
Spiking Pitch Black: Poisoning an Unknown Environment to
Attack Unknown Reinforcement Learners

Hang Xu
Nanyang Technological University

Singapore
hang017@e.ntu.edu.sg

Xinghua Qu
ByteDance AI Lab

Singapore
quxinghua17@gmail.com

Zinovi Rabinovich
Nanyang Technological University

Singapore
zinovi@ntu.edu.sg

ABSTRACT
As reinforcement learning (RL) systems are deployed in various
safety-critical applications, it is imperative to understand how vul-
nerable they are to adversarial attacks. Of these, an environment-
poisoning attack (EPA) is considered particularly insidious, since
environment hyper-parameters are significant factors in determin-
ing an RL policy, yet prone to be accessed by third parties. The
success of EPAs relies on comprehensive prior knowledge of the at-
tacked RL system, including RL agent’s learning mechanism and/or
its environment model. Unfortunately, such an assumption of prior
knowledge creates an unrealistic attack, one that poses limited
threat to real-world RL systems.

In this paper, we propose a Double-Black-Box EPA framework,
only assuming the attacker’s ability to alter environment hyper-
parameters. Considering that environment alteration comes at a
cost, we seek minimal poisoning in an unknown environment and
aim to force a black-box RL agent to learn an attacker-designed
policy. To this end, we incorporate an inference module in our
framework to capture the internal information of an unknown
RL system and, accordingly, learn an adaptive strategy based on
an approximation of our attack objective. We empirically show
the threat posed by our attack to both tabular-RL and deep-RL
algorithms, in both discrete and continuous environments.

KEYWORDS
Reinforcement Learning; Security; Environment Poisoning
ACM Reference Format:
Hang Xu, Xinghua Qu, and Zinovi Rabinovich. 2022. Spiking Pitch Black:
Poisoning an Unknown Environment to Attack Unknown Reinforcement
Learners. In Proc. of the 21st International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS,
9 pages.

1 INTRODUCTION
The security of Reinforcement Learning (RL) has become increas-
ingly significant due to the widespread deployment of RL systems
in safety-critical applications, such as autonomous cars [13, 21, 27],
smart energy systems [12, 14, 29] and healthcare systems [5, 6, 26].
However, RL policies are typically sensitive to training hyper-
parameters [8, 15, 20], where a slight variation of these param-
eters may cause obvious performance difference. As a result, RL
policies are vulnerable to being perturbed by poisoned training
hyper-parameters. Among these parameters, environment hyper-
parameters are most susceptible as they can be easily accessed by

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

third parties. Therefore, to facilitate the formulation of secure strate-
gies, a study of the threats posed by environment hyper-parameters
is necessary.

Environment hyper-parameters, particularly in physical systems,
are also termed causal factors or hidden parameters, such as gravity
and friction of a surface [19, 22, 30]. These hyper-parameters can
not be observed directly, but their effect can be ‘felt’ by the RL
agent when interacting with the environment. This means that en-
vironment hyper-parameters affect how the environment responds
to the RL agent’s actions. Namely, they can be used to parame-
terize the environment transition dynamics [11, 19, 22] so that
altering hyper-parameters leads to changes of the environment
dynamics. In previous studies [1, 24, 34], such adversarial changes
of environment dynamics, termed Environment-Poisoning Attacks
(EPAs), assumed the internal information of an RL system to be
known in advance, including: a) how the RL agent learns its pol-
icy, i.e., the learning algorithm and the policy model; b) how the
environment responds to the agent’s action, i.e., the environment
dynamics; c) how hyper-parameters determine the environment
dynamics, i.e., the environment causal mechanism. However, such
information is generally private or unknown in most real-world
RL-based applications, and we argue that these assumptions make
an attack approach unrealistic. To alleviate such a limitation, we
study a novel environment-poisoning attack that requires minimal
attacker’s prior knowledge of an RL system.

Specifically, we propose a Double-Black-Box Environment Poi-
soning Attack (DBB-EPA) approach, which achieves policy compul-
sion on an unknown RL agent in an unknown environment. To the
best of our knowledge, this is the first environment-poisoning attack
that does not rely on prior knowledge of both the agent’s learning
mechanism (i.e., policy training algorithm and policy model struc-
ture/parameters) and its environment model (i.e., transition and re-
ward functions). Assuming only the ability to alter the environment
hyper-parameters, our attack aims to force a black-box RL agent to
learn an attacker-desired policy, with minimal and adaptive envi-
ronment poisoning. To this end, we first investigate how to infer the
internal information of an RL system, and then learn an adaptive
attack strategy based on the approximation of our attack objective.
Specifically, given observations of an RL agent’s trajectories during
its learning process, we jointly train: a) an Encoder-Dual-Decoder
network that learns a low-dimensional latent representation of the
RL system’s internal information; b) an attack strategy, conditioned
on the latent representation and environment hyper-parameters,
that manipulates the RL agent’s policy using minimal environment
poisoning. In contrast to the existing EPAs [1, 24, 34] that are only
effective in discrete state domains, our work provides a tractable
approach to attack deep-RL (DRL) agents in continuous environ-
ments.

Main Track AAMAS 2022, May 9–13, 2022, Online

1409

In summary, the contributions of this paper are as follows:

• We propose an environment-poisoning attack approach in
the double-black-box setting, where both the RL agent’s
learning mechanism and its environment model are un-
known to the attacker – DBB-EPA.
• We design an Encoder-Dual-Decoder network to infer inter-
nal information of a black-box RL system and construct an
adaptive attack strategy conditioned on the resultant latent
representation by approximating our attack objective.
• We show that DBB-EPA achieves performance comparable
to the white-box attack [34] on a navigation task in the grid
world. We further evaluate our attack against a DRL agent on
a control task in continuous domains, showing the feasibility
and the scalability of DBB-EPA on more complex RL systems.

2 RELATEDWORK
In this section, we provide an overview of training-time attacks
against RL, followed by a specific literature review of recent ad-
vances in Environment-Poisoning Attacks (EPAs).

The objective of training-time attacks is to force an RL agent to
learn a target policy designed by an attacker. To achieve this objec-
tive, the attacker poisons the agent’s policy learning by perturbing
feedback (e.g., reward signals and state observations) from the train-
ing environment. Accordingly, there are mainly two categories in
training-time attacks: reward-poisoning attacks and environment-
poisoning attacks (see e.g., [3, 10] for a review). For example, the
reward poisoning is studied on both the off-line batch RL [17] and
the online Q-learning algorithm [9, 36]. At the same time, Rakhsha
et al. [24] study an environment-poisoning attack in cyclic RL tasks
by directly manipulating the transition dynamics.

