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ABSTRACT
System optimum (SO) routing, wherein the total travel time of all

users is minimized, is a holy grail for transportation authorities.

However, SO routing may discriminate against users who incur

much larger travel times than others to achieve high system effi-

ciency, i.e., low total travel times. To address the inherent unfairness

of SO routing, we study the 𝛽-fair SO problem whose goal is to

minimize the total travel time while guaranteeing a 𝛽 ≥ 1 level of

unfairness, which specifies the maximum possible ratio between the

travel times of different users with shared origins and destinations.

To obtain feasible solutions to the 𝛽-fair SO problemwhile achiev-

ing high system efficiency, we develop a new convex program, the

Interpolated Traffic Assignment Problem (I-TAP), which interpo-

lates between a fairness-promoting and an efficiency-promoting

traffic-assignment objective. We evaluate the efficacy of I-TAP

through theoretical bounds on the total system travel time and

level of unfairness in terms of its interpolation parameter, as well as

present a numerical comparison between I-TAP and a state-of-the-

art algorithm on a range of transportation networks. The numerical

results indicate that our approach is faster by several orders of mag-

nitude as compared to the benchmark algorithm, while achieving

higher system efficiency for all desirable levels of unfairness. We

further leverage the structure of I-TAP to develop two pricing mech-

anisms to collectively enforce the I-TAP solution in the presence of

selfish homogeneous and heterogeneous users, respectively, that

independently choose routes to minimize their own travel costs.

We mention that this is the first study of pricing in the context of

fair routing for general road networks.
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1 INTRODUCTION
Traffic congestion has soared in major urban centres across the

world, leading to widespread environmental pollution and huge

economic losses. In the US alone, almost 90 billion US dollars of

losses are incurred every year, with commuters losing hundreds of

hours due to traffic congestion [13]. A contributing factor to increas-

ing road traffic is the often sub-optimal route selection by users

due to the lack of centralized control [23, 24]. In particular, selfish
routing, wherein users choose routes to minimize their travel times,

results in a user equilibrium (UE) traffic pattern that is often far

from the system optimum (SO) [27, 32]. To cope with the efficiency

loss due to the selfishness of users, several methods including the

control of a fraction of compliant users [26] and marginal cost tolls,

where users pay for the externalities they impose on others, have

been used to enforce the SO solution as a UE [20, 30].

While determining SO tolls is of fundamental theoretical impor-

tance, it is of limited practical interest [31] since SO traffic patterns

are often unfair with some users incurring much larger travel times

than others. This discrepancy among user travel times is referred

to as unfairness, which, more formally, is the maximum possible

ratio across all origin-destination (O-D) pairs of the travel time of a

given user to the travel time of the fastest user between the same

O-D pair. The unfairness of the SO solution can be quite high in

real-world transportation networks, since users may spend nearly

twice as much time as others travelling between the same O-D

pair [16]. Moreover, a theoretical analysis established that the SO

solution can even have unbounded unfairness [22].

The lack of consideration of user-specific travel times in the SO

problem has led to the design of methods that aim to achieve a

balance between the total travel time of a traffic assignment and

the level of fairness that it provides. In a seminal work, Jahn et al.

[16] introduced the Constrained System Optimum (CSO) to reduce

the unfairness of traffic flows by bounding the ratio of the normal

length of a path of a given user to the normal length of the shortest

path for the same O-D pair. Here, normal length is any metric for an

edge that is fixed a priori and is independent of the traffic flow, e.g.,
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edge length or free-flow travel time. While many approaches to

solve the CSO problem have been developed [1–3], they suffer from

the limitation that the level of experienced unfairness in terms of

user travel times can be much higher than the bound on the ratio

of normal lengths that the CSO is guaranteed to satisfy. In addition

to this drawback, the algorithmic approaches to solve the CSO

problem are often computationally prohibitive and do not provide

theoretical guarantees in terms of the resulting solution fairness

and efficiency. Furthermore, it is unclear how to develop a pricing

scheme to enforce such proposed traffic assignments in practice.

In this work, we study a problem analogous to CSO that differs

in the problem’s unfairness constraints. In particular, we explicitly

consider the unfairness in terms of user travel times as in [4], which,

arguably, is a more accurate representation of user constraints as

it accounts for costs that vary according to a traffic assignment.

Our work further addresses the algorithmic concerns of existing

approaches to solve fairness-constrained traffic routing problems

by developing (i) a computationally-efficient approach that trades

off efficiency and fairness in traffic routing, (ii) theoretical bounds

to quantify the performance of our algorithm, and (iii) a pricing

mechanism to enforce the resulting traffic assignment.

Contributions.We study the 𝛽-fair System Optimum (𝛽-SO) prob-

lem, which involves minimizing the total travel time of users sub-

ject to unfairness constraints, where a 𝛽 ≥ 1 bound on unfairness

specifies the maximum allowable ratio between the travel times of

different users with shared origins and destinations.

We develop a simple yet effective approach for 𝛽-SO that involves

solving a new convex program, the interpolated traffic assignment

problem (I-TAP). I-TAP interpolates between the fair UE and ef-

ficient SO objectives to achieve a solution that is simultaneously

fair and efficient. This allows us to approximate the 𝛽-SO problem

as an unconstrained TAP, which can be solved quickly. We fur-

ther present theoretical bounds on the total system travel time and

unfairness level in terms of the interpolation parameter of I-TAP.

We then exploit the structure of I-TAP to develop two pricing

schemes which enforce users to selfishly select the flows satisfying

the 𝛽 bound on unfairness computed through our approach. For

homogeneous users with the same value of time we develop a

natural marginal-cost pricing scheme. For heterogeneous users, we

exploit a linear-programming method [12]. We mention that our

work is the first to study road pricing in connectionwith fair routing

for general road networks as opposed to, e.g., parallel networks.

