
Preference-Based Goal Refinement in BDI Agents
Mostafa Mohajeriparizi
University of Amsterdam

Amsterdam, The Netherlands
m.mohajeriparizi@uva.nl

Giovanni Sileno
University of Amsterdam

Amsterdam, The Netherlands
g.sileno@uva.nl

Tom van Engers
University of Amsterdam

Amsterdam, The Netherlands
t.m.vanengers@uva.nl

ABSTRACT
Computational agents based on the BDI framework typically rely on
abstract plans and plan refinement to reach a degree of autonomy
in dynamic environments: agents are provided with the ability to se-
lect how-to achieve their goals by choosing from a set of options. In
this work we focus on a related, yet under-studied feature: abstract
goals. These constructs refer to the ability of agents to adopt goals
that are not fully grounded at the moment of invocation, refining
them only when and where needed: the ability to select what-to
(concretely) achieve at run-time. We present a preference-based ap-
proach to goal refinement, defining preferences based on extended
Ceteris Paribus Networks (CP-Nets) for an AgentSpeak(L)-like agent
programming language, and mapping the established CP-Nets logic
and algorithms to guide the goal refinement step. As a technical
contribution, we present an implementation of this method that
solely uses a Prolog-like inference engine of the agent’s belief-base
to reason about preferences, thus minimally affecting the decision-
making mechanisms hard-coded in the agent framework.

KEYWORDS
Agent-based Programming; BDI Agents; Abstract Goals; Prefer-
ences; CP-Nets; CP-Theories; Goal refinement

ACM Reference Format:
MostafaMohajeriparizi, Giovanni Sileno, and Tomvan Engers. 2022. Preference-
Based Goal Refinement in BDI Agents. In Proc. of the 21st International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2022),
Online, May 9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
As computational agents intervene more and more in human ac-
tivities, there is an increasing demand for human-oriented forms
of programming, i.e. relying on concepts and abstractions map-
ping intuitively to what humans utilize to explain and direct their
behaviour. The belief-desire-intention (BDI) model of agency [25],
centred around a general theory of mind [5], offers one of those
views, and has resulted in the proposal and development of several
platforms for agent-based programming (e.g. AgentSpeak(L)/Jason
[3, 24], 3APL/2APL [9], GOAL [15], IMPACT [12], JACK [16], Astra
[11], LightJason [1], ASC2 [20]—a systematic review of logic-based
MAS frameworks can be found in [7]).

Computational agents based on the BDI framework typically
rely on abstract plans and plan refinement to reach a degree of
autonomy in dynamic environments. In practice, relative autonomy
in this context consists in the ability of an agent to select how-to
achieve their goals by choosing from a set of options. BDI agent

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

scripts typically consist of hierarchical, partial, abstract plans. This
contrasts with classic forms of planning, providing agentswith fully-
grounded policies, designed to reach a certain specific objective.

This work focuses on a related, yet under-studied feature: ab-
stract goals. These constructs refer to the ability of agents to adopt
goals that are not fully grounded at the moment of invocation, re-
fining them only when and where needed, that is, the ability to
selectwhat-to (concretely) achieve at run-time. Examples of abstract
goals can be found typically in activity-level characterizations of be-
haviour, e.g. walking (where?), eating something (what?), meeting
someone (whom?), selling (what? to whom?), etc.

The specification of abstract goals is a feature already present
in some agent frameworks as those based on the AgentSpeak(L)
language, albeit they rely on simplistic mechanisms for goal re-
finement. The present work aims to cover the goal refinement
step (from abstract goals to concrete goals) as part of the agent’s
decision-making cycle. For doing so, we present a preference-based
approach to goal refinement. We start from defining preferences
based on Ceteris Paribus Networks (CP-Nets) [4]—more precisely, in
the extended form of Ceteris Paribus Theories (CP-Theories) [29]—
and we consider the established CP-Net logic and algorithms to
guide the goal refinement of the agent. At implementation level,
our target is an AgentSpeak(L)-like [24] agent programming lan-
guage. Since Jason [3], AgentSpeak(L) programs are enriched with
Prolog rules and facts for knowledge-level processing, occurring
e.g. for testing context conditions during the plan selection phase.
We present therefore an implementation of a preference-based goal
refinement method that solely uses a Prolog-like inference engine
of the agent’s belief-base to reason about preferences, requiring
only a minimal modification to the decision-making mechanisms
hard-coded in the agent framework. To achieve this, a transforma-
tion method is proposed to map an extended version of CP-Nets
and CP-Theories into Prolog facts and rules for the script of the
AgentSpeak(L) agent, as well as a Prolog implementation of the
algorithms necessary to reason with preferences.

