

predictions in time O(𝑚𝑛), O(𝑛), and O(𝑛), respectively. Moreover,

our feedforward and recurrent neural networks, and the XGBoost

model, are denoted FNN, RNN, and XGB in the graphs, respectively.

We re-train the function approximators for every new problem

distribution. The approximators’ hyperparameters are optimized

using Hyperopt [4] and 100 evaluations per problem instance. For

XGBoost we use the same hyperparameter search space as the one

used in [46]. A batch size of 32 was used for the neural networks, to-

gether with 100 epochs, and finding their hyperparameters took us

4 days, running 44 experiments concurrently. Our hyperparameter

search space together with the final hyperparameters are presented

in this paper’s Appendix.

The result of each experiment was produced by evaluating all

heuristics on the different test sets’ partial assignments. To make

sure that the heuristics competed on a similar computation budget,

we allowed RR, LS, and LSG to run with random restarts until

they had finished a number of iterations and consumed at least as

much computation time as the FNN, the most promising network.

The highest-valued prediction of these runs was then chosen as

the final prediction. PV, the FNN/RNN, and XGB always make the

same predictions for a given partial assignment, and thus cannot

be used with random restarts in this fashion. Furthermore, unlike

the other heuristics [31], their predictions are not a lower bound

on the optimal value, and choosing the highest-valued prediction

would therefore not be motivated.

The final result of each experiment was computed by taking

the average of the resulting values from 10 runs. We plot the 95%

confidence interval in all graphs. The neural networks were trained

and benchmarked with the PyTorch 1.4.0 library (Python 3.6), while

the other methods were implemented in C++17. All values for the
synthetic problem sets were generated with methods from the

C++ Standard Library. The gcc 9.3.0 compiler was used to compile

all C++ code. The training and hyperparameter optimization ran

on two Nvidia RTX 2080 Ti GPUs, while the experiments were

conducted with an AMD 3950X 3.5GHz CPU, and 32GB memory.

Our networks were evaluated on the CPU to compete on equal

terms when computing run times.

Results
Figure 1 shows the results of our main benchmarks. In these bench-

marks, we computed the mean squared error of the heuristics’

predictions to the ground truth on the different test sets. First, we

can see a clear general trend that two of our learned heuristics,

namely XGB and the FNN, outperform all other heuristics. This

indicates that their execution times are motivated, since they pro-

vide significantly higher-quality predictions in equal or lower time

than their competition. A notable exception is NRD, for which

the state-of-the-art conventional heuristics outperform the learned

ones, and CSGU, for which there is almost a tie. An important ob-

servation is that there is no distribution for which the FNN and

XGB perform much worse than the state-of-the-art conventional

heuristics—indicating that our heuristic generation paradigm is

potentially suitable for many different combinatorial assignment

problems, including those that can be represented concisely, such

as the WDP and the GAP. Moreover, the sparse distributions are

clearly much more difficult for all heuristics, which is not surpris-

ing due to their sparsity of high-valued bundles. A potential way

to mitigate this for the learned heuristics is by calibrating their

training data so that its partial assignments contain more high-

valued bundles. Finally, we sum and take the average of all the

mean squared errors for each benchmark in Table 1, where we see

that the FNN and XGB greatly outperform their competition in a

majority of the tests, most notably on problem instances generated

with NPD, SNPD, and WDPR. LS and LSG however outperform our

learned heuristics on NRD and CSGU.

When the number of unassigned elements is similar to those used

in the training data, the RNN exhibits similar performance as the

FNN. However, outside this manifold, the RNN’s predictions quickly

diverge from the ground truth. Seen from another perspective,

the FNN generalizes surprisingly well outside of the training data

distribution, while the RNN does not. This indicates that our matrix

representation is more suitable (better) for our experiments than

the RNN’s learned representation. A potential reason for this is that

UCA is inherently invariant to the order for which the elements

are assigned to an alternative, making it necessary for the RNN to

learn order invariance to generalize well, effectively making the

sequential nature of the RNN redundant at best.

Furthermore, our results show that the time required for opti-

mally solving a problem far exceeds generating our training sets.

We can see this by e.g., looking at the experiments that we ran

on the GAPU distribution for 𝑛 = 25—here, our generated heuris-

tics greatly outperform the conventional heuristics, while the best

optimal solvers are not able to solve such instances in feasible time.