Finally, we evaluate the performance of our approach on real-

world transportation networks. The numerical results indicate sig-

nificant computational savings as well as superior performance

of I-TAP for all desirable levels of unfairness 𝛽 , as compared to

the algorithm in [16]. Moreover, our results demonstrate that our

approach can reduce unfairness by 50% while increasing the total

travel time by at most 2%, which indicates that a huge gain in user

fairness can be achieved for a small loss in efficiency, making our

approach a desirable option for use in route guidance systems.

This paper is organized as follows. Section 2 reviews related

literature. We introduce in Section 3 the 𝛽-SO problem and metrics

to evaluate the fairness and efficiency of a traffic assignment. We

introduce the I-TAP method and discuss its properties in Section 4,

and develop pricing schemes in Section 5. We evaluate the per-

formance of the I-TAP method through numerical experiments in

Section 6 and provide directions for future work in Section 7.

In the extended version of our paper [17], we provide omitted

proofs, numerical implementation details of our approach and ex-

tensions to fairness notions beyond the one considered here.

2 RELATEDWORK
The trade-off between system efficiency and user fairness has been

widely studied in applications including resource allocation, reduc-

ing the bias of machine-learning algorithms, and influence maxi-

mization. While different notions of fairness have been proposed,

the level of fairness is typically controlled through the problem’s

objective or constraints. For instance, fairness parameters that trade-

off the level of fairness in the objective can be tuned to investigate

the loss in system efficiency in the context of influence maximiza-

tion [21] and resource allocation [6] problems. On the other hand,

fairness parameters that bound the degree of allowable inequality

between different user groups through the problem’s constraints

have been proposed to reduce bias towards disadvantaged groups

[28], e.g., through group-based or diversity constraints [15, 29].

In the context of traffic routing, several traffic assignment formu-

lations have been proposed to achieve a balance between multiple

performance criteria [9, 10], with a particular focus on fairness con-

siderations in traffic routing [16]. Since Jahn et al. [16] introduced

the CSO problem, there have been both theoretical studies [25]

as well as the development of heuristic approaches to solve the

NP-hard CSO problem. For instance, [16] proposed a Frank-Wolfe

based heuristic, while others have considered linear relaxations of

the original problem [1–3]. Each of these approaches bounds the

level of unfairness in terms of normal lengths of paths by restricting

the set of eligible paths on which users can travel to those that meet

a specified level of normal unfairness. However, the experienced

unfairness in terms of the travel times may be much higher than

the level of normal unfairness, which is an a priori fixed quantity.

This inherent drawback of the CSO problem in limiting the ex-

perienced unfairness in terms of user travel times was overcome

by [4], which proposed two Mixed Integer Non-Linear Program-

ming models to capture traffic-dependent notions of unfairness.

Their approach to solve these models relies on a linearization heuris-

tic for the edge travel-time functions, which are in general non-
linear. Achieving a high level of accuracy of the linear relaxations

in approximating the true travel-time functions, however, requires

solving a large MILP which is computationally expensive. Unlike [4],
our I-TAP method is computationally inexpensive, while directly
accounting for non-linear travel-time functions.

A further limitation of the existing methods for fair traffic rout-

ing is that there are limited results in providing pricing schemes

to induce selfish users to collectively form the proposed traffic

patterns, e.g., those satisfying a certain bound on unfairness. For

instance, [11] provides tolling mechanisms to enforce fairness con-

strained flows which applies only to parallel networks. In more

general networks, [19] proposes an auction-based bidding mech-

anism for users to be assigned to precomputed paths. However,

this approach cannot be applied as-is to our setting as users are

unconstrained with respect to a specific path set.
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3 MODEL AND PROBLEM DEFINITION
We model the road network as a directed graph 𝐺 = (𝑉 , 𝐸), with
the vertex and edge sets 𝑉 and 𝐸, respectively. Each edge 𝑒 ∈ 𝐸

has a normal length 𝜂𝑒 , and a flow-dependent travel-time function

𝑡𝑒 : R≥0 → R>0, which maps 𝑥𝑒 , the rate of traffic on edge 𝑒 , to the

travel time 𝑡𝑒 (𝑥𝑒 ). As is standard in the traffic routing literature, we

assume that the function 𝑡𝑒 , for each 𝑒 ∈ 𝐸, is differentiable, convex,
locally Lipschitz continuous, and monotonically increasing.

Users make trips between a set of O-D pairs, and we model users

with the same origin and destination as one commodity, where 𝐾

is the set of all commodities. Each commodity 𝑘 ∈ 𝐾 has a demand

rate 𝑑𝑘 > 0, which represents the amount of flow to be routed

on a set of directed paths P𝑘 between its origin and destination.

The edge flow of each commodity 𝑘 is given by x𝑘 = {𝑥𝑘𝑒 }𝑒∈𝐸 ,
while the aggregate edge flow is denoted as x := {𝑥𝑒 }𝑒∈𝐸 . For an
edge flow x := {𝑥𝑒 }𝑒∈𝐸 and a path 𝑃 ∈ P = ∪𝑘∈𝐾P𝑘 , the amount

of flow routed on the path is denoted as x𝑃 , where the vector of
path flows f = {x𝑃 : 𝑃 ∈ P}. Then, the travel time on path 𝑃 is

𝑡𝑃 (x) =
∑
𝑒∈𝑃 𝑡𝑒 (𝑥𝑒 ), while 𝜂𝑃 =

∑
𝑒∈𝑃 𝜂𝑒 is its normal length.

We assume users are selfish and thus choose paths that minimize

their total travel cost that is a linear function of tolls and travel time.

For a value of time parameter 𝑣 > 0, and a vector of edge prices

(or tolls) 𝝉 = {𝜏𝑒 }𝑒∈𝐸 , the travel cost on a given path 𝑃 under the

traffic assignment x is given by 𝐶𝑃 (x,𝝉 ) = 𝑣𝑡𝑃 (x) +
∑
𝑒∈𝑃 𝜏𝑒 .

3.1 Traffic Assignment
In this work we will consider several variants of the traffic assign-

ment problem (TAP). The goal of the SO traffic assignment problem

(SO-TAP) is to route users to minimize the total system travel time.