The paper proceeds as follows: Section 2 provides a background
about the concepts used in this work; Section 3 presents the method
and examples for preference-based abstract goal refinement in
AgentSpeak(L) agents; Section 4 describes a practical implementa-
tion of this method, and Section 5 elaborates on a discussion and
conclusion over the proposed method.

2 BACKGROUND
2.1 BDI Agents
Agents specified following the BDI paradigm are characterized by
three mental attitudes. Beliefs are facts that the agent believes to
be true. Desires capture the motivational dimension of the agent,
typically conflated with the more concrete form of goals, repre-
senting procedures/states that the agent wants to perform/achieve.

Main Track AAMAS 2022, May 9–13, 2022, Online

917

Intentions are selected conducts (or plans) that the agent commits
to (in order to advance its desires).

Since their origin [25], the essential feature associated to BDI
architectures is the ability to instantiate abstract plans that can
(a) react to specific situations, and (b) be invoked based on their
purpose. Consequently, the BDI execution model often relies on a
reactive model of computation, usually in the form of some type of
event-condition-action (ECA) rules often referred to as plans. Plans
are uninstantiated specifications of themeans (in terms of course of
actions) for achieving a certain goal [25]. These constructs represent
the procedural knowledge (how-to) of the agent. There are multiple
proposals in the literature for programming language and architec-
ture of BDI agents, the most commonly used being AgentSpeak(L)
[24], which will serve as basis for the present proposal.

2.2 Preference Languages
Preferences play a crucial role in decision-making [23]. Several
models of preferences have been presented in the literature (e.g.
on decision-making, planning, etc.), with various levels of granu-
larity and expressiveness (see e.g. [13]). The most straightforward
quantitative approaches are based upon utility theory and related
forms of decision theory, but, they suffer from the non-trivial issue
of translating users’ preferences into utility functions.

This explains the existence of a family of qualitative or hybrid
solutions. The logical preference description (LPD) language [6] uses
ranked knowledge bases alongside preference strategies to present
preference descriptions. The LPP language [2] is a first-order pref-
erence language defined in situation calculus to reason about con-
ditional and qualitative preference. Other preference models, such
as GAI networks [14], CP-Nets [4] and qualitative preference sys-
tems (QPS) [28], have been specifically introduced for taking into
account dependencies and conditions between preferences. In the
present work, we decided to focus on CP-Nets, and their exten-
sion CP-Theories [29], for two main reasons: they rely on weaker
assumptions, and exhibit primarily a qualitative nature.

2.2.1 Ceteris Paribus networks (CP-Nets) . Conditional ceteris paribus
preferences networks (CP-Nets) are a compact representation of
preferences in domains with finite attributes of interest [4]. An
attribute of interest is an attribute in the world (e.g. restaurant)
that the agent has some sort of preference over its possible values
(e.g. italian and french). CP-Nets build upon the idea that most of
the preferences people make explicit are expressed jointly with an
implicit ceteris paribus (“all things being equal”) assumption. For
instance, when someone says “I prefer a French restaurant over
an Italian one”, they do not mean at all costs and situations, but
that they prefer a French restaurant (over an Italian one), all other
things being equal. An example of conditional preference is “If I’m
at a French restaurant, I prefer fish over meat”. CP-Theories [29]
extend CP-Nets adding stronger conditional statements with the
construct “regardless of ”, allowing some attributes to be released
from the equality rule.

In general, CP-Nets can be associated with two tasks: (1) finding
the most preferred outcome on a certain domain of variables (2)
comparing two outcomes under different criteria. Both CP-Nets
and CP-Theories provide efficient algorithms for these tasks [4, 29].

