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ABSTRACT

Sparse and delayed rewards pose a challenge to single agent re-
inforcement learning. This challenge is amplified in multi-agent
reinforcement learning (MARL) where credit assignment of these re-
wards needs to happen not only across time, but also across agents.
We propose Agent-Time Attention, a neural network model with
auxiliary losses for redistributing sparse and delayed rewards in
collaborative MARL. We provide a simple example to demonstrate
how providing agents with their own local redistributed rewards
over shared global redistributed rewards leads to better policies.
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1 INTRODUCTION

Sparse and delayed rewards are difficult for reinforcement learning
(RL) because the number of possible trajectories grows exponen-
tially with time horizon and this makes attributing rewards to
intermediate observations and actions exponentially more difficult
[3, 9]. One approach to improve learning is to supply additional
rewards through reward shaping in order to transform sparse de-
layed rewards problems into dense ones [13]. However, reward
shaping is often difficult because it requires environment-specific
knowledge. For single agent problems, frameworks like RUDDER
and SECRET [1, 5] allow constructing neural network models for
reward redistribution; learning how sparse delayed rewards can be
transformed into dense rewards for effective policy optimization.

Unfortunately, in themulti-agent reinforcement learning (MARL)
setting, sparse and delayed rewards have not been explored ex-
tensively [8]. Existing cooperative MARL methods instead are fo-
cused on the problem of deducing an agent’s contribution to the
overall team’s success, assuming access to dense global team re-
wards. These methods can take various forms, be it implicit like
[11, 12, 14, 15, 17, 21] where the global state-action value is de-
composed as aggregation of each agent’s state-action value while
assigning the shared global rewards to each agent based on their ac-
tions, or explicit such as COMA [6] and LIIR [4] based on computing
difference rewards [20] against particular reward baselines. Implicit
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methods often encounter limitations in expressiveness with no clear
strategy for continuous action domains, while explicit methods face
limitations on reasoning about individual effect of individual agent
actions on the shared global rewards.

In this work we instead focus on multi-agent domains with de-
layed or sparse global rewards. Therefore any MARL framework
will require reasoning about both the contribution’s from different
agents as well as team’s actions in the past i.e. solve the credit as-
signment problem along both the agent and time axes. We focus on
an improving explicit method to ensure applicability on continuous
action problems. To this end, we propose Agent-Time Attention
(ATA), a neural network model trained on auxiliary losses for re-
distributing global, sparse and delayed team rewards across both
time and agents into dense, local agent rewards. This model can
be applied on top of different single agent RL methods such as
Q-learning and policy gradient methods without additional mod-
ifications under the CTDE paradigm. We perform a pedagogical
experiment on a multi-agent one-dimensional coin environment
to emphasize the importance of holistically reasoning about credit
assignment along both agent and time axes at the same time.

We found that simply extending standard policy gradient meth-
ods with ATA, not just outperforms baselines that just do credit as-
signment on either the agent or time axis, but also their straightfor-
ward combinations where they still reason about credit-assignment
along these two axes separately.

2 MARL REWARD REDISTRIBUTION

RUDDER [1] described reward redistribution as a two-step process:
1) learning a function 𝑔 that predicts the expected return for a
given observation-action sequence. 2) contribution analysis that
determines how much an observation-action pair contributes to
the final prediction.

In the multi-agent case too, the basic principles behind reward
redistribution remains the same. However, there is an additional
demand to redistribute rewards not just along time but also across
agents. Inspired by success of self-attention at implicit credit as-
signment between agents in LICA [22] and transformers at deep
learning problems [7, 10, 18] we propose a transformer based archi-
tecture for multi-agent return prediction which we term as Agent-
Time Attention (ATA). The network architecture is described in
Figure 1. Observation-action pairs at each timestep 𝑡 for each agent
𝑖 result into the return predictions of 𝑅𝑡

𝑖
during execution.