This behavior is captured in the following convex program:

Definition 1 (Program for SO-TAP [27]).

min

f
ℎ𝑆𝑂 (x) :=

∑
𝑒∈𝐸

𝑥𝑒𝑡𝑒 (𝑥𝑒 ), (1a)

s.t.
∑
𝑘∈𝐾

∑
𝑃 ∈P𝑘 :𝑒∈𝑃

x𝑃 = 𝑥𝑒 , ∀𝑒 ∈ 𝐸, (1b)∑
𝑃 ∈P𝑘

x𝑃 = 𝑑𝑘 , ∀𝑘 ∈ 𝐾, (1c)

x𝑃 ≥ 0, ∀𝑃 ∈ P, (1d)

with edge flow Constraints (1b), demand Constraints (1c), and non-
negativity Constraints (1d).

We mention that the total travel time objective is only a function

of the aggregate edge flow x, which is related to the path flow f
through Constraint (1b). Note for any given path flow f that both
the edge flow x and the commodity-specific edge flows x𝑘 for each

commodity 𝑘 ∈ 𝐾 are uniquely defined. Closely related to SO-TAP

is the UE traffic assignment problem (UE-TAP) that emerges from

the selfish behavior of users that minimize their own travel time,

and is described by the following convex program:

Definition 2 (Program for UE-TAP [27]).

min

f
ℎ𝑈𝐸 (x) :=

∑
𝑒∈𝐸

∫ 𝑥𝑒

0

𝑡𝑒 (𝑦) d𝑦 , (2a)

s.t. (1b) − (1d). (2b)

While the integral objective used to define UE-TAP has not found

a clear economic or behavioral interpretation within the transporta-

tion and game-theory communities [27], the optimal solution of

UE-TAP corresponds to an equilibrium, which can be seen through

the KKT conditions of this optimization problem. That is, UE-TAP

provides a polynomial time computable method to determine the

user equilibrium flows. A defining property of the UE solution

is that it is fair for all users since the travel time of all the flow

that is routed between the same O-D pair is equal. In contrast, at

the SO solution the sum of the travel time and marginal cost of

travel is the same for all users travelling between the same O-D

pair. Thus, marginal cost pricing is used to induce selfish users

to collectively form the SO traffic pattern. While the number of

constraints, which depend on the path sets P𝑘 , can be exponential

in the size of the transportation network, both SO-TAP and UE-TAP

are efficiently computable since they can be formulated without

explicitly enumerating all the path level flows and constraints [27].

3.2 Fairness and Efficiency Metrics
We evaluate the quality of any traffic assignment x using two met-

rics, namely: (i) efficiency and (ii) fairness.

We evaluate the efficiency of a traffic assignment by comparing

its total travel time to that of the SO edge flow x𝑆𝑂 . Recalling that

ℎ𝑆𝑂 (x) denotes the total travel time of the edge flow x, the ineffi-

ciency ratio of x is 𝜌 (x) :=
ℎ𝑆𝑂 (x)
ℎ𝑆𝑂 (x𝑆𝑂 ) . Note that for the UE solution

x𝑈𝐸 , the inefficiency ratio is the Price of Anarchy (PoA) [18].

To evaluate the fairness of a traffic assignment, we first introduce

the notion of a positive path from [5].

Definition 3 (Positive Path). For any path flow f with corre-
sponding commodity-specific edge flows x𝑘 , a path 𝑃 ∈ P𝑘 is positive
for a commodity 𝑘 ∈ 𝐾 if for all edges 𝑒 ∈ 𝑃 , 𝑥𝑘𝑒 is strictly positive.
The set of all positive paths for a flow f and commodity 𝑘 is denoted
as P+

𝑘
(f) = {𝑃 : 𝑃 ∈ P𝑘 , 𝑥𝑘𝑒 > 0, for all 𝑒 ∈ 𝑃}.

The importance of the notion of a positive path is that the path

decomposition of the commodity-specific edge flows x𝑘 may be

non-unique; however the set of positive paths is always uniquely

defined for such edge flows. That is, for commodity specific edge

flows x𝑘 the set of positive paths for any two path decompositions

f1 and f2 are equal, i.e., P+
𝑘
(f1) = P+

𝑘
(f2).

We evaluate the fairness of a traffic flow f with an edge decom-

position x through its corresponding unfairness𝑈 , which is defined

as the maximum ratio across all O-D pairs of (i) the travel time

on the slowest, i.e., highest travel time, positive path to (ii) the

travel time on the fastest positive path between the same O-D pair,

i.e., 𝑈 (f) := max𝑘∈𝐾 max𝑄,𝑅∈P+
𝑘

𝑡𝑄 (x)
𝑡𝑅 (x) . That is, 𝑈 (f) returns the

maximum possible ratio of travel times on positive paths across

all commodities with respect to the path flow f . As a result, the

unfairness 𝑈 is a number between one and infinity, and a traffic

assignment has a high level of fairness if its unfairness is close to

one while it has a low level of fairness if the corresponding un-

fairness is much larger than one. In contrast, other valid notions

of unfairness could also be considered. For instance, for a given

path flow decomposition f with a corresponding edge flow x, the
unfairness �̃� (·) of the path flows can be evaluated as the maximum
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ratio between the travel times of any two users travelling between

the same O-D pair, i.e., �̃� (f) = max𝑘∈𝐾 max𝑄,𝑅∈P𝑘 :x𝑄 ,x𝑅>0

𝑡𝑄 (x)
𝑡𝑅 (x) .

Note here that we only consider a ratio of travel times on paths

with strictly positive flow for the path decomposition f rather than
the ratio of travel times for all positive paths. We defer a detailed

treatment of other path-based unfairness measures to the extended

version of our paper [17] and highlight here some key features of

the positive path based unfairness measure 𝑈 .