Finally, to gauge the heuristics’ efficiency, we recorded their ex-

ecution time for different distributions and numbers of unassigned

Main Track AAMAS 2022, May 9–13, 2022, Online

1079

Figure 1: Mean squared error of heuristic predictions to optimality against 1 to 𝑛 − 1 unassigned elements for different problems
with 10 alternatives. A lower value is better. An optimal heuristic has value zero and always yields an optimal solution if
followed greedily. The columns represent tests with 𝑛 = 15 (left), 𝑛 = 20 (middle), and 𝑛 = 25 (right), and the rows represent
different problem instance distributions. A lowmean squared error to the right of 𝜅 = 10 (the shaded areas) shows generalization
outside of the training distribution. The LSG heuristic is the current state of the art. (Note that for some distributions, we only
use partial assignments with fewer unassigned elements than that of the value of 𝑛, making the graphs appear incomplete. Our
training paradigm works for much larger 𝑛, but the state-of-the-art solver’s computational cost for optimally solving partial
assignments past this point becomes prohibitively high, thus making it difficult for us to compute a mean squared error to
optimality against ground-truth values.)

Main Track AAMAS 2022, May 9–13, 2022, Online

1080

Table 1: Average (aggregated) mean squared error for all predictions to optimality for the various benchmarks. A lower value is
better. The best value for each benchmark is marked in bold.

NPD UPD SNPD SUPD NRD CSGU GAPU WDPR
𝑛 = 15 20 25 15 20 25 15 20 25 15 20 25 15 20 25 15 20 25 15 20 25 15 20 25

PV 1.61 2.86 4.33 10.3 20.60 22.39 8.29 17.38 33.69 5.04 8.32 18.80 3.13 6.84 9.50 26.93 35.41 37.10 67.87 130.20 173.04 2.30 0.88 0.17

LS 0.024 0.09 0.29 0.03 0.13 0.12 1.34 3.06 6.39 0.56 1.56 5.48 0.001 0.007 0.011 0.001 0.04 0.13 0.01 0.12 0.36 0.71 0.71 0.12

LSG 0.026 0.07 0.22 0.03 0.08 0.06 1.90 3.79 6.31 1.00 1.57 5.51 0.02 0.042 0.025 0.004 0.03 0.09 0.24 1.39 4.60 1.74 0.86 0.17

RR 0.44 0.95 1.67 1.34 2.97 3.35 5.06 10.32 22.30 2.06 5.40 12.44 1.03 2.78 3.79 1.28 3.08 4.10 4.77 10.97 18.15 1.05 0.85 0.12

RNN 2.23 2.30 13.90 3.34 8.91 5.65 3.13 13.07 29.07 2.58 5.03 8.82 0.52 4.50 1.31 0.53 7.29 8.64 8.68 22.35 18.94 0.44 0.84 0.12

FNN 0.007 0.02 0.17 0.03 0.08 0.17 0.15 0.18 1.01 0.04 0.59 4.70 0.03 0.27 0.13 0.03 0.12 0.23 0.06 0.62 0.14 0.13 0.26 0.08

XGB 0.017 0.03 0.06 0.11 0.18 0.73 0.32 0.33 0.83 0.11 0.20 1.17 0.05 0.26 0.26 0.18 0.21 0.57 0.40 1.02 1.55 0.09 0.26 0.12

elements. Results for our largest problems with 𝑛 = 25 are shown in

Figure 2. Note that PV is not included, as its execution time is negli-

gible. The networks are slower than the other heuristics by roughly

one or two orders of magnitude. This was expected since all our

experiments were made without any attempts to improve the com-

putational efficiency of the networks—for example by minimizing

the networks’ sizes, or removing redundant nodes. We also see that

the execution times for RR, LS, and LSG increase with the number

of unassigned elements. The RNN exhibits the inverse behaviour,

since fewer assigned elements results in a shorter input sequence,

while the FNN is unaffected. Furthermore, the neural networks

differ between distributions due to changing hyperparameters. Our

results were almost identical for the smaller (easier) problems.

6 SUMMARY AND CONCLUSIONS
We developed a general-purpose learning-based method leveraged

by generating and optimally solving subproblems to produce heuris-

tics that can be used for solving many combinatorial assignment

problems. We ran benchmarks on a variety of different problem

distributions, and showed that the heuristics our method generates

outperform the state of the art. Our experiments also show that

our training paradigm manages to make a neural network and a

state-of-the-art ensemble method (i.e., XGBoost) generalize surpris-

ingly well outside of the training set distribution. In addition, our

method is highly scalable. It can for example be used on problem

instances much larger than those that are used in our experiments,

and it can run on relatively cheap hardware. It is also compatible

with a large number of important problems, such as the general-

ized assignment problem, coalition structure generation, and the

combinatorial auction winner determination problem.