2.2.2 Preferences in BDI Agents. Goals are used to identify desired
states or outcomes, and preferences are used to identify more (or
less) desired states or outcomes. While goals are a central aspect in
BDI agents, so far, none of the main BDI frameworks and languages
include preferences as part of the agent specifications. Previous
studies attempted to enhance BDI agents with explicit preferences.
Visser et al. [26, 27] present an approach to embed preferences
defined in the LPP language into BDI agents to guide plan selec-
tion. Nodes in the goal-plan tree of the agent are annotated by the
designer about the effects of that plan and then this information
is propagated automatically to other nodes in the tree at compile
time. Then, at run-time, the agent uses the LPP logic to select the
most preferred plan for a goal based on this information. Dasgupta
et al. [8] proposes a look-ahead method to enhance AgentSpeak(L)
agents with constraints and objectives that the agent can use for
plan selection at run-time; their approach also requires annotations
for plans to reason about the preferability of plans. Mohajeri et al.
[19, 22] add preferences in form of CP-Nets in AgentSpeak(L)-like
agents, however, their approach considers a cross-compilation step:
they annotate primitive actions of agents with their expected ef-
fects, and this information is then propagated through the goal plan
tree to create a conditional ordering between plans. Padgham et al.
[21] add situational preferences as part of plan definitions in a BDI
language. The agent can use them to quantify the value of each
plan at run-time. Their method is similar to this work in the sense
that it does not require any look-ahead, but it is different because
they add preference valuations as part of each plan, which are then
used in plan selection with the implicit preference of maximizing
them—this makes the approach essentially a quantitative one.

3 METHOD
3.1 AgentSpeak(L) Agents
In terms of technical contribution, the present work targets frame-
works that utilize AgentSpeak(L), one of the most commonly used
BDI languages. Based on the definitions proposed by Rao et al. in
[24, 25], an agent consists of a set of beliefs 𝐵 called belief base, a
set of plans 𝑃 called plan library, a set of events 𝐸, a set of actions𝐴,
a set of intentions 𝐼 , and three selection functions: 𝑆𝐸 ,𝑆𝑂 ,𝑆𝐼 . When
the agent receives an (internal or external) event or adopts a goal, it
is added to 𝐸. The selection function 𝑆𝐸 selects an event to process
from 𝐸. Then this event is unified with the triggering events in the
heads of the plans in 𝑃 . The following definitions apply:

Definition 1 (Plan). A (reactive) plan is specified by 𝑒 : 𝐶 ⇒
𝐻 where 𝑒 is a triggering event, 𝐶 is a formula capturing context
conditions, and𝐻 is a sequence of sub-goals or actions to be performed
at the occurrence of the trigger event.

Definition 2 (Relevant plan). A plan in the form of 𝑒 : 𝐶 ⇒ 𝐻

is a relevant plan with respect to an event 𝜖 iff there exists a most
general unifier 𝜎 such that 𝜖𝜎 = 𝑒𝜎 . Then, 𝜎 is referred to as the
relevant unifier for 𝜖 .

Definition 3 (Applicable plan). A plan in the form of 𝑒 : 𝐶 ⇒
𝐻 is an applicable plan with respect to an event 𝜖 iff there exists a
relevant unifier 𝜎 for 𝜖 and there exists a substitution 𝛿 such that
𝐶𝜎𝛿 is a logical consequence of belief base 𝐵. The composition 𝜎𝛿 is

Main Track AAMAS 2022, May 9–13, 2022, Online

918

(P1) +!go_order(Loc,Meal) :
restaurant(Loc) & not at(Loc) =>
#move_to(Loc);
!order(Meal).

(P2) +!go_order(Loc,Meal) :
restaurant(Loc) & at(Loc) =>
!order(Meal).

(P3) +!order(meal(S,M,W)) :
meal(S,M,W) =>
#ask_waiter(meal(S,M,W)).

Listing 1: Reactive Plans of Food-ordering Agent

referred to as the applicable unifier for 𝜖 and 𝛿 is referred to as a
correct answer substitution.