The unfairness measure 𝑈 (f) can be efficiently computed and

has the benefit that it applies to all possible path decompositions of

the commodity specific edge flows x𝑘 . As a result, in the context of a
single O-D pair travel demand, the unfairness measure𝑈 (f) has the
benefit that it is a property of the unique edge flow x and is relevant
when users are not constrained to a specific path decomposition,

as happens in practice. In contrast, path decomposition specific

unfairness measures, e.g., �̃� (f), are likely to be more sensitive to

the method used to compute the path decomposition. Furthermore,

we note that the positive path based unfairness notion serves as an

upper bound on the ratio of travel times for any two users travelling

between the same O-D pair for the path flow f , i.e., �̃� (f) ≤ 𝑈 (f)
for all f . As a result, our theoretical bounds on unfairness obtained

for the positive path-based unfairness notion will naturally extend

to path decomposition specific unfairness measures such as �̃� (f).
Thus, in the rest of this paper we focus on the positive path-based

unfairness measure and, for numerical comparison, we present

other path decomposition specific unfairness measures, e.g., �̃� (f),
in the extended version of our paper [17].

3.3 Toy Network Example
To illustrate the fairness and efficiency properties of the two opti-

mization problems, SO-TAP and UE-TAP, we present a toy example

of a two-edge Pigou network, as depicted in Figure 1. In particular,

consider a demand of one that needs to be routed from the origin

𝑣1 to the destination 𝑣2, with two edges (𝑒1 and 𝑒2) connecting the

origin to the destination. Observe that if the travel time functions

on the two edges are given by 𝑡1 (𝑥1) = 1 and 𝑡2 (𝑥2) = 𝑥2, then

under the UE-TAP solution all users will be routed on edge two,

while the SO-TAP solution that minimizes the total travel time will

route 0.5 units of flow on both edges. The level of unfairness and

the total travel time of the two traffic assignments are presented

in the following table, which indicates that the UE-TAP solution is

fair but inefficient while the SO-TAP solution is efficient but unfair.

UE-TAP SO-TAP

Total Travel

Time

1 3/4

Unfairness 1 2

Figure 1: A two-edge Pigou network to illustrate the fairness and efficiency
properties of SO-TAP andUE-TAP. For a demand of one, the UE-TAP solution
routes all the flow on edge 𝑒2 resulting in a fair solution but a total travel
time of one. On the other hand, the SO-TAP solution routes 0.5 units of
flow on both edges, resulting in an efficient solution with the minimum
total travel time but an unfairness of two.

3.4 𝛽-Fair System Optimum
To trade-off between user fairness and system efficiency, we con-

sider the following 𝛽-fair SystemOptimum (𝛽-SO) problem,wherein

we impose an upper bound 𝛽 ∈ [1,∞) on the maximum allowable

unfairness in the network, i.e., 𝑈 (f) ≤ 𝛽 for a path flow f .

Definition 4 (Program for 𝛽-Fair System Optimum).

min

f

∑
𝑒∈𝐸

𝑥𝑒𝑡𝑒 (𝑥𝑒 ), (3a)

s.t. (1b) − (1d), (3b)

𝑈 (f) ≤ 𝛽. (3c)

Note that without the unfairness Constraints (3c) (or when 𝛽 =

∞), the above problem exactly coincides with SO-TAP. Furthermore,

the 𝛽-SO problem is always feasible for any 𝛽 ∈ [1,∞), since a

solution to UE-TAP exists and achieves an unfairness of 𝛽 = 1.

We also note that the difference between the 𝛽-SO and CSO

problems is in the unfairness Constraints (3c). While the 𝛽-SO

problem explicitly imposes an upper limit on the ratio of travel times

on positive paths, the CSO problem imposes normal unfairness

constraints for each path 𝑃 ∈ P𝑘 and any commodity 𝑘 ∈ 𝐾 of the

form 𝜂𝑃 ≤ 𝜙 min𝑃∗∈P𝑘
𝜂𝑃∗ for some normal unfairness parameter

𝜙 ≥ 1. That is, the CSO problem minimizes the total travel time

subject to flow conservation constraints over the set of paths with a

normal unfairness level of at most𝜙 . The authors of [16] use normal

unfairness, which is a fixed quantity, as a proxy to limit the ratio of

user travel times, which vary according to a traffic assignment.

The optimal solution of the 𝛽-SO problem corresponds to the

highest achievable system efficiency whilst meeting unfairness con-

straints. However, solving 𝛽-SO directly is generally intractable as

the unfairness Constraints (3c) are non-convex if the travel time

function is non-linear. Moreover, since the unfairness metric stud-

ied in this work accounts for user costs that vary according to a

traffic assignment, unlike normal unfairness that is an apriori fixed

quantity, the NP-hardness of the CSO problem [16] suggests the

computational hardness of 𝛽-SO [4, 5].

Finally, we mention that we consider a setting wherein the travel

demand is time invariant and fractional user flows are allowed,

as is standard in the traffic routing literature. Also, for notational

simplicity, we consider for now a model where all users are homo-

geneous, i.e., they have an identical value of time 𝑣 , and present

an extension of our pricing result to the setting of heterogeneous

users in Section 5.2.

4 A METHOD FOR 𝛽-FAIR SYSTEM OPTIMUM
In this section, we develop a computationally-efficient method for

solving 𝛽-SO with edge-based unfairness constraints, to achieve

a traffic assignment with a low total travel time, whose level of

unfairness is at most 𝛽 . In particular, we propose a new formulation

of TAP, which we term interpolated TAP (or I-TAP), wherein the

objective function linearly interpolates between the objectives of

UE-TAP and SO-TAP. Our main insight is that the UE solution

achieves a high level of fairness, whereas the SO solution achieves

a low total travel time, and we wish to get the best of both worlds—

high level of fairness at a low total travel time.
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In this section, we describe the I-TAPmethod and evaluate its effi-

cacy for the 𝛽-SO problem by addressing three key concerns regard-

ing the solution efficiency, feasibility and computational tractability.