Notably, though, most training-time attacks are developed in
the white-box setting, where the attacker has significant access
to comprehensive knowledge of the RL system. In particular, the
RL agent’s environment model (i.e., transition dynamics and re-
ward functions) and its learning mechanism (i.e., policy training
algorithm and policy model structure/parameters) are assumed to
be known by the attacker. Unfortunately, assuming such an omni-
scient attacker makes most attack approaches somewhat unrealistic,
resulting in limited threats to RL systems in the real world.

Recently, however, researchers made a breakthrough in the devel-
opment of realistic reward-poisoning attacks that can manipulate
the RL policy without prior knowledge of the RL system [25, 31].
In particular, Rakhsha et al. [25] theoretically study a black-box
reward-poisoning attack against no-regret RL algorithms. In turn,
Sun et al. [31] propose a practical reward-poisoning algorithm for
policy-based deep RL methods without knowledge of the environ-
ment. In this paper, we pursue the same motivation as [25, 31],
but focus on realistic environment-poisoning attacks. More im-
portantly, instead of directly altering environment dynamics, we
investigate the threat posed by maliciously controlled environment
hyper-parameters.

In this context, of particular interest is the Transferable Environ-
ment Poisoning Attack (TEPA) proposed in [34], which adaptively
poisons environment hyper-parameters for a given RL algorithm
– the white-box proxy. Xu et al. [34] demonstrate that TEPA is

Victim

attack state
state

actionattack action

attack cost

EnvironmentAttacker

reward

Inner Loop: Victim-Level MDP

Outer Loop: Attacker-level MDP

Figure 1: Attack framework

transferable and it successfully poisons RL agents that differ al-
gorithmically from the white-box proxy. In fact, TEPA is thus ap-
plicable to black-box RL agents. However, the full knowledge of
the training environment lies at the heart of TEPA as well. Thus,
since environment-dynamics information is generally private or
unknown in most real-world applications, TEPA is confined to
white-box environments and, therefore, poses limited threat to
complex RL systems. In this paper, grafting the advantages and
framework of TEPA , we develop a novel attack approach that is
independent from the prior knowledge of training-environment
dynamics model and causal mechanism. To the best of our knowl-
edge, this paper is the first to study EPAs without assumptions of
prior knowledge of both the RL agent’s training environment and
its learning mechanism.

Now, it must be mentioned that there are RL approaches capable
of identifying environment changes induced by hyper-parameter
shifts, and constructing a robust behaviour strategy in the context
of such changes [19, 22, 30]. The goal of thesemethods is to generate
a behaviour useful across tasks and environments. However, they
mostly disregard the possibility of a constructive, strategic adversary
that modulates environment hyper-parameters. Thus, while we
view robust algorithms as a key component in building white-
box proxies in our future research, in the current paper we make
the standard relaxation assumption of training-time RL attacks.
Namely, we assume that the attacked RL agent is oblivious to the
attack and continues to operate normally throughout the sequence
of environment modifications.

3 PROBLEM STATEMENT
This section describes the attack framework proposed for environ-
ment poisoning. We first provide notations and preliminaries of the
attack framework, followed by the mathematical description of our
attack problem.

3.1 Notations and Preliminaries
Weadopt a bi-levelMarkovDecision Process (MDP) architecture [34,
36], which is illustrated in Figure 1. The task of poisoning an RL
agent’s (i.e., victim) policy is performed by an another RL agent
(i.e., the attacker) that operates on a different timescale from the
victim. Specifically, with a particular attack frequency, the attacker
manipulates the victim’s training-environment hyper-parameters
in response to the victim’s learning progress. The attacker’s ob-
jective is to achieve an optimal attack strategy that succeeds in
poisoning the victim’s policy while minimizing changes to the vic-
tim’s environment. The attack framework is formally described as
follows.

Main Track AAMAS 2022, May 9–13, 2022, Online

1410

Victim-level MDP. The Markovian environment of a victim is
denoted by the tuple < 𝑆,𝐴,𝑇𝑒 , 𝑟 , 𝑑0, 𝛾 >. Here, 𝑠 ∈ 𝑆 is an environ-
ment state and 𝑎 ∈ 𝐴 is the victim’s action.𝑇𝑒 (𝑠 ′ |𝑠, 𝑎) represents the
victim’s dynamics function that tells the victim’s state transition
probabilities from 𝑠 to 𝑠 ′, given the action 𝑎 and the environment
hyper-parameter 𝑒 . 𝑟 : 𝑆×𝐴×𝑆 → R represents the victim’s reward
function. 𝑑0 (𝑠) is a distribution over the victim’s initial states and
𝛾 is a discount factor. The victim aims to learn an optimal policy
𝜋 (𝑎 |𝑠) that maximizes the cumulative discounted rewards

∑∞
𝑡 𝛾𝑡𝑟𝑡 .

It’s trajectory 𝜏 is a sequence of state-action pairs generated by 𝜋 .
Additionally, the attacker-desired policy is represented as 𝜋∗ and
the corresponding desired trajectory is denoted as 𝜏∗.

Attacker-level MDP. An attacker, which is regarded as an outer-
loop RL agent as shown in Figure 1, treats the victim-level system
as its dynamics environment. We describe the attacker’s Markovian
process by the tuple < 𝑋,𝑈 , 𝐹, 𝑐,𝛾 > as follows.
• 𝑋 is the attacker’s state space. 𝑥𝑖 ∈ 𝑋 represents an attack
state that contains information about the victim’s behaviour
policy and its environment dynamics at the 𝑖𝑡ℎ attack epoch.
• 𝑈 is the attacker’s action space. An attack action 𝑢 ∈ 𝑈 rep-
resents a manipulation on the victim’s environment hyper-
parameter 𝑒 . Here, 𝑒 influences how the training environ-
ment responds to the victim’s action, i.e., environment dy-
namics. 𝑒𝑖 represents the poisoned environment which has
been changed by aggregate attack actions {𝑢1, 𝑢2, ..., 𝑢𝑖 }. 𝑒0
denotes the victim’s natural environment.
• 𝐹 : 𝑋×𝑈×𝑋 → [0, 1] is the attacker’s probabilistic state tran-
sition function. It captures how the victim updates its policy
under effect of the attacker’s action. Specifically, 𝐹 (𝜋 ′ |𝜋,𝑢)
represents the probability that the victim updates its policy
from 𝜋 to 𝜋 ′ in the environment changed by 𝑢.
• 𝑐 : 𝑋 ×𝑈 × 𝑋 → R is a function denoting the attack cost.
It jointly reflects the attack performance (i.e., difference be-
tween the victim’s policy and the attacker-desired one) and
the attack efforts (i.e., aggregate changes to the victim’s en-
vironment). 𝛾 is a discount factor.