As for each event there could be multiple applicable unifiers, the
selection function 𝑆𝑂 chooses one of these plans or options and
applying the applicable unifier to that plan creates an instantiated
plan, i.e, an intended means or the event which will be added to a
new or existing intention. Then the 𝑆𝐼 function selects an intention
which will be executed. We will now consider an example agent
to illustrate the plan instantiation process. The specific framework
used for the examples is ASC2 [20] for practical reasons, but the
approach is easily transferable to any other framework that follows
the principles of AgentSpeak(L).

Example 1. Imagine an agent that, upon request, can go to a restau-
rant and order a three-course meal. The script for such agent is
presented in Listing 1.1 The agent has two plans for going to a
restaurant and ordering a meal: the first plan (P1) is applicable if
the agent is not at a restaurant at the moment, which means a step
of moving (#move_to primitive action) is needed prior to ordering
the meal; the second plan (P2) is applicable if the agent is already
at the restaurant which means the agent will just adopt the goal of
ordering the meal. There is also one plan for ordering the meal (P3)
which is applicable if the agent has the belief that the meal it wants
to order exists. Suppose the agent selects an event with the trigger:
!go_order(french,meal(veg,meat,white))

For this event, both plans (P1) and (P2) are relevant with unifier 𝜎 :
{Loc/french, Meal/meal(veg,meat,white)}

Assuming that the belief base of the agent contains the beliefs
restaurant(french) (meaning that there exists a French restaurant)
and at(home) (meaning that the agent is at home), then only the
first plan will be an applicable plan for this event, and the applicable
unifier will be the same as the relevant unifier. This entails that
only plan (P1) will be instantiated as:
+!go_order(french,meal(veg,meat,white)) :

restaurant(french) & not at(french) =>
#move_to(french);
!order(meal(veg,meat,white)).

Note that in case the agent had more than one applicable unifiers,
meaning it had more than one option to react to this goal, then the
𝑆𝑂 function would have been called to select one of the options.

1ASC2 slightly modifies the AgentSpeak(L) syntax, replacing “<-” with “=>”, to further
distinguish the reactive, forward nature of these rules w.r.t. the backward chaining
derivation of Prolog rules “:-”.

main(fish). main(meat). soup(veg). soup(fish).
wine(white). wine(red).
restaurant(french). restaurant(italian).
at(french).
meal(S,M,W) :- soup(S), main(M), wine(W).

Listing 2: Beliefs of Food-ordering Agent

3.2 Abstract Events, Abstract Goals
Partial autonomy in dynamic environments is considered a core
attribute of BDI agents, and this is in fact one of the reasons that
separates plan refinement in BDI agents from classical planning
[10]. While the idea of choosing between distinct plans to achieve a
certain goal—typically referred to as plan selection—has been inves-
tigated by the community as the core point of autonomous choice in
BDI agents, there is another important type of autonomy embedded
in BDI agents: abstract events. While the previous example only
exhibited fully grounded events, BDI agents, in particular those
derived from AgentSpeak(L) [24, 25] can indeed handle abstract
events, referring to situations where an event contains unbounded
variables and these variables can be grounded by different means
such as context conditions of plans or test goals at any level in the
plan refinement of the event. It can be argued that if plan selection
promotes autonomy in the how-to-do dimension of the agent, ab-
stract events, which include invocations of abstract goals, promote
autonomy in selecting (concretely) what-to-do with it.

Example 2. Consider the same agent presented in Listing 1. This
time we assume the agent has more information about the environ-
ment: it has beliefs about two types of soups, two types of main
course, two types of wine, two restaurants, also it believes that it
is standing already in one of the restaurants (the french one), and
finally it has an inferential rule for which all possible triple of soup,
main course and wine form a meal combination. Those beliefs are
presented as in Listing 2.