In particular, we establish a relationship between I-TAP and 𝛽-SO

through theoretical bounds on the inefficiency ratio (Section 4.2)

and its optimality for two-edge Pigou networks (Section 4.3). We

also establish the feasibility of I-TAP for 𝛽-SO by finding the range

of values of the interpolation parameter such that the unfairness

of the optimal I-TAP solution is guaranteed to be less than 𝛽 (Sec-

tion 4.2). Finally, we present an equivalence between I-TAP and

UE-TAP to show that I-TAP can be computed efficiently (Section 4.4).

These results indicate that we can approximate 𝛽-SO as an uncon-

strained traffic assignment problem that can be solved quickly. We

also mention that we perform a sensitivity analysis to establish the

continuity of the optimal traffic assignment and its total travel time

in the interpolation parameter of I-TAP in the extended version of

our paper [17].

4.1 Interpolated Traffic Assignment
We provide a formal definition of interpolated TAP:

Definition 5 (I-TAP). For a convex combination parameter 𝛼 ∈
[0, 1], the interpolated traffic assignment problem, denoted as I-TAP𝛼 ,
is given by:

min

f
ℎ𝐼𝛼 (x) := 𝛼ℎ𝑆𝑂 (x) + (1 − 𝛼)ℎ𝑈𝐸 (x), (4a)

s.t. (1b) − (1d). (4b)

A few comments are in order. First, it is clear that I-TAP0 and I-

TAP1 correspond to UE-TAP and SO-TAP, respectively. Next, under

the assumption that the travel time functions are strictly convex,

we observe that for any 𝛼 ∈ [0, 1] the program I-TAP𝛼 is a convex

optimization problem with a unique edge flow solution x(𝛼).
For numerical implementation purposes, we propose a dense

sampling procedure to compute a solution for 𝛽-SO with a low

total travel time while guaranteeing a 𝛽 bound on unfairness. In

particular, to compute a good solution for 𝛽-SO, we evaluate the

optimal solution f (𝛼) of I-TAP𝛼 (with corresponding edge flows

x(𝛼)) for 𝛼 taken from a finite set A𝑠 := {0, 𝑠, 2𝑠, . . . , 1} for some

step size 𝑠 ∈ (0, 1). That is, in 𝑂 ( 1

𝑠 ) computations of I-TAP, we can

return the path flow f (𝛼∗) (with edge decomposition x(𝛼∗)), for
some 𝛼∗ ∈ A𝑠 , with the lowest total travel time that is at most 𝛽-

unfair, i.e.,𝑈 (f (𝛼∗)) ≤ 𝛽 , and the value ℎ𝑆𝑂 (x(𝛼∗)) is minimized.

We observe experimentally (Section 6.2) that this method of

computing the I-TAP solution achieves a good solution for 𝛽-SO

in terms of fairness and total travel time. We note here that our

approach also naturally extends to other unfairness notionswherein

the user equilibrium achieves the highest possible level of fairness,

while the system optimum achieves the lowest total travel times

(see the extended version of our paper [17]). Finally, we restrict

𝛼 to lie in the finite set A𝑠 since the exact functional form of the

optimal solution f (𝛼) (with edge flow x(𝛼)), and thus the unfairness
𝑈 (f (𝛼)) and the total travel time ℎ𝑆𝑂 (f (𝛼)) functions, in 𝛼 is not

directly known, though we show that x(𝛼) and ℎ𝑆𝑂 (x(𝛼)) are
continuous in 𝛼 in the extended version of our paper [17].

We also test (Section 6) an alternative approach to I-TAP, which

instead of taking a convex combination of the SO-TAP and UE-TAP

objectives, interpolates between their unique edge flow solutions.

That is, we first compute the optimal edge flow solutions of UE-TAP

(x𝑈𝐸 ) and SO-TAP (x𝑆𝑂 ), and return the value (1−𝛾)x𝑈𝐸 +𝛾x𝑆𝑂 for

𝛾 ∈ [0, 1]. While this Interpolated Solution (I-Solution) method only

requires two traffic assignment computations as compared to𝑂 ( 1

𝑠 )
computations of the I-TAP method, it leads to poor performance

in comparison with the I-TAP method (see Section 6) and does not

induce a natural marginal-cost pricing scheme, as I-TAP does (see

Section 5). Thus, we focus on I-TAP for this and the next sections.

4.2 Solution Efficiency and Fairness of I-TAP
In this section, we study the influence of the convex combination

parameter 𝛼 of I-TAP on the efficiency and fairness of the optimal

solution f (𝛼) (and edge flow x(𝛼)). In particular, we characterize

(i) an upper bound on the inefficiency ratio as we vary 𝛼 , and (ii) a

range of values of 𝛼 that are guaranteed to achieve a specified level

of unfairness 𝛽 for any optimal solution f (𝛼).
We first evaluate the performance of I-TAP by establishing an

upper bound on the inefficiency ratio of the optimal solution of

I-TAP𝛼 as a function of 𝛼 . Theorem 1 shows that this bound is a

minimum between (i) the PoA, which we denote as 𝜌 , and (ii) a

more elaborate bound that is monotonically non-increasing in 𝛼 .

Theorem 1 (I-TAP Solution Efficiency). For any 𝛼 ∈ (0, 1), let
x(𝛼) be the optimal edge flow of I-TAP𝛼 . Then, the inefficiency ratio

𝜌 (x(𝛼)) ≤min

{
𝜌, 1+ 1 − 𝛼

𝛼
·ℎ
𝑈𝐸 (x(1))−ℎ𝑈𝐸 (x(0))

ℎ𝑆𝑂 (x(1))

}
.

For a proof of Theorem 1 and all subsequent results, see the

extended version of our paper [17]. Theorem 1 establishes that,

even in the worst case, the ratio between the total travel time of the

edge flow x(𝛼) and that of the system optimal solution is at most

the PoA. This result is not guaranteed to hold for other state-of-

the-art CSO algorithms, e.g., the algorithm in [16] (see Section 6).

Further, Theorem 1 shows that the upper bound on the inefficiency

ratio becomes closer to one as the objective ℎ𝐼𝛼 gets closer to ℎ𝑆𝑂 .