Note that we use 𝑖 to represent the index of an attack epoch in
which the victim learns its policy for some episodes.

3.2 Attack Problem Formulation
The attacker aims to learn an attack strategy 𝜎 (𝑢 |𝑥) that achieves
policy compulsion on the victim via minimal changes to the victim’s
training environment. In detail, the attack objective is to minimize
the deviation between the victim’s policy and the attacker-desired
one, while at the same time minimizing the deviation between the
poisoned environment dynamics and the natural ones. Therefore,
the attack optimization problem is to minimize the cumulative
attack costs, which is denoted as:

min
𝜎

∞∑︁
𝑖=1

𝛾𝑖𝑐𝑖

𝑠 .𝑡 .

𝑐𝑖 := Δ(𝑃𝑖 (𝑠 ′, 𝑎′ |𝑠, 𝑎) | |𝑃∗ (𝑠 ′, 𝑎′ |𝑠, 𝑎))
𝑃𝑖 (𝑠 ′, 𝑎′ |𝑠, 𝑎) = 𝑇𝑒𝑖 (𝑠 ′ |𝑠, 𝑎)𝜋𝑖 (𝑎′ |𝑠 ′)
𝑃∗ (𝑠 ′, 𝑎′ |𝑠, 𝑎) = 𝑇𝑒0 (𝑠 ′ |𝑠, 𝑎)𝜋∗ (𝑎′ |𝑠 ′),

(1)

where 𝑐𝑖 is the attack cost at the 𝑖𝑡ℎ attack epoch. 𝑃𝑖 is a stochastic
process [23] over state-action pairs, where the victim follows the
policy 𝜋𝑖 (𝑎 |𝑠) in the environment 𝑒𝑖 which has been modified by a
sequence of tweaks 𝑢1:𝑖 . Similarly, 𝑃∗ represents an ideal stochas-
tic process, where the victim adopts the attacker-desired policy
𝜋∗ (𝑎 |𝑠) in the natural environment 𝑒0. Referring to the definition
of stochastic processes 𝑃𝑖 and 𝑃∗, Δ(𝑃𝑖 | |𝑃∗) measures the deviation
jointly caused by the victim’s actual policy 𝜋𝑖 and its underlying en-
vironment dynamics𝑇𝑒𝑖 . We can see that Δ(𝑃𝑖 | |𝑃∗) mathematically
describes the attack cost.

Unfortunately, solving the attack optimization problem is in-
tractable in complex or real-world RL systems due to challenges
in computing Δ(𝑃𝑖 | |𝑃∗). These challenges are mainly caused by (1)
the RL agent’s learning algorithm and policy model 𝜋 are generally
black-box to the attacker in the real world; (2) the environment-
dynamics model 𝑇 is typically unknown in most RL tasks, such as
control tasks in continuous state domains; (3) even though the envi-
ronment hyper-parameters can be accessed, it is hopeless to obtain
prior knowledge about how the environment hyper-parameters 𝑒
determine the transition dynamics 𝑇𝑒 .

In the following, we propose an approach that simultaneously
learns how to infer internal information of an RL system, how to
approximate our attack objective, and how to learn an optimal
strategy addressing the attack optimization problem. We make
minimal assumptions on the attacker’s prior knowledge, resulting
in a more realistic and scalable attack approach to complex RL tasks.

4 METHOD
This section presents our attack approach and introduces how we
tackle the challenges caused by the limited prior knowledge. We
start by describing the attack procedure in the double-black-box
setting. We then consider how to infer the internal information of
the RL system, and finally learn an adaptive environment-poisoning
strategy based on an approximation of our attack objective.

4.1 Attack Procedure
To lure an RL agent’s policy learning into a desired direction, the
attacker poisons the training-environment hyper-parameters ac-
cording to the information about the agent’s behaviour policy and
environment dynamics. Unfortunately, such information is hidden
from the attacker, resulting in challenges for designing and deploy-
ing an adaptive attack. To learn an adaptive environment-poisoning
strategy, we incorporate an inference module into the attack frame-
work, which can infer the features of the victim’s behaviour and
environment during its learning progress.

As shown in the part (a) of Figure 2, an encoder and an attack
strategy are essential components of the attack procedure. The en-
coder captures the feature of the victim’s learning progress, and the
attack strategy poisons the victim’s environment based on the in-
ferred feature. In detail, the attack procedure consists of two stages
at each attack epoch 𝑖 . First, given an observation of the victim’s
trajectories, the attacker uses the encoder to infer a joint feature
𝑧𝑖−1 of the victim’s policy and its training environment. Second,
conditioning on the inferred feature 𝑧𝑖−1, the attacker conducts
a poisoning action 𝑢𝑖 on the environment hyper-parameter 𝑒𝑖−1,

Main Track AAMAS 2022, May 9–13, 2022, Online

1411

Encoder Attack Strategy Victim Learning

Update Attack StrategyUpdate Encoder

... ...
Dynamics Decoder

Encoder

 strategy learning

(c) Attack Learning

Policy Decoder

... ...

...

(b) Representation Learning

(a) Attack Procedure

Figure 2: Illustration of double-black-box environment-poisoning attacks: (a) shows the attack procedure; (b) and (c) describe
the latent representation learning and attack strategy learning, respectively. The solid line denotes data transfer and the dotted
line represents data update.

resulting in poisoned dynamics 𝑇𝑒𝑖 . Thereby, the victim, which ex-
plores in the training environment 𝑇𝑒𝑖 , evaluates and adjusts its
policy 𝜋𝑖 according to the feedback from the poisoned environment.
Such an attack procedure continues until the victim acquires the
attacker-desired policy.

4.2 Attack Learning Methodology
As the encoder and the strategy are learned simultaneously, the
learning of the double-black-box attack is composed by 1) latent
representation learning and 2) attack strategy learning, as shown
in the part (b) and the part (c) of Figure 2.

