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ABSTRACT
Recently Reinforcement Learning (RL) has been applied as an anti-
adversarial remedy in wireless communication networks. However
studying the RL-based approaches from the adversary’s perspective
has received little attention. Additionally, RL-based approaches in
an anti-adversary or adversarial paradigm mostly consider single-
channel communication (either channel selection or single chan-
nel power control), while multi-channel communication is more
common in practice. In this paper, we propose a multi-agent adver-
sary system (MAAS) for modeling and analyzing adversaries in a
wireless communication scenario by careful design of the reward
function under realistic communication scenarios. In particular,
by modeling the adversaries as learning agents, we show that the
proposed MAAS is able to successfully choose the transmitted chan-
nel(s) and their respective allocated power(s) without any prior
knowledge of the sender strategy. Compared to the single-agent
adversary (SAA), multi-agents in MAAS can achieve significant
reduction in signal-to-noise ratio (SINR) under the same power
constraints and partial observability, while providing improved
stability and a more efficient learning process. Moreover, through
empirical studies we show that the results in simulation are close
to the ones in communication in reality, a conclusion that is pivotal
to the validity of performance of agents evaluated in simulations.
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1 INTRODUCTION
Recently reinforcement learning (RL) has been successfully applied
for designing algorithms for defending against adversary attacks
in a hostile wireless communication environment [1, 3, 6, 7]. How-
ever, using the RL-based methods from the adversary’s perspective
has received little attention. This is especially important since a
better understanding of adversaries’ behavior can lead to better de-
sign of defense mechanisms as well as active defense. Furthermore,
the current endeavor for utilizing the RL-based methods either in
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anti-adversary or adversary paradigm mostly consider communi-
cation within a single channel (either channel selection or single
channel power control), while multi-channel communication is
more common in real scenarios. In this work, we propose a multi-
agent adversary system (MAAS) based on RL for modeling and
analyzing adversaries (e.g., jammers) in a wireless communication
scenario by a careful design of the reward function for realistic
multi-channel communication scenarios. Through extensive sim-
ulations, we show that the proposed MAAS learns to choose the
transmit channel and the most efficient power allocation for attack
without any prior knowledge of the sender strategy. In particular,
our results demonstrate that using MAAS and implicit collabora-
tion between the adversaries can provide better performance and
success rates compared to the single-agent adversary (SAA) case. In
addition, MAAS is fault-tolerant and robust to the failure of some
agents since other agents may take over the failed agent’s duty and
continue its operations.

2 MULTI-AGENT ADVERSARY SYSTEM
(MAAS)

2.1 Communication Model
We first propose our communication model. In our scenario, we
assume there is a pair of sender/receiver and there are 𝑁 available
channels for sending the signal (see figure ??). We assume that the
communication between the sender and the receiver and also the
adversaries happens only at discrete time steps 𝑡 = 0, 1, 2, .... At each
time step 𝑡 , the sender is allowed to choosemultiple channels to send
its signal to the receiver. The amount of power allocated to each
channel is assumed to be fixed during the time that channel is used
for communication. We also assume that there are𝑀 adversaries
(indexed by the index 𝑗 = 0, 1, ..., 𝑀 − 1), each selects one channel
out of 𝑁 available channels and a power level from a set 𝑃 =

{𝑃0, 𝑃1, . . . , 𝑃𝐾 }, where 0 ≤ 𝑃0 < 𝑃1 < · · · < 𝑃𝐾 ). This means that
the adversary 𝑗 ’s action at time 𝑡 is a 2-dimensional vector 𝑎 (𝑡 )

𝑗
=

[𝐶 (𝑡 )
𝑗

, 𝑃
(𝑡 )
𝑗

]𝑇 , where 𝐶 (𝑡 )
𝑗

is the channel selected by adversary 𝑗 ,

and 𝑃
(𝑡 )
𝑗

∈ 𝑃 is its selected power level at time 𝑡 . In our scenario,
the goal is that adversaries can select their actions to maximize
decrease of the quality of communication (QoC) between the sender
and the receiver. The (QoC) at each time step 𝑡 is defined by the
signal-to-interference-plus-noise ratio (SINR):

SINR(𝑡 ) =
𝑃
(𝑡 )
𝑆

∗ ℎ𝑆
𝜂 +∑𝑀−1

𝑗=0 𝑃
(𝑡 )
𝑗

∗ ℎ 𝑗 ∗ 𝐼 (𝐶 (𝑡 )
𝑗

= 𝐶
(𝑡 )
𝑆

)
, (1)
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where 𝜂 denotes the communication noise, and ℎ𝑆 and ℎ 𝑗 are power
gains for the sender and adversary 𝑗 , respectively. In order to evalu-
ate the performance of an adversary in our communication model,
we define Success of Attack (SA) as a binary-valued function as
follows:

𝑆𝐴 = 1(𝑆𝐼𝑁𝑅 (𝑡 ) < 𝜏𝑆𝑁𝑅 (𝑡 ) ), (2)
where 𝜏 denotes a pre-defined threshold, and SNR (signal-to-noise-
ratio) is the maximal achievable SINR for the receiver, calculated
as 𝑆𝑁𝑅 =