Now assume the agent receives an abstract event !go_order(L,M)
which basically puts no constraints over where the agent should go
and what it should order, and so gives it full autonomy to choose
how to proceed. When the agent receives this event, both plans P1
and P2 are considered relevant plans with unifier {Loc/L, Meal/M}.
But considering the context conditions and the belief base, P1
will be applicable with unifier {Loc/italian, Meal/M}, and P2 with
{Loc/french, Meal/M} (note that in both cases the second parame-
ter is not grounded as it is unified to another variable). At this point,
the agent’s reasoning engine needs to use its plan selection function
to choose one of the two plans. In the case where P1 is selected,
the next step is the action move_to(italian), and then the goal
!order(M) is adopted; In the case where P2 is selected, !order(M) is
immediately adopted. In both cases, the next event for the agent to
process will be !order(M), and P3 is a relevant plan for this event
with unifier {M/meal(S,M,W)}. Taking into account the unification
occurring at context conditions, this event will have in principle
23 = 8 different applicable unifiers with all possible combinations
for the meal, e.g: {M/meal(veg,fish,white)}, for which, again, the
plan selection function needs to choose an option to start the actual
execution. The goal-plan tree of this abstract goal can be seen in
Figure 1.

Main Track AAMAS 2022, May 9–13, 2022, Online

919

Figure 1: Goal-Plan Refinement of the Agent

In current implementations of BDI frameworks based on AgentS-
peak(L), the three selection functions 𝑆𝐸 , 𝑆𝑂 , 𝑆𝐼 (respectively for
events, plans/options, and intentions) are typically exposed as ab-
stract functions that the designer can override to implement any
type of selection function. Although this approach promotes flexi-
bility, the fact that part of the decision-making remains external
to the agent script reduces readability, encapsulation, and trans-
parency of the agent programs, and makes the control more opaque
to the designer.

Default implementations are based on selecting the first applica-
ble option, which is indeed a good example of simplicity. If we apply
the default implementation also on this example, the first applicable
unifier for !go_order(L,M) is {Loc/italian, Meal/M}, and the first
applicable unifier for !order(S,M,W) is {M/meal(veg,fish,white)}.

3.3 CP-Nets and CP-Theories
In order to specify preferences, we start from the definition of CP-
Nets given in [4]. Given a set of variables𝑋 ∈ 𝑉 , each having a finite
set of values 𝑥 , conditional preference statements are in the form
𝑢 : 𝑥 ≻ 𝑥 ′, where 𝑥 , 𝑥 ′ are assignments of a variable 𝑋 ∈ 𝑉 , and
𝑢 is an assignment to a set of variables 𝑈 ⊆ 𝑉 (parents of 𝑋). The
interpretation of this statement is that given𝑢, then 𝑥 is preferred to
𝑥 ′ all else equal, meaning, for all assignment 𝑠 of the set of variables
𝑆 , where 𝑆 = 𝑉 − (𝑈 ∪{𝑋 }), 𝑠𝑢𝑥 is preferred to 𝑠𝑢𝑥 ′, where 𝑠𝑢𝑥 and
𝑠𝑢𝑥 ′ are two outcomes (complete assignment) to all variables of 𝑉 .
CP-Theories are introduced in [29] to extend CP-Nets with stronger
conditional statements. These include preferential statements in the
form 𝑢 : 𝑥 ≻ 𝑥 ′[𝑊], where𝑊 ⊆ 𝑉 which interprets that for all
assignments𝑤,𝑤 ′ to variables of𝑊 and assignments 𝑡 to variables
of 𝑇 = 𝑉 − (𝑈 ∪ {𝑋 } ∪𝑊), then the outcome 𝑡𝑢𝑥𝑤 is preferred to
the outcome 𝑡𝑢𝑥 ′𝑤 ′. This means that given 𝑢 and any 𝑡 , then 𝑥 is
preferred to 𝑥 ′ regardless of assignments to𝑊 .

Assuming Λ is a set of acyclic (with respect to parent-child rela-
tions) preference relations over variables of 𝑉 , we say Λ is satisfied
by a preference ordering ≻ iff ≻ satisfies each of the conditional
preferences expressed in Λ. Considering 𝑜, 𝑜 ′ are outcomes of 𝑉 ,
then we say Λ |= 𝑜 ≻ 𝑜 ′ iff 𝑜 ≻ 𝑜 ′ holds in every preference or-
dering that satisfies Λ. Then 𝑜 and 𝑜 ′ can have one of the three
possible relations according to Λ: either Λ |= 𝑜 ≻ 𝑜 ′; or Λ |= 𝑜 ′ ≻ 𝑜 ;
or Λ ̸ |= 𝑜 ≻ 𝑜 ′ and Λ ̸ |= 𝑜 ≻ 𝑜 ′. The third case means there is not
enough information to prove either outcome is preferred.