4.2.1 Latent Representation Learning: Without access to the in-
ternal information of the RL victim’s system, the attacker can only
observe the victim’s trajectory 𝜏 = {𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . 𝑠𝑡 , 𝑎𝑡 }. Based
on the trajectory 𝜏𝑖 collected at the 𝑖𝑡ℎ attack epoch, the attacker
learns a latent embedding 𝑧𝑖 that best represents the victim’s sto-
chastic process 𝑃𝑖 (𝑠 ′, 𝑎′ |𝑠, 𝑎) = 𝑇𝑒𝑖 (𝑠 ′ |𝑠, 𝑎) × 𝜋𝑖 (𝑎′ |𝑠 ′). Similarly, 𝜏∗
refers to the attacker-desired trajectory, which is used to learn
𝑧∗ that is the latent representation of the desired stochastic pro-
cess 𝑃∗ (𝑠 ′, 𝑎′ |𝑠, 𝑎) = 𝑇𝑒0 (𝑠 ′ |𝑠, 𝑎) × 𝜋∗ (𝑎′ |𝑠 ′). Note that 𝑧 reflects the
joint information of the victim’s environment dynamics and its be-
haviour policy. As for the effect of environment hyper-parameters
(i.e., causal mechanism), it is implicitly expressed in the dynamics.

To learn the latent representation, we design an Encoder-Dual-
Decoder network consisting of one encoder network E and two
decoder networks {D𝜋 ,D𝑇 }, shown as the part (b) of Figure 2.
Specifically, the encoder E approximates 𝑓𝜂 (𝑧𝑖 |𝜏𝑖) which learns a
latent embedding 𝑧𝑖 based on the victim’s trajectory 𝜏𝑖 . E is de-
signed as a Long Short Term Memory (LSTM) network to learn
long-term dependencies in the trajectory. To learn the encoder E,
we interpret the embedding 𝑧𝑖 via two decoders: a policy decoder
D𝜋 and a dynamics decoder D𝑇 . Here, the policy decoder D𝜋

is a multilayer perceptron (MLP) network. D𝜋 learns 𝑓𝜃 (𝑎𝑡𝑖 |𝑠
𝑡
𝑖
, 𝑧𝑖)

which maps the victim’s state 𝑠𝑡
𝑖
and the embedding 𝑧𝑖 to the distri-

bution over the victim’s actions 𝑎𝑡
𝑖
. And the dynamics decoder D𝑇

is a LSTM network that approximates 𝑓𝜙 (𝑠𝑡+1𝑖
|𝑠𝑡
𝑖
, 𝑎𝑡

𝑖
, 𝑧𝑖). It predicts

the next state 𝑠𝑡+1
𝑖

on the condition of the embedding 𝑧𝑖 and the
state-action pair {𝑠𝑡

𝑖
, 𝑎𝑡

𝑖
}.

Given a collection of the victim’s trajectories, we learn the pa-
rameter 𝜂 of the encoder E and parameters 𝜃, 𝜙 of the dual decoder
{D𝜋 ,D𝑇 }, by maximizing the following negative cross-entropy
objective:

E𝜏1∼T,
𝜏2∼T\𝜏1

∑︁

⟨𝑠,𝑎,𝑠′,𝑎′⟩∼𝜏2
log 𝑓𝜃 (𝑎′ |𝑠 ′, 𝑓𝜂 (𝜏1)) + log 𝑓𝜙 (𝑠 ′ |𝑠, 𝑎, 𝑓𝜂 (𝜏1))

 ,
(2)

where T is a collection of trajectories at one attack epoch. 𝜏1 and
𝜏2 are two different trajectories from the collection T , or from the
set T ∗ of attacker-desired trajectories.

The encoder E is particularly important in this work, which is
used to produce a latent embedding 𝑧 given a sequence of state-
action pairs. The property of the latent representation makes our
attack approach independent of the environment type, i.e., our
DBB-EPA can be generally applied to both discrete and continuous
environments.

4.2.2 Attack Strategy Learning: Referring to Section 3.2, Δ(𝑃𝑖 | |𝑃∗)
mathematically defines our attack cost, and its computation is the
key challenge in learning an optimal attack strategy within the
double-black-box setting. To solve the challenge, we design an
approximation of the attack cost in this section.

Depending on the encoder E, the victim’s stochastic process
𝑃𝑖 (𝑠 ′, 𝑎′ |𝑠, 𝑎) and the ideal one 𝑃∗ (𝑠 ′, 𝑎′ |𝑠, 𝑎) can be represented by
the latent embedding 𝑧𝑖 and 𝑧∗, respectively. Thus, we approximate
Δ(𝑃𝑖 | |𝑃∗) as Δ(𝑧𝑖 | |𝑧∗), and use the Cosine Similarity [4] to measure
the distance between 𝑧𝑖 and 𝑧∗ in the latent space:

Δ(𝑃𝑖 | |𝑃∗) := Δ(𝑧𝑖 | |𝑧∗) = 1 − 𝑧𝑖 · 𝑧∗
∥𝑧𝑖 ∥∥𝑧∗∥ .

(3)

Main Track AAMAS 2022, May 9–13, 2022, Online

1412

Algorithm 1 Learning of DBB-EPA Strategy
1: for n_episode = 1,2,... do
2: Reset victim’s embedding 𝑧0 and environment 𝑒0
3: for attack epoch 𝑖=1,2,... do
4: 𝑢𝑖 ← 𝜎 (𝑧𝑖−1, 𝑒𝑖−1) ⊲ choose attack action conditioning on victim’s policy and environment
5: 𝑇𝑒𝑖 ← 𝑇𝑒𝑖−1 (𝑢𝑖) ⊲ alter environment hyper-parameters to poison transition dynamics
6: observe trajectory 𝜏𝑖 when victim learns 𝜋𝑖 in 𝑇𝑒𝑖
7: update encoder E and dual-decoder D𝜋 , D𝑇 with 𝜏𝑖
8: 𝑧𝑖 ← E(𝜏𝑖), 𝑧∗ ← E(𝜏∗) ⊲ infer latent representations from trajectories
9: 𝑐𝑖 ← (1 − 𝜔) × Δ(𝑧𝑖 | |𝑧∗) + 𝜔 × Δ(𝑒𝑖 | |𝑒0) ⊲ approximate the attack cost
10: update attack strategy 𝜎 (𝑢 |𝑧, 𝑒) using samples ({𝑧𝑖−1, 𝑒𝑖−1}, 𝑢𝑖 , {𝑧𝑖 , 𝑒𝑖 }, 𝑐𝑖) ∈ B ⊲ B is a replay buffer
11: if 𝜏𝑖 == 𝜏∗ then attack done, go to the next episode
12: end if
13: end for
14: end for