For future work, we would like to investigate other machine

learningmethods, approximators, and architectures, includingmore

specialized ones. An open question is what search algorithms our

heuristics are best coupled with to solve full combinatorial assign-

ment problems. Also, while there are synthetic problem sets that can

be used for benchmarking like the standardized ones that we used,

and for example the synthetic tests for combinatorial auctions pro-

vided by [27], there is a lack of real-world data sets that have been

published. While [32] benchmarked their solver on a real-world

strategy game, the data sets that they used are proprietary and not

openly available. We therefore believe that it is important to publish

real-world instances that the community can use for benchmarking

with the aim to improve our understanding of the challenges that

real-world combinatorial assignment problems entail. Finally, it

would be interesting to apply our method to related combinatorial

assignment problems, e.g., competitive instances such as [30].

ACKNOWLEDGMENTS
Thisworkwas partially supported by theWallenbergAI, Autonomous

Systems and Software Program (WASP) funded by the Knut and

AliceWallenberg Foundation, and by grants from the National Grad-

uate School in Computer Science (CUGS), Sweden, the Excellence

Center at Linköping-Lund for Information Technology (ELLIIT),

the TAILOR Project funded by EU Horizon 2020 research and inno-

vation programme GA No 952215, and Knut and Alice Wallenberg

Foundation (KAW 2019.0350).

Figure 2: Time (in milliseconds) required to evaluate each heuristic on a single partial assignment with varying numbers of
unassigned elements on problems with 𝑛 = 25 and𝑚 = 10. PV constantly takes approximately 10

−4 milliseconds.

Main Track AAMAS 2022, May 9–13, 2022, Online

1081

REFERENCES
[1] Haris Aziz, Hau Chan, Ágnes Cseh, Bo Li, Fahimeh Ramezani, and Chenhao

Wang. 2021. Multi-Robot Task Allocation-Complexity and Approximation. In

International Conference on Autonomous Agents andMultiagent Systems (AAMAS).
[2] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. 2021. Machine Learning

for Combinatorial Optimization: a Methodological Tour D’horizon. European
Journal of Operational Research (EJOR) 290, 2 (2021), 405–421.

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.

Curriculum Learning. In International Conference on Machine Learning (ICML).
[4] James Bergstra, Dan Yamins, David D Cox, et al. 2013. Hyperopt: A Python

Library for Optimizing the Hyperparameters of Machine Learning Algorithms.

In Python in Science Conference (SciPy).
[5] Dalila Boughaci. 2013. Metaheuristic Approaches for the Winner Determina-

tion Problem in Combinatorial Auction. In Artificial Intelligence, Evolutionary
Computing and Metaheuristics (AIECM). Springer.

[6] Dirk G Cattrysse and Luk N Van Wassenhove. 1992. A Survey of Algorithms for

the Generalized Assignment Problem. European Journal of Operational Research
(EJOR) 60, 3 (1992).

[7] Omar Cheikhrouhou and Ines Khoufi. 2021. A comprehensive Survey on the

Multiple Traveling Salesman Problem: Applications, Approaches and Taxonomy.

Computer Science Review 40 (2021), 100369.

[8] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable Tree Boosting System.

In International Conference on Knowledge Discovery and Data Mining (KDD).
[9] Yann Chevaleyre, Ulle Endriss, Sylvia Estivie, and Nicolas Maudet. 2008. Multia-

gent Resource Allocation in k-Additive Domains: Preference Representation and

Complexity. Annals of Operations Research 163, 1 (2008), 49–62.

[10] Viet Dung Dang, Rajdeep K Dash, Alex Rogers, and Nicholas R Jennings. 2006.

Overlapping Coalition Formation for Efficient Data Fusion in Multi-Sensor Net-

works. In AAAI Conference on Artificial Intelligence (AAAI).
[11] Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-

Martin Rousseau. 2018. Learning Heuristics for the Tsp by Policy Gradient. In

International Conference on the Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR). Springer.

[12] Maxime Gasse, Didier Chetelat, Nicola Ferroni, Laurent Charlin, and Andrea

Lodi. 2019. Exact Combinatorial Optimization with Graph Convolutional Neural

Networks. In Advances in Neural Information Processing Systems (NeurIPS).
[13] Johan Håstad. 1999. Clique is Hard to ApproximateWithin 1- 𝜀 . ActaMathematica

182, 1 (1999), 105–142.