Based on these definitions, two distinct ways for comparing
outcomes are proposed in [4]:
• Dominance queries: Asking if Λ |= 𝑜 ≻ 𝑜 ′ holds, which is
referred to as 𝑜 is strongly preferred to or dominates 𝑜 ′.
• Ordering queries: Asking if Λ ̸ |= 𝑜 ′ ≻ 𝑜 holds, which is re-
ferred to as 𝑜 is weakly preferred to or consistently orderable
over 𝑜 ′.

Although ordering queries are weaker than dominance queries, they
are still sufficient in many applications, and will be used in this
work. In particular, if an outcome 𝑜 is present such that for all other
outcomes 𝑜 ′ we have Λ ̸ |= 𝑜 ′ ≻ 𝑜 , then we say 𝑜 is undominated or
most preferred with respect to Λ.

All through this work, and for the sake of simplicity, only strict
preferences ≻ are considered. Nevertheless, these semantics are
shown to be extendable to non-strict preferences ⪰ and indifference
∼ in both CP-Nets and CP-Theories.

3.3.1 Preference Statements as Inference Rules. To transform CP-
Theories to a formalism that can be used with the Prolog-like infer-
ential systems as those used in AgentSpeak(L) agents, one should
look at what needs to be decided in the process of goal refinement.
An agent may have dynamically interconnected beliefs about the
environment, but when it is deciding what is the most preferred
approach to partially ground the variables of an event or goal in
the form of e.g !𝑔(𝑣1, ..., 𝑣𝑛), only the parameters of that goal are
relevant to the decision.

A conditional preference statement of the agent can be expressed
in the form of an inferential rule such as:

𝐺 ≻ 𝐺 ′ ← 𝐶

where 𝐺,𝐺 ′ are either belief predicates in the form 𝑔(𝑣1, ..., 𝑣𝑛)
and 𝑔(𝑣 ′1, ..., 𝑣

′
𝑛), or triggering events in the form !𝑔(𝑣1, ..., 𝑣𝑛) and

!𝑔(𝑣 ′1, ..., 𝑣
′
𝑛) (or any other type of trigger, ?, +,−). Each 𝑣𝑖 and 𝑣 ′𝑖 can

be either a (partially) ground term, a named variable or an anony-
mous variable (underscore, “_”), and 𝐶 is an arbitrary expression
that activates the preference statement if it can be proven to be true
at the time of evaluation, which can include variables that appear
on the left side of the←. The set of all preferences of an agent is
referred to as Λ.

With this definition, for each predicate𝐺 with the form𝑔(𝑣1, ..., 𝑣𝑛),
we can denote its set of variables (or features or attributes) as
𝑉𝐺 = {𝑣1, ...𝑣𝑛}. To express a preference statement 𝑢 : 𝑥 ≻ 𝑥 ′[𝑊]
in this form, on a predicate𝐺 , assuming𝐺𝑋 ∈ 𝑉𝐺 is the variable of
𝐺 corresponding to 𝑋 , the set 𝐺𝑈 ⊆ 𝑉𝐺 is the set of all variables
corresponding to 𝑈 , the set 𝐺𝑊 ⊆ 𝑉𝐺 is the set of all variables cor-
responding to𝑊 and𝐺𝑇 = 𝑉𝐺 − (𝐺𝑈 ∪ {𝐺𝑋 } ∪𝐺𝑊), the statement
can be presented as 𝐺 ≻ 𝐺 ′ ← 𝑡𝑟𝑢𝑒 , such that 𝐺𝑋 is written as
𝑥 , 𝐺 ′

𝑋
is written as 𝑥 ′, all the variables of 𝐺𝑈 and 𝐺 ′

𝑈
are written

as their corresponding value in