Since 𝑧𝑖 is inferred from the victim’s experienced trajectories,
Δ(𝑧𝑖 | |𝑧∗) only captures the environment changes that have affected
the victim’s behaviour, rather than measures the aggregate changes
across the entire environment (i.e., attack effort). Considering mini-
mizing the attack effort, we measure the aggregate environment
changes Δ(𝑒𝑖 | |𝑒0) using the normalized euclidean distance between
the environment hyper-parameter 𝑒𝑖 and the natural one 𝑒0.

Thereby, the approximation of the attack cost 𝑐𝑖 is a combination
of Δ(𝑧𝑖 | |𝑧∗) and Δ(𝑒𝑖 | |𝑒0), which is denoted as:

𝑐𝑖 = (1 − 𝜔) × Δ(𝑧𝑖 | |𝑧∗) + 𝜔 × Δ(𝑒𝑖 | |𝑒0)

= (1 − 𝜔) × (1 − 𝑧𝑖 · 𝑧∗
∥𝑧𝑖 ∥∥𝑧∗∥

) + 𝜔 × ∥𝑒𝑖 − 𝑒0∥2
∥𝑒𝑙𝑖𝑚𝑖𝑡 − 𝑒0∥2

,
(4)

where 𝜔 ∈ [0, 1] is the weight parameter and 𝑒𝑙𝑖𝑚𝑖𝑡 indicates the
limit value of environment hyper-parameters.

In summary, DBB-EPA uses an encoder to obtain latent rep-
resentations of an RL system’s internal information, and learns
an adaptive attack strategy based on an approximated attack cost.
The learning of DBB-EPA strategy is finalized as Algorithm 1. Due
to the representation and the approximation in the latent space,
DBB-EPA is applicable in poisoning an RL agent in both discrete
and continuous environments, as empirically discussed in the next
section.

5 EXPERIMENT
In this section, we first evaluate DBB-EPA on a tabular-RL agent
in a didactic grid-world task, showing that DBB-EPA achieves ef-
fective training-time attack with minimal prior knowledge of the
RL system. Then, we show the feasibility and the scalability of
DBB-EPA in more complex RL tasks. Implementation codes can be
found at https://github.com/JoanaHXU/DBB-EPA.

(a) 3D grid world (b) LunarLander
Figure 3: Illustration of experiment environments

5.1 Discrete State Domains
We evaluate DBB-EPA on a tabular-RL agent performing a nav-
igation task in a 3D grid world [23, 34] where the environment-
dynamics model is unknown. The purpose of this experiment is
to evaluate the design of the inference module (as the part (b) in
Figure 2), and to discuss the approximation of the attack cost (as
Equation 4).

5.1.1 Experiment Setting. As shown in Figure 3a, the 3D grid world
simulates mountains or rugged terrain, which serves as the stochas-
tic environment for a navigation task.

Attack Settings. In the 3D grid world, the success of moving from
one cell to the neighboring one is proportional to their relative
elevation, as a result, changing elevation is a mechanism to modify
the environment dynamics. Thus, we consider the elevation as the
environment hyper-parameter which can be manipulated by the
attacker. Additionally, the attack objective is to stealthily force the
victim to reach the destination along the boarder of the grid world,
instead of following the optimal path (i.e., the blue line in Figure
3a). Since the state domain and the action domain in the 3D grid
world are discrete and countable, the attacker-desired policy can
be defined manually.

Implementation and Measurement. We adopt Deep Determinis-
tic Policy Gradient (DDPG) [16] to learn the attack strategy. We
measure the attack performance using attack success rate [34] at
each episode during the victim’s learning process. Here, Attack
success rate is the percentage of the attacker-desired states that
have been attack successfully, specifically, successful attack is the
one in which the victim performs the attacker-desired action in the
desired state.

5.1.2 Results and Discussion.

Attack Performance Evaluation. We evaluate DBB-EPA perfor-
mances in comparison with the white-box attack (i.e., TEPA) [34].
All the results are generated by the attack strategies which are
learned and evaluated on a Q-learning RL agent. As shown in Fig-
ure 4, attack success rate of DBB-EPA is comparable to that of
the white-box attack. Consequently, this result suggests that our
proposed attack is capable of poisoning a black-box RL agent’s

Main Track AAMAS 2022, May 9–13, 2022, Online

1413

https://github.com/JoanaHXU/DBB-EPA

Figure 4: Performance of double-black-box attack in compar-
ison with white-box attack in 3D Grid World

Figure 5: Performance of double-black-box attack against
different RL agents in 3D Grid World

Table 1: Deviations between manipulated environment
hyper-parameters with the natural ones, under different set-
tings of weight parameters. Deviation is measured when
attack success rate reaches 100%.

𝜔 Deviation (𝐿2) Deviation Percentage

0.0 21.55 ± 1.77 0.538 ± 0.044
0.1 17.88 ± 1.82 0.447 ± 0.045
0.2 17.61 ± 1.90 0.440 ± 0.047
0.3 16.49 ± 1.29 0.412 ± 0.032
0.4 16.43 ± 1.08 0.411 ± 0.027
0.5 16.11 ± 2.02 0.402 ± 0.050

policy in an unknown environment. The result further indicates the
effectiveness of the proposed inference module and the designed
attack-cost approximation.

Transferability Evaluation. To evaluate the transferability of the
DBB-EPA strategy, we learn an attack strategy based on a black-box
Q-learning proxy agent, and deploy the strategy on three kinds
of victim agents of which learning algorithms include Q-learning,
Sarsa and Monte Carlo [32]. As shown in Figure 5, the Q-learning
and Sarsa victims obtain the attacker-desired policy within 500
learning episodes; while MC victim reaches 80% success rate at
500𝑡ℎ episode and needs more time to acquire the attacker-desired
policy. We see that the efficiency of the transferred attack against
the MC-victim is somewhat lower than that against the Q/Sarsa
victim. This result can be explained by the characteristics of victims’
learning algorithms. Specifically, Sarsa and Q-learning are temporal-
difference (TD) algorithms while MC is an on-policy experience-
based learning algorithm. TD learns the policy online at every time
step, whereas MC has to wait until the end of the episode for the
policy to be updated. In practice, it appears that TD learning works
more efficiently than MC, which affects the efficiency of learning
the attacker-desired policy. In summary, our DBB-EPA strategy
can be successfully transferred among agents which use different
learning algorithms, while the attack efficiency is influenced by the
characteristics of the victim’s RL learning algorithm.