We now establish a range of values of 𝛼 at which the any opti-

mal solution f (𝛼) of I-TAP𝛼 is guaranteed to attain a 𝛽 bound on

unfairness for polynomial travel time functions, e.g., the commonly

used BPR function [27].

Theorem 2 (Feasibility of I-TAP for 𝛽-SO). Suppose that the
largest degree of the polynomial travel time functions 𝑡𝑒 (𝑥𝑒 ) is 𝑚
for some 𝑒 ∈ 𝐸. Then, the unfairness of any optimal solution f (𝛼) of
I-TAP𝛼 is upper bounded by 𝛽 , i.e.,𝑈 (f (𝛼)) ≤ 𝛽 , for any 𝛼 ≤ 𝛽−1

𝑚 .

We can further show that the bound in Theorem 2 is in fact

tight by demonstrating an instance such that for any 𝛼 >
𝛽−1

𝑚 the

unfairness of the solution f (𝛼) of I-TAP𝛼 is strictly greater than 𝛽 .

Lemma 1 (Tightness of Unfairness Bound). Suppose f (𝛼) is an
optimal solution to I-TAP𝛼 for any 𝛼 ∈ [0, 1]. Then, there exists a two-
edge parallel network with polynomial travel time functions of degree
at most𝑚 such that for any 𝛼 >

𝛽−1

𝑚 , the unfairness 𝑈 (f (𝛼)) > 𝛽 .

Together, Theorem 2 and Lemma 1 imply that a 𝛽 level of un-

fairness can be guaranteed using I-TAP on all traffic networks only

when 𝛼 ≤ 𝛽−1

𝑚 , where𝑚 is the maximum degree of the polynomial

corresponding to the travel time functions for each edge 𝑒 ∈ 𝐸.
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4.3 Optimality of I-TAP
In this section, we show that I-TAP exactly computes the minimum

total travel time solution for any desired level of unfairness 𝛽 in any

two edge Pigou network. That is, there is some convex combination

parameter 𝛼∗ for which the solution of I-TAP𝛼∗ is also a solution

to the 𝛽-SO problem for any two edge Pigou network.

Lemma 2 (Optimality of I-TAP). Consider a two edge Pigou
network where the optimal solution of the 𝛽-SO problem is x∗

𝛽
for any

𝛽 ∈ [1,∞). Then, there exists a convex combination parameter 𝛼∗

such that x(𝛼∗) = x∗
𝛽
.

We mention that Lemma 2 compares only the edge flows of I-

TAP and 𝛽-SO since the path and edge flows coincide for a two

edge Pigou network. We also note that while the optimality for a

Pigou network may appear restrictive, such networks are of both

theoretical [20, 24] and practical significance [8].

4.4 Computational Tractability of I-TAP
Having established that we can solve I-TAP to obtain an approxi-

mate solution to 𝛽-SO, we now establish that I-TAP can be computed

efficiently due to its equivalence to a parametric UE-TAP program.

Observation 1 (UE Eqivalency of I-TAP). For any 𝛼 ∈ [0, 1],
I-TAP𝛼 reduces to UE-TAPwith objective function

∑
𝑒∈𝐸

∫ 𝑥𝑒
0

𝑐𝑒 (𝑦, 𝛼) d𝑦,
where 𝑐𝑒 (𝑦, 𝛼) = 𝑡𝑒 (𝑦) + 𝛼𝑦𝑡 ′𝑒 (𝑦).

Observation 1 follows from the fundamental theorem of calculus.

Note that for each 𝛼 ∈ [0, 1], the differentiability, monotonicity,

and convexity of many typical travel time functions 𝑡𝑒 , e.g., any

polynomial function such as the BPR function [27], imply that the

corresponding properties hold for the cost functions 𝑐𝑒 (𝑥𝑒 , 𝛼) in
𝑥𝑒 . For numerical implementation, the equivalency of I-TAP𝛼 and

UE-TAP implies that I-TAP𝛼 inherits the useful property that the

linearization step of the Frank-Wolfe algorithm [27], when applied

to I-TAP𝛼 , corresponds to solving multiple unconstrained shortest

path queries. The latter motivates the highly efficient approach

which we employ in Section 6 to solve I-TAP𝛼 .

5 PRICING TO IMPLEMENT FLOWS
In this section, we leverage the structure of I-TAP to develop pricing

mechanisms to collectively enforce the I-TAP solution in the pres-

ence of selfish users that independently choose routes to minimize

their own travel costs. We first consider the case of homogeneous

users and show that I-TAP results in a natural marginal-cost pricing

scheme. Then, we characterize conditions under which tolls can be

used to enforce the I-TAP flows for heterogeneous users.

In this section, for the ease of exposition, we focus our discussion

on inducing the optimal edge flow x(𝛼) of I-TAP𝛼 . We mention

that our approach can naturally be extended to enforcing optimal

path flows f (𝛼) that satisfy a given level of unfairness. In particular,

we can consider a setting wherein users are recommended to use a

specified path set, e.g., by traffic navigational applications, as given

by f (𝛼) and the tolls set are such that no user will have an incentive

to deviate from their recommended paths. Finally, we also mention

by Theorem 2 that focusing on the edge flow x(𝛼) is without loss
of generality for certain ranges of 𝛼 since the unfairness bound for

any optimal path flow solution f (𝛼) is guaranteed to be satisfied.

5.1 Homogeneous Pricing via Marginal Cost
In the setting where all users have the same value of time 𝑣 , the

structure of I-TAP𝛼 yields an interpolated variant of marginal-cost

pricing to induce selfish users to collectively form the optimal edge

flow x(𝛼) of I-TAP𝛼 . This result is a direct consequence of the

equivalence between I-TAP and UE-TAP from Observation 1.

Lemma 3 (Prices to Implement Flows). Suppose that x(𝛼) is a
solution to I-TAP𝛼 for some 𝛼 ∈ [0, 1]. Then x(𝛼) can be enforced as
a UE by setting the prices as 𝜏𝑒 = 𝛼𝑥𝑒 (𝛼)𝑡 ′𝑒 (𝑥𝑒 (𝛼)) for each 𝑒 ∈ 𝐸.