[14] Elad Hazan, Shmuel Safra, and Oded Schwartz. 2006. On the Complexity of

Approximating k-Set Packing. Computational Complexity 15 (2006).

[15] He He, Hal Daume III, and JasonM Eisner. 2014. Learning to Search in Branch and

Bound Algorithms. Advances in Neural Information Processing Systems (NeurIPS)
27 (2014), 3293–3301.

[16] André Hottung, Shunji Tanaka, and Kevin Tierney. 2020. Deep Learning Assisted

Heuristic Tree Search for the Container Pre-marshalling Problem. Computers &
Operations Research 113 (2020).

[17] Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. 2021. Regular-

ization Is All You Need: Simple Neural Nets can Excel on Tabular Data. arXiv
preprint arXiv:2106.11189 (2021).

[18] Liran Katzir, Gal Elidan, and Ran El-Yaniv. 2020. Net-DNF: Effective Deep Mod-

eling of Tabular Data. In International Conference on Learning Representations
(ICLR).

[19] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learn-

ing Combinatorial Optimization Algorithms Over Graphs. Advances in Neural
Information Processing Systems (NeurIPS).

[20] Wouter Kool, Herke van Hoof, and Max Welling. 2018. Attention, Learn to

Solve Routing Problems!. In International Conference on Learning Representations
(ICLR).

[21] Kate S Larson and Tuomas W Sandholm. 2000. Anytime Coalition Structure

Generation: An Average Case Study. Journal of Experimental & Theoretical
Artificial Intelligence (JETAI) 12, 1 (2000), 23–42.

[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. Nature
521, 7553 (2015).

[23] Mengyuan Lee, Seyyedali Hosseinalipour, Christopher Greg Brinton, Guanding

Yu, and Huaiyu Dai. 2020. A Fast Graph Neural Network-Based Method for

Winner Determination in Multi-Unit Combinatorial Auctions. IEEE Transactions
on Cloud Computing (TCC) (2020).

[24] Mengyuan Lee, Guanding Yu, and Geoffrey Ye Li. 2019. Learning To Branch:

Accelerating Resource Allocation in Wireless Networks. IEEE Transactions on
Vehicular Technology (TVT) 69, 1 (2019), 958–970.

[25] Daniel Lehmann, Rudolf Müller, and Tuomas Sandholm. 2006. The Winner

Determination Problem. Combinatorial Auctions (2006).
[26] Daniel Lehmann, Liadan Ita Oćallaghan, and Yoav Shoham. 2002. Truth Revelation

in Approximately Efficient Combinatorial Auctions. Journal of the ACM (JACM)
49, 5 (2002), 577–602.

[27] Kevin Leyton-Brown and Yoav Shoham. 2006. A Test Suite for Combinatorial

Auctions. Combinatorial Auctions 18 (2006), 451–478.

[28] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. 2018. Combinatorial Optimization

With Graph Convolutional Networks and Guided Tree Search. Advances in Neural
Information Processing Systems (NeurIPS).

[29] Neil Newman, Alexandre Fréchette, and Kevin Leyton-Brown. 2017. Deep Opti-

mization for Spectrum Repacking. Commun. ACM 61, 1 (2017), 97–104.

[30] Abraham Othman, Tuomas Sandholm, and Eric Budish. 2010. Finding Approxi-

mate Competitive Equilibria: Efficient and Fair Course Allocation. In International
Conference On Autonomous Agents and Multi-Agent Systems (AAMAS).

[31] Fredrik Präntare, Herman Appelgren, and Fredrik Heintz. 2021. Anytime Heuris-

tic and Monte Carlo Methods for Large-Scale Simultaneous Coalition Structure

Generation and Assignment. In AAAI Conference on Artificial Intelligence (AAAI).
[32] Fredrik Präntare and Fredrik Heintz. 2020. An Anytime Algorithm for Optimal

Simultaneous Coalition Structure Generation and Assignment. Autonomous
Agents and Multi-Agent Systems (JAAMAS) 34, 1 (2020).

[33] Fredrik Präntare and Fredrik Heintz. 2020. Hybrid Dynamic Programming for-

Simultaneous Coalition Structure Generation and Assignment. In International
Conference on Principles and Practice of Multi-Agent Systems (PRIMA).

[34] Talal Rahwan, Tomasz Michalak, Michael Wooldridge, and Nicholas R Jennings.