Analysis of Weight Parameter 𝜔 . When designing the attack-cost
approximation as Equation 4, we explicitly consider the aggregate
environment changes with a weight parameter 𝜔 . Here, we em-
pirically show the effect of 𝜔 on the learned attack strategy. Table

1 displays deviations between the poisoned environment and the
natural one, when the attack success rate has reached 100%. Devi-
ations of environment hyper-parameters are measured by the 𝐿2
norm, and they are also represented by the percentage of hyper-
parameters that have been altered. As shown in Table 1, the environ-
ment deviation decreases as 𝜔 increases. Consequently, the explicit
representation of environmental deviations contributes positively
to the control of attack efforts. However, according to our obser-
vation, it is becoming increasingly difficult to train a successful
attack strategy with the increasing 𝜔 . For example, the training
with 𝜔 = 0.1 converges within 300 episodes while the training
with 𝜔 = 0.5 takes 800 episodes to converge. Therefore, learning
an attack strategy involves a tradeoff. The attack strategy which
requires fewer attack efforts (i.e. changes in the environment) is
more difficult to learn.

Discussions on Computational Time. We present the computa-
tional time introduced by the inference module (i.e., Encoder-Dual-
Decoder network) on GPU (i.e., Nvidia RTX A6000) in terms of
the attack learning and deployment. First, the learning time of the
DBB-EPA strategy is 83,066 seconds, which is 1.19 times more than
that of the white-box TEPA strategy (i.e., 69,537 seconds). The 20%
increase is acceptable for learning the internal information of RL
systems. Second, the deployment time of the DBB-EPA attack and
the white-box TEPA attack are 30.09 seconds and 29.53 seconds,
respectively. The impact of Encoder on the deployment time can
be negligible (about 2% increase) due to its small network size and
small computation load.

5.2 Continuous State Domains
Experimental results in the discrete environment have demon-
strated the effectiveness of our inference module and attack-cost
approximation. In this part, we further evaluate the feasibility and
the scalability of DBB-EPA in more complex RL tasks. Note that the
complexity of RL tasks is interpreted from two perspectives: (1) the
complexity of the RL agent is scaled by shifting from tabular-RL
algorithms up to deep-RL algorithms; (2) the complexity of the
environment is scaled from discrete state domains up to continuous
domains. In the following, we show the DBB-EPA performance
against DRL agents in LunarLander.

Main Track AAMAS 2022, May 9–13, 2022, Online

1414

Figure 6: Attack evaluation on a DQN victim in LunarLaner Figure 7: Attack evaluation on a PPO victim in LunarLaner

(a) Transfered attack on a PPO victim (b) Transfered attack on a VPG victim
Figure 8: Transferability evaluation of an attack strategy learned from a black-box DQN proxy agent in LunarLander

(a) Transfered attack on a DQN victim (b) Transfered attack on a VPG victim
Figure 9: Transferability evaluation of an attack strategy learned from a black-box PPO proxy agent in LunarLander

5.2.1 Experiment Settings. LunarLander [2] is a simulation envi-
ronment for the trajectory optimization problem, where the envi-
ronment state is continuous and the dynamics model is unknown.
As shown in Figure 3b, the task is to safely land a spaceship between
the flags smoothly.

Attack Settings. In light of the observation that there is random
wind which might influence the spaceship’s trajectory, we choose
wind as the environment hyper-parameter that can be implemented
by the attacker. Specifically, the wind power affects the spaceship’s
moving distance, and the wind direction influences the spaceship’s
moving direction. For example, the spaceship is increasingly dif-
ficult to moving downward with increasing upward wind power.
Thus, the wind implementation is a mechanism to affect the envi-
ronment dynamics. Additionally, the attacker aims to prevent the
spaceship from landing on the pad while keep the spaceship safe. In
detail, the attacker-desired trajectory is that the spaceship hovers

around the right flag for at least 1000 time steps. We obtain such
an attacker-desired policy using the reward-shaping solution [35].

Implementation andMeasurement. Weadopt TwinDelayedDDPG
(TD3) [7] to learn the DBB-EPA strategy. The attack strategy is eval-
uated on black-box DRL agents of which the learning algorithms
include an off-policy algorithm Deep Q-Network (DQN) [18], on-
policy algorithms Vanilla Policy Gradient (VPG) [32] and Proximal
Policy Optimization (PPO) [28]. Additionally, the attack perfor-
mance is measured by the trajectory similarity, i.e., the Cosine
Similarity between the latent representations. If the trajectory sim-
ilarity is more than 90%, we consider that the victim’s policy has
been successfully poisoned.

5.2.2 Results and Discussion.

Attack Performance Evaluation. We learn an attack strategy based
on a DQN proxy agent and a PPO proxy agent, respectively. The

Main Track AAMAS 2022, May 9–13, 2022, Online

1415

(a) tSNE visualization for a DQN victim (b) tSNE visualization for a PPO victim (c) Illustration of attacker-desired trajectories

Figure 10: Visualization of the victim’s poisoned policies and the attacker-desired trajectories

attack strategy is deployed at every 80 episodes during the victim’s
learning process, and the attack performance is measured at the end
of each learning episode. As shown in Figure 6, the similarity be-
tween the DQN victim’s actual trajectory with the attacker-desired
one reaches nearly 100% within two attack epochs. It indicates that
the DQN victim’s policy have been poisoned successfully by the
attack strategy which is learned on the DQN proxy. When attacking
PPO victim using the strategy learned on the PPO proxy, Figure
7 shows that trajectory similarity reaches above 90% within three
attack epochs. These results indicate that DBB-EPA is successful
in forcing an DRL agent to learn the attacker-desired trajectory in
a continuous environment, without prior knowledge of both the
agent’s algorithm and the training environment.