Note from Lemma 3 that the edge prices are equal to 𝛼 multiplied

by the marginal cost of users.

5.2 Heterogeneous Pricing via Dual Multipliers
The pricing mechanism in Section 5.1 is inapplicable to the hetero-

geneous user setting as it would require unrealistically imposing

different prices for users with different values of time for the same

edges. In this section, we consider heterogeneous users and lever-

age a linear-programming method [12] to establish that appropriate

tolls can be placed on the roads to induce heterogeneous selfish

users to collectively form the equilibrium edge flow x(𝛼).
Before presenting the pricing scheme, we first extend the notion

of a commodity to a heterogeneous user setting. In particular, each

user belongs to a commodity 𝑘 ∈ 𝐾 when making a trip on a set

of paths P𝑘 between the same O-D pair and has the value of time

𝑣𝑘 > 0. Then, under a vector of edge prices 𝝉 = {𝜏𝑒 }𝑒∈𝐸 the travel

cost that users in commodity 𝑘 incur on a given path 𝑃 ∈ P𝑘 under

the traffic assignment x is given by𝐶𝑃 (x,𝝉 ) =
∑
𝑒∈𝑃 (𝑣𝑘𝑡𝑒 (𝑥𝑒 ) + 𝜏𝑒 ).

Note that more than one commodity may make trips between the

same O-D pair, and a user equilibrium forms when the travel cost

for all users in a particular commodity is equal. We further note

that we maintain the unfairness notion presented in the work even

for heterogeneous users. That is, irrespective of the value of time

of two users travelling between the same O-D pair, the maximum

possible ratio between their travel times can be no more than 𝛽 .

We now leverage the following result to provide a necessary and

sufficient condition that the optimal edge flow x(𝛼) of I-TAP𝛼 must

satisfy for it to be enforceable as a UE through road pricing.

Lemma 4 (Condition for Flow Enforceability). [12, Theorem
3.1]) Suppose that the non-negative flow x satisfies the edge flow and
demand constraints in Definition 1. Further, consider the linear pro-
gram: min

𝑑𝑘
𝑃
∈Ω̃

∑
𝑘∈𝐾 𝑣𝑘

∑
𝑃 ∈P𝑘

𝑡𝑃 (x)𝑑𝑘𝑃 , where the non-negative
variables 𝑑𝑘

𝑃
represent the flow of commodity 𝑘 on path 𝑃 ∈ P𝑘 , and

P𝑘 denotes the set of all possible paths for commodity 𝑘 . Here Ω̃ is the
set described by non-negative flows satisfying capacity constraints,
i.e.,

∑
𝑘∈𝐾

∑
𝑃 ∈P𝑘 :𝑒∈𝑃 𝑑

𝑘
𝑃
≤ 𝑥𝑒 for all edges 𝑒 ∈ 𝐸, and demand con-

straints, i.e.,
∑
𝑃 ∈P𝑘

𝑑𝑘
𝑃
= 𝑑𝑘 for all 𝑘 ∈ 𝐾 . Then x can be enforced as

a UE if and only if the capacity constraints are met with equality for
each edge at the optimal solution of the linear program.

We now show that x(𝛼) satisfies the condition in Lemma 4.

Lemma 5 (Heterogeneous User Flow Enforceability). Sup-
pose that the edge flow x(𝛼) is a solution for I-TAP𝛼 for some 𝛼 ∈
[0, 1]. Then for the heterogeneous user setting, x(𝛼) can be enforced
as a user equilibrium.
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Table 1: Problem instance attributes and computation time. For each in-
stance we report the number of vertices |𝑉 |, edges |𝐸 |, and OD pairs |𝐾 |. In
addition, we report the computation time of each instance for the previous
method of Jahn et al. [16] and our I-TAP method using 100 iterations of the
Frank-Wolfe algorithm.

attributes runtime (sec.)

Region Name |𝑉 | |𝐸 | |𝐾 | Jahn et al. I-TAP

Sioux Falls (SF) 24 76 528 20.0 0.03

Anaheim (A) 416 914 1406 74.0 0.33

Massachusetts (M) 74 258 1113 24.3 0.09

Tiergarten (T) 361 766 644 18.2 0.20

Friedrichshain (F) 224 523 506 19.8 0.12

Prenzlauerberg (P) 352 749 1406 74.4 0.32

Lemma 5 implies that even when users are heterogeneous the

edge flow x(𝛼) can be enforced as an equilibrium flow using tolls

set through the dual variables of a linear program.

6 NUMERICAL EXPERIMENTS
We now evaluate the performance of our I-TAP method for 𝛽-SO

on several real-world transportation networks. The results of our

experiments not only characterize the behavior of I-TAP but also

highlight that, compared to the algorithm in [16], our approach has

much smaller runtimes while achieving lower total travel times for

most levels 𝛽 of unfairness. We present the implementation details

of the I-TAP method and the unfairness metric in the extended

version of our paper [17]. In the following, we describe the data-

sets we use and present the corresponding results to evaluate the

performance of our approach.

6.1 Data Sets
Table 1 shows the six instances we use for our study, which were ob-

tained from [14]. We use the BPR travel time function [27], defined

as 𝑡𝑒 (𝑥𝑒 ) = 𝜉𝑒
(
1 + 0.15

( 𝑥𝑒
𝜅𝑒

)
4
)
, where 𝜉𝑒 is the free-flow travel time

on edge 𝑒 , and 𝜅𝑒 is the capacity of edge 𝑒 , which is the number of

users beyond which the travel time on the edge rapidly increases.

6.2 Results

Assessment of Theoretical Upper Bounds.We now assess the

theoretical upper bounds on the inefficiency ratio and unfairness

that were obtained in Section 4.2. We present the results for the

Prenzlauerberg data-set and note that the results extend to other

problem instances in Table 1 as well.