2012. Anytime Coalition Structure Generation in Multi-Agent Systems with

Positive or Negative Externalities. Artificial Intelligence (AIJ) 186 (2012), 95–122.
[35] Talal Rahwan, Tomasz P Michalak, and Nicholas R Jennings. 2012. A Hybrid

Algorithm for Coalition Structure Generation. In AAAI Conference on Artificial
Intelligence (AAAI).

[36] Talal Rahwan, Tomasz P Michalak, Michael Wooldridge, and Nicholas R Jennings.

2015. Coalition Structure Generation: A Survey. Artificial Intelligence (2015).
[37] Talal Rahwan, Sarvapali D Ramchurn, Nicholas R Jennings, and Andrea Giovan-

nucci. 2009. An Anytime Algorithm for Optimal Coalition Structure Generation.

Journal of Artificial Intelligence Research (JAIR) 34 (2009), 521–567.
[38] John R Rice. 1976. The Algorithm Selection Problem. In Advances in Computers.

Vol. 15. Elsevier.

[39] Tuomas Sandholm. 2002. Algorithm for Optimal Winner Determination in

Combinatorial Auctions. Artificial Intelligence (AIJ) 135, 1-2 (2002).
[40] Tuomas Sandholm, Subhash Suri, AndrewGilpin, and David Levine. 2002. Winner

Determination in Combinatorial Auction Generalizations. In International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[41] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. 2005.

CABOB: A Fast Optimal Algorithm for Winner Determination in Combinatorial

Auctions. Management Science 51, 3 (2005), 374–390.
[42] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,

Thore Graepel, et al. 2020. Mastering Atari, Go, Chess and Shogi by Planning

with a Learned Model. Nature 588, 7839 (2020), 604–609.
[43] Daniel Selsam, Matthew Lamm, B Benedikt, Percy Liang, Leonardo de Moura,

David L Dill, et al. 2018. Learning a SAT Solver from Single-Bit Supervision. In

International Conference on Learning Representations (ICLR).
[44] Lloyd S Shapley. 1953. A Value for n-person Games. Contributions to the Theory

of Games (AM-28) 2, 28 (1953), 307–317.
[45] Ira Shavitt and Eran Segal. 2018. Regularization Learning Networks: Deep Learn-

ing for Tabular Datasets. In Advances in Neural Information Processing Systems
(NeurIPS).

[46] Ravid Shwartz-Ziv and Amitai Armon. 2022. Tabular Data: Deep Learning is Not

All You Need. Information Fusion 81 (2022), 84–90.

[47] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. 2016. Mastering the Game of Go With Deep Neural

Networks and Tree Search. Nature 529, 7587 (2016).
[48] Yuan Sun, Andreas Ernst, Xiaodong Li, and Jake Weiner. 2021. Generalization of

Machine Learning for Problem Reduction: A Case Study on Travelling Salesman

Problems. OR Spectrum (ORSP) 43, 3 (2021), 607–633.
[49] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Networks.

Advances in Neural Information Processing Systems (NeurIPS).
[50] Feng Wu and Sarvapali D Ramchurn. 2020. Monte-Carlo Tree Search for Scalable

Coalition Formation. In International Joint Conference on Artificial Intelligence
(IJCAI).

[51] Qinghua Wu and Jin-Kao Hao. 2015. Solving the Winner Determination Problem

via a Weighted Maximum Clique Heuristic. Expert Systems with Applications 42,
1 (2015).

[52] Junchi Yan, Shuang Yang, and Edwin R Hancock. 2020. Learning for Graph

Matching and Related Combinatorial Optimization Problems. In International
Joint Conference on Artificial Intelligence (IJCAI).

[53] ChiaWei Yeh and Toshiharu Sugawara. 2016. Solving Coalition Structure Genera-

tion ProblemWith Double-Layered Ant ColonyOptimization. In IIAI International
Congress on Advanced Applied Informatics (IIAI AAI).

[54] Emre Yolcu and Barnabás Póczos. 2019. Learning Local Search Heuristics

for Boolean Satisfiability. Advances in Neural Information Processing Systems
(NeurIPS).

[55] David Zuckerman. 2006. Linear Degree Extractors and the Inapproximability of

Max Clique and Chromatic Number. In ACM Symposium on Theory of Computing
(STOC).

Main Track AAMAS 2022, May 9–13, 2022, Online

1082

	Abstract
	1 Introduction
	2 Related Work
	3 Basic Concepts and Complexity
	4 Generating Heuristics
	5 Evaluation and Experiments
	6 Summary and Conclusions
	Acknowledgments
	References