Transferability Evaluation. We evaluate the transferability of
DBB-EPA strategy in the LunarLander setting. The attack strate-
gies are trained based on a DQN proxy agent and a PPO proxy
agent, respectively. Afterwards, they are applied to attack victims
adopting different learning algorithms. Figure 8 and Figure 9 show
the performance of the transferred attack strategies. Overall, the
DBB-EPA strategies successfully induce the DRL victim to learn
the attacker-desired trajectory regardless of the victim’s learning
algorithm. In detail, as shown in Figure 8, the PPO victim’s policy
is poisoned within 3 attack epochs while VPG victim requires 10
epochs for being attacked successfully, with the strategy learned on
a DQN proxy. As shown in Figure 9, with the strategy learned on
a PPO proxy, DQN victim is successfully attacked within 2 attack
epochs whereas VPG victim’s policy is manipulated using 10 epochs.
In summary, these observations indicate that an DBB-EPA strategy,
which is learned on a on-policy DRL agent, can be successfully
transferred to poison a off-policy DRL agent, and vice versa.

Furthermore, we notice that the attack efficiency varies for dif-
ferent victims, which is attributable to the characteristics of the
victim’s learning algorithm. Specifically, the off-policy DQN algo-
rithm learns its policy at each timestep using samples in a replay
buffer. The on-policy PPO algorithm updates its policy with each
sample of a trajectory at the end of the episode. The VPG algorithm,
on the other hand, updates its policy based on one return of an
entire trajectory at each episode. Due to the different frequency
of policy updating, VPG’s policy learning process is slower than
that of DQN or PPO. This explains why VPG victim requires more
attack epochs to obtain the target policy. In summary, the DBB-EPA

strategy can be transferred to poison different DRL agents’ policies,
nevertheless, the attack efficiency depends on the characteristics of
the victim’s specific learning algorithm. This conclusion is consis-
tent with the transferability discussion for tabular RL in the discrete
domain (as Section 5.1.2).

Visualization of Poisoned Policy. To examine the similarity be-
tween the victim’s poisoned trajectory with the attacker-desired
one, we use tSNE [33] to visualize their representations in the latent
space.We collect 500 trajectories generated by the victim’s poisoned
policy and the attacker-desired policy, respectively. Individual tra-
jectory is encoded as an embedding and visualized by tSNE. In
Figure 10a and 10b, the victim’s poisoned trajectories are clustered
same as the attacker-desired ones, which has been shown by the
overlapping distribution curves along the two tSNE dimensions.
Notice that two clusters of embeddings exists, which represent the
two kinds of attacker-desired trajectories as shown in Figure 10c,
i.e., the spaceship experiences two kinds of trajectories and finally
keeps hovering around the right flag more than 1000 time steps. In
conclusion, both the DQN agent and the PPO agent have been mis-
led to learn the attacker-desired policies in the poisoned training
environment, and both experience the attacker-desired trajectories
in the natural testing environment.

6 CONCLUSION
In this paper, we propose an environment-poisoning attack against
an RL agent at training time, with minimal prior knowledge of
the RL system. Assuming only the ability to alter the environment
hyper-parameters, our attack achieves minimal and adaptive en-
vironment poisoning, forcing a black-box RL agent to learn an
attacker-desired policy in an unknown environment. It achieves
comparable performance to that of the white-box attack in the
grid world, and succeeds in poisoning the DRL agent’s policy in
continuous environments. In summary, our study investigates the
security threat posed by environment hyper-parameters, which
can serve as a test-bed core to analyze vulnerabilities of RL to
training-environment poisoning.

ACKNOWLEDGMENTS
This research was in part supported by the NTU SUG "Choice
manipulation and Security Games".

Main Track AAMAS 2022, May 9–13, 2022, Online

1416

REFERENCES
[1] Xiaoxuan Bai, Wenjia Niu, Jiqiang Liu, Xu Gao, Yingxiao Xiang, and Jingjing Liu.

2018. Adversarial Examples Construction Towards White-box Q Table Variation
in DQN Pathfinding Training. In Proceedings of the 3rd International Conference
on Data Science in Cyberspace. IEEE, Guangzhou, China, 781–787.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:1606.01540

[3] Tong Chen, Jiqiang Liu, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Zhen
Han. 2019. Adversarial Attack and Defense in Reinforcement Learning-from AI
Security View. Cybersecurity 2, 1 (2019), 1–22.

[4] Kenneth Ward Church. 2017. Word2Vec. Natural Language Engineering 23, 1
(2017), 155–162.

[5] Antonio Coronato, Muddasar Naeem, Giuseppe De Pietro, and Giovanni Paragli-
ola. 2020. Reinforcement Learning for Intelligent Healthcare Applications: A
Survey. Artificial Intelligence in Medicine 109 (2020), 101964–101964.

[6] Niloufar Eghbali, Tuka Alhanai, and Mohammad M Ghassemi. 2021. Patient-
Specific Sedation Management via Deep Reinforcement Learning. Frontiers in
Digital Health 3 (2021), 1–9.

[7] Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing Function
Approximation Error in Actor-Critic Methods. In Proceedings of the 35th Interna-
tional Conference on Machine Learning. PMLR, Stockholmsmässan, Stockholm
Sweden, 1587–1596.

[8] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. 2018. Deep Reinforcement Learning That Matters. In Proceedings
of the 32th AAAI Conference on Artificial Intelligence. AAAI, Louisiana, USA,
3207–3214.

[9] Yunhan Huang and Quanyan Zhu. 2019. Deceptive Reinforcement Learning
under Adversarial Manipulations on Cost Signals. In Proceedings of the Interna-
tional Conference on Decision and Game Theory for Security. Springer, Stockholm,
Sweden, 217–237.

[10] Inaam Ilahi, Muhammad Usama, Junaid Qadir, Muhammad Umar Janjua, Ala
Al-Fuqaha, Dinh Thai Huang, and Dusit Niyato. 2021. Challenges and Coun-
termeasures for Adversarial Attacks on Deep Reinforcement Learning. IEEE
Transactions on Artificial Intelligence 1, 1 (2021), 1–21.

[11] Taylor W Killian, George Konidaris, and Finale Doshi-Velez. 2017. Robust and
Efficient Transfer LearningwithHidden ParameterMarkovDecision Processes. In
Proceedings of the 31th AAAI Conference on Artificial Intelligence. AAAI, California,
USA, 4949–4950.