The data for training this model is collected during policy op-
timization. The reader might observe that in cooperative MARL
we only have global team rewards from the environment. To be
able to train this architecture in a similar manner as RUDDER, we
aggregate the features after the transformer layer, 𝑍 𝑡

1, . . . 𝑍
𝑡
𝑛 , into
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Figure 1: Left: Network architecture of Agent-Time Attention (ATA) for Reward Redistribution. The blue arrows are active

during both training and execution while orange arrows are active only during training. ATA first encodes individual agent

observation-actions to a latent space. Together with positional encoding ATA applies a single layer of multi-head attention [19]

to another latent space. These are directly decoded to predict individual agent returns at particular time (𝑅𝑡
𝑖
for 𝑖-th agent at 𝑡

timestep). We aggregate features in latent space across agents and decode them to predict global team returns at particular time

(𝑅𝑡 ). Right: sample episodes during training, of agents and coin positions over time. Top is only reward redistribution along

time axis. Bottom is ATA.

𝑍 𝑡 before decoding with the same linear layer as used for local
return predictions during execution. The training loss is:

ℓ = (1 − 𝜆)
𝑅𝑡 − 𝑅𝑡

2 + 𝜆
𝑅𝑡𝑖 − 𝑅𝑡𝑖

2 (1)

where 𝑅𝑡 and 𝑅𝑡
𝑖
are Monte Carlo returns estimated from the actual

rollouts collected during policy optimization.
As recommended by RUDDER, we use differences in return pre-

dictions for contribution analysis. The agent 𝑖’s reward at timestep
𝑡 is therefore 𝑟𝑡

𝑖
= 𝑅𝑡+1

𝑖
− 𝑅𝑡

𝑖
. In our initial tests, we too found that

this performed better than other contribution analysis methods
like integrated gradients [16] or layer-wise relevance propagation
[2]. For example, integrated gradients are more computationally
expensive and result in many possible redistributed rewards when
the reward redistribution model overfits. The attention-weighed
method from SECRET is also too constrained in that it enforces
𝑟𝑡 = 𝛼𝑅𝑡 , where 𝛼 ≥ 0.

Our MARL reward redistribution model has the flexibility to
provide agents with individual rewards in place of global rewards
without requiring a MARL-specific policy optimization method.
From past literature, global rewards tend to result in lazier agent
behaviors and purely individual rewards tend to result in more self-
ish, potentially greedy agent behaviors. A balance can be achieved
under different scenarios by tuning 𝜆 in Equation (1).

3 1D COIN ENVIRONMENT

To understand why RUDDER like reward redistribution of global
team rewards 𝑟𝑡 is not enough for MARL, and why we need to think
about redistribution across both time and agents, we construct a
simple one dimensional coin collection environment.

The environment consists of a line of length 13 with two agents
and one coin generated at random positions on the line. An agent
has partial observations and can move left or right. If an agent
reaches the coin, the global team reward increments by 𝑝1, and if
both agents reaches the coin at the same time, the global reward
increments by 𝑝2. Once either agents reaches the coin, the coin is
randomly placed at a different position. The episode length is 200.
The global reward is provided at the end of each episode.

We compare our ATA model to a baseline RUDDER model that
takes as input concatenation of the observations and actions of all
agents into a single input (𝑜0𝑡 , 𝑎0𝑡 , 𝑜1𝑡 , ...) and then predicts the
global team reward redistribution only. We use independent policy
gradient (IPG) to train the agent policies.

Figure 1 shows example episodes mid-training using these re-
ward redistributionmethods for 𝑝1 = 0.25 and 𝑝2 = 1. The RUDDER
baseline encourages a lazy behavior of agents collecting coins in
their own half of the space, while our reward redistribution model
that does redistribution along both axes can encourage behavior
where agents tend to move together, across the entire space. This
is preferred specifically in the case where 𝑝2 > 𝑝1 because getting
the coin together leads to higher returns. Although both methods
converge to similar solutions, ATA is much faster.

4 CONCLUSION

We proposed Agent-Time Attention (ATA) for redistributing sparse
global team rewards into dense agent-specific rewards that can be
trained along with existing RL methods such as policy gradient. We
identified a simple case demonstrating failure of just redistributing
rewards over time for the multi-agent case.
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