Figure 2 depicts both (i) the change in the inefficiency ratio

(left) and unfairness (right) of the solution of I-TAP using dense

sampling, and (ii) the theoretical upper bound of the inefficiency

ratio (Theorem 1) and unfairness (Theorem 2). As expected, the

dense sampling procedure results in both an inefficiency ratio and

unfairness that is below the theoretical upper bound for every value

of 𝛼 .

Behavior of I-TAP. For each of the transportation networks in

Table 1, we now study the relationship between the convex combi-

nation parameter 𝛼 and the (i) total travel time, and (ii) unfairness.

Figure 3 (left) shows the relationship between the inefficiency

ratio and 𝛼 . Note that when 𝛼 = 1, the inefficiency ratio is one,
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Figure 2: Comparison between the inefficiency ratio (left) and unfairness
(right) of the solution of I-TAP sampling on the Prenzlauerberg data-set
and the theoretical bounds obtained in Theorems 1 and 2. The convex
combination parameters were chosen at increments of 0.01.

since the interpolated objective is the SO-TAP objective, and when

𝛼 = 0, the inefficiency ratio is the Price of Anarchy (PoA), since the

interpolated objective is the UE-TAP objective.

The relationship between unfairness and 𝛼 is depicted on the

right in Figure 3, where for readability we have marked outliers

where large changes in the unfairness occur for small changes in 𝛼 .

For an explanation of the jumps in the unfairness at certain values

of 𝛼 , see the extended version of our paper [17].

Finally, for each transportation network the general trend of a

decrease in the inefficiency ratio and an increase in the unfairness

with an increase in 𝛼 suggests that decreasing the total travel time

comes at the cost of an increase in the unfairness and vice versa.

Solution Quality Comparison. We now explore the efficiency-

fairness tradeoff through a comparison of the Pareto frontier of

the I-TAP method to the approach in [16], which is a benchmark

solution for fair traffic routing, and the I-Solution method described

in Section 4.1. To this end, we depict the Pareto frontier of the (i)

I-TAP method for 0.01 and 0.05 increments of the parameter 𝛼 , (ii)

I-Solution method for 0.01 increments of the convex combination

parameter 𝛾 , and (iii) Jahn et al.’s approach [16] for 0.05 increments

of the normal unfairness parameter 𝜙 lying between one and two.

Figure 4 depicts the Pareto frontiers, i.e., the set of all Pareto

efficient combinations of system efficiency and user fairness, for

the six transportation networks in Table 1. In particular, observe

that the Pareto frontiers of the I-TAP method are below that of the

other two approaches for most values of unfairness. This observa-

tion indicates that the I-TAP method outperforms the other two

approaches since the inefficiency ratio of the I-TAP solution is the

lowest for most desired levels of unfairness. Only for the Sioux Falls

and Prenzlauerberg data-sets, the algorithm in [16] achieved lower

inefficiency ratios than both the I-TAP and I-Solution methods for

higher values of unfairness, which, in practice, would be undesir-

able. Furthermore, note that, unlike the two convex-combination

approaches, the solution of the algorithm in [16] can result in inef-

ficiency ratios that are much greater than the PoA for low levels of

unfairness. The I-TAP method outperforms the I-Solution method

since the set of paths that users can traverse is not restricted to

the union of the routes under the UE and SO solutions as is the

case for the I-Solution method. In particular, there may be traffic

assignments with lower total travel times that use paths not encap-

sulated by the restricted set of paths corresponding to the I-Solution

method. Furthermore, while the PoA for each of the data-sets is

quite low, some real-world transportation networks may have much
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Figure 3: Variation in the inefficiency ratio (left) and the level of unfairness (right) of the optimal solution of I-TAP𝛼 with the parameter 𝛼 ∈ [0, 1] for six
different transportation networks from Table 1. The values of the convex combination parameter were chosen at increments of 0.01.
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Figure 4: Pareto frontier depicting the trade-off between efficiency and fairness for the (i) I-TAP method with a step size 𝑠 = 0.01, (ii) I-TAP method with
𝑠 = 0.05, (iii) I-Solution method with 𝑠 = 0.01, and (iv) Jahn et al.’s method [16] with 𝑠 = 0.05.

higher PoA values (even as high as two) [32], which would make

the trade-off between efficiency and fairness even more prominent.

Runtime Comparison. We report in Table 1 the runtime of the

Jahn et al. method [16] and our I-TAP method. For each instance

we report the average runtime over the parameters 𝜙 and 𝛼 for

the competitor and our method, respectively. We observe that our

approach is faster by at least three orders of magnitude. This is

unsurprising since our method solves unconstrained shortest-path

queries, which can be implemented in 𝑂 ( |𝐸 | + |𝑉 | log |𝑉 |) time,

within each Frank-Wolfe iteration, whereas [16] solves constrained
shortest-path queries which are NP-hard. We do mention that a

more efficient implementation of constrained shortest-path query

can be achieved by directly implementing a label-correcting algo-

rithm rather than using the r_c_shortest_paths routine from

Boost, which is overly general for our setting and hence less effi-

cient. Nevertheless, even with this improvement it would still be

much slower than the unconstrained near-linear algorithm. Notice

that both approaches can be sped up via parallel computation of

shortest-path queries, and our method can be made even faster

through modern heuristics for shortest-path queries [7].

7 CONCLUSION AND FUTUREWORK
In this paper, we developed (i) a computationally efficient method

for traffic routing that trades-off system efficiency and user fairness,

and (ii) pricing schemes to enforce fair traffic assignments as a UE.

There are various directions for future research. First, it would

be valuable to develop theoretical bounds for I-TAP to demonstrate

its applicability to other notions of unfairness, some of which are

studied in the extended version of our paper [17]. Next, it would be

useful to investigate fairness notions that compare user travel times

across O-D pairs. Finally, it would be interesting to study I-TAP’s

generalizability when accounting for costs beyond the travel times

of users, such as environmental pollution and user discomfort.
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