[12] Sunyong Kim and Hyuk Lim. 2018. Reinforcement Learning based Energy Man-
agement Algorithm for Smart Energy Buildings. Energies 11, 8 (2018), 2010–2029.

[13] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, PatrickMannion, AhmadA. Al Sallab,
Senthil Yogamani, and Patrick Pérez. 2021. Deep Reinforcement Learning for
Autonomous Driving: A Survey. IEEE Transactions on Intelligent Transportation
Systems 1, 1 (2021), 1–18.

[14] Sangyoon Lee and Dae-Hyun Choi. 2022. Federated Reinforcement Learning
for Energy Management of Multiple Smart Homes with Distributed Energy
Resources. IEEE Transactions on Industrial Informatics 18, 1 (2022), 488–497.

[15] Roman Liessner, Jakob Schmitt, Ansgar Dietermann, and Bernard Bäker. 2019.
Hyperparameter Optimization for Deep Reinforcement Learning in Vehicle En-
ergy Management. In Proceedings of the 11th International Conference on Agents
and Artificial Intelligence. SCITEPRESS, Prague, Czech Republic, 134–144.

[16] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous Control
with Deep Reinforcement Learning. In Proceedings of 4th International Conference
on Learning Representation. ICLR, San Juan, Puerto Rico, 1–14.

[17] Yuzhe Ma, Xuezhou Zhang, Wen Sun, and Jerry Zhu. 2019. Policy Poisoning in
Batch Reinforcement Learning and Control. In Proceedings of the 33th Conference
on Neural Information Processing Systems. ACM, Vancouver, Canada, 14570–
14580.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. In Proceedings of the 27th Conference on Neural
Information Processing Systems. ACM, USA, 1–9.

[19] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel,
Sergey Levine, and Chelsea Finn. 2018. Learning to Adapt in Dynamic, Real-
world Environments through Meta-Reinforcement Learning. In Proceedings of 6th
International Conference on Learning Representations. ICLR, Vancouver, Canada,
1–17.

[20] Xinlei Pan, Weiyao Wang, Xiaoshuai Zhang, Bo Li, Jinfeng Yi, and Dawn Song.
2019. How You Act Tells a Lot: Privacy-leaking Attack on Deep Reinforcement
learning. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems. IFAAMS, Auckland, New Zealand, 368–376.

[21] Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. 2017. Virtual to Real Re-
inforcement Learning for Autonomous Driving. In Proceedings of 28th British
Machine Vision Conference. BMVA, London, British, 1–13.

[22] Christian Perez, Felipe Petroski Such, and Theofanis Karaletsos. 2020. Generalized
Hidden Parameter MDPs: Transferable Model-based RL in a Handful of Trials.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence. AAAI, New
York, USA, 5403–5411.

[23] Zinovi Rabinovich, Lachlan Dufton, Kate Larson, and Nick Jennings. 2010. Culti-
vating Desired Behaviour: Policy Teaching via Environment-dynamics Tweaks.
In Proceedings of the 10th International Conference on Autonomous Agents and
MultiAgent Systems. IFAAMS, Toronto, Canada, 1097–1104.

[24] Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla.
2020. Policy Teaching via Environment Poisoning: Training-time Adversarial
Attacks against Reinforcement Learning. In Proceedings of the 37th International
Conference on Machine Learning. PMLR, Vienna, Austria, 7974–7984.

[25] Amin Rakhsha, Xuezhou Zhang, Xiaojin Zhu, and Adish Singla. 2021. Reward
Poisoning in Reinforcement Learning: Attacks Against Unknown Learners in Un-
known Environments. In Proceedings of the 35th Conference on Neural Information
Processing Systems. ACM, Online, 1–22.

[26] Elsa Riachi, Muhammad Mamdani, Michael Fralick, and Frank Rudzicz. 2021.
Challenges for Reinforcement Learning in Healthcare. arXiv:2103.05612 [cs.LG]

[27] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. 2017.
Deep Reinforcement Learning Framework for Autonomous Driving. Electronic
Imaging 2017, 19 (2017), 70–76.

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]

[29] Tomah Sogabe, Dinesh Bahadur Malla, Shota Takayama, Seiichi Shin, Katsuyoshi
Sakamoto, Koichi Yamaguchi, Thakur Praveen Singh, Masaru Sogabe, Tomohiro
Hirata, and Yoshitaka Okada. 2018. Smart Grid Optimization by Deep Reinforce-
ment Learning over Discrete and Continuous Action Space. In Proceedings of
the 7th World Conference on Photovoltaic Energy Conversion. IEEE, Hawaii, USA,
3794–3796.

[30] Sumedh A Sontakke, Arash Mehrjou, Laurent Itti, and Bernhard Schölkopf. 2021.
Causal Curiosity: RL Agents Discovering Self-Supervised Experiments for Causal
Representation Learning. In Proceedings of the 38th International Conference on
Machine Learning. PMLR, Online, 9848–9858.

[31] Yanchao Sun, Da Huo, and Furong Huang. 2021. Vulnerability-Aware Poisoning
Mechanism for Online RL with Unknown Dynamics. In Proceedings of 10th
International Conference on Learning Representation. ICLR, Vienna, Austria, 1–27.

[32] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT press, Cambridge, Massachusetts, USA.

[33] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–2605.

[34] Hang Xu, Rundong Wang, Lev Raizman, and Zinovi Rabinovich. 2021. Transfer-
able Environment Poisoning: Training-time Attack on Reinforcement Learning.
In Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems. IFAAMAS, Online, 1398–1406.

[35] Haoqi Zhang, David C Parkes, and Yiling Chen. 2009. Policy Teaching through
Reward Function Learning. In Proceedings of the 10th ACMConference on Electronic
Commerce. Association for Computing Machinery, New York, NY, United States,
California, USA, 295–304.

[36] Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. 2020. Adaptive
Reward-Poisoning Attacks against Reinforcement Learning. In Proceedings of
the 37th International Conference on Machine Learning. PMLR, Vienna, Austria,
11225–11234.

Main Track AAMAS 2022, May 9–13, 2022, Online

1417

https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2103.05612
https://arxiv.org/abs/1707.06347

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Notations and Preliminaries
	3.2 Attack Problem Formulation

	4 Method
	4.1 Attack Procedure
	4.2 Attack Learning Methodology

	5 Experiment
	5.1 Discrete State Domains
	5.2 Continuous State Domains

	6 Conclusion
	Acknowledgments
	References