𝑃𝑠∗ℎ𝑠
𝜂 (i.e., the SINR without any interference). Also,

1(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) denotes the indicator function defined as 1 if the
condition is true, and 0 otherwise. Moreover, We define the Success
Rate of Attack (SRA) as the ratio of the number of SA over a time
interval 𝑇 > 0:

SRA =

∑𝑇−1
𝑡=0 1(𝑆𝐼𝑁𝑅 (𝑡 ) < 𝜏𝑆𝑁𝑅 (𝑡 ) )

𝑇
. (3)

The choice of 𝜏 is problem-specific. However, as we will see in the
experimental results, the change of 𝜏 will not have a dramatic effect
in changing the SRA value of the proposed MASS.

2.2 Design of Reward Function
Our reward function includes two parts: the portion of channels
blocked by adversaries, and the power cost incurred by adversaries
for attacking the communication between the sender and the re-
ceiver.

• Channels blocked by adversaries. This can be computed
by the decrease in the Shannon channel capacity calculated
as 𝐵 ∗

(
log2 (1 + SNR(𝑡 ) ) − log2 (1 + SINR(𝑡 ) )

)
, where 𝐵 de-

notes the bandwidth of the channel.
• Power cost. The reward function should include a term,
indicating the cost of power to penalize adversaries if they
use the allocated power inefficiently. We consider a constant
power cost, 𝐶𝑜𝑠𝑡𝑝𝑜𝑤𝑒𝑟 for all the adversaries and assume
that the cost is known to adversaries throughout the com-
munication.

Hence, the total reward function for the whole multi-agent sys-
tem is given by:

𝑅 (𝑡 ) = 𝐵 ∗
(
log2 (1 + SNR(𝑡 ) ) − log2 (1 + SINR(𝑡 ) )

)
−𝐶power ∗

𝑀−1∑︁
𝑗=0

𝑃
(𝑡 )
𝑗

, (4)

where 𝑃 𝑗 is the power used by adversary 𝑗 .

2.3 RL for Multi-Agent Adversary System
We choose the Double Deep Q-learning with prioritized experience
replay as RL agent for each adversary in MAAS for faster adaption
to the environment [4, 5]. Similar to existing methods [7], we use
the SINR at time 𝑡 − 1 as the state for the environment at time 𝑡
and each adversary in MARL have its own reward for distributed
training at time 𝑡 defined as follows:

𝑅
(𝑡 )
𝑗

= 𝐵 ∗
(
log2 (1 + SNR(𝑡 ) ) − log2 (1 + SINR(𝑡 ) )

)
−𝐶𝑜𝑠𝑡𝑝𝑜𝑤𝑒𝑟 ∗ 𝑃 (𝑡 )

𝑗
. (5)

For training of the MAAS, we follow the distributed learning
paradigm in which there is no central entity to coordinate the infor-
mation exchange between adversaries. In addition, all adversaries
interact with the environment simultaneously and can observe
the SINR values sequentially. They also select their actions inde-
pendently from each other. Each adversary 𝑗 is equipped by an
experience memory 𝑀𝐸𝑀𝑗 for storing the adversary’s experience
for faster learning, and a pair of actor network 𝑄𝑎𝑐𝑡𝑜𝑟

𝑗
and target

network 𝑄𝑡𝑎𝑟𝑔𝑒𝑡
𝑗

) which are initialized randomly at the beginning
of communication. At the very beginning (𝑡 = 0), adversaries make
random actions. At any other time 𝑡 > 0, each adversary selects its
action 𝑎

(𝑡 )
𝑗

using its actor network with the current state 𝑠 (𝑡 ) (the
SINR value from the last time step, 𝑡 − 1) as input. The sequence
of SINR values is also used for computing individual rewards 𝑟 (𝑡 )

𝑗

which is used to train actor networks and target networks𝑄 (𝑎𝑐𝑡𝑜𝑟 )
𝑗

and 𝑄 (𝑡𝑎𝑟𝑔𝑒𝑡 )
𝑗

.

3 SIMULATIONS
In this section, we present our empirical studies to demonstrate the
performance of our proposed MAAS in both single-channel and
multiple-channel wireless communication with four types of trans-
mitters and four benchmark adversaries (Please see [2] for details
of the simulations.). Figure 1 illustrate the overall performance of
adversaries in different scenarios. MAAS also has a consistently
increased success rate of attacks compared to all other benchmark
adversaries regardless of threshold 𝜏 .

Figure 1: MAAS consistently gains over the other adversaries
in all cases even though we enforce its total power to be the
same as the MSRL.

4 CONCLUSION
We have proposed a MARL-based multi-agent adversary system
(MAAS) along with a system model for multi-channel communica-
tion. The MAAS has shown an outstanding performance compared
to various baselines, even with power constraints and without
partial observability. The proposed MAAS has its value in active
defense as well as understanding the behaviors of multi-agent RL
adversaries in designing the defense mechanisms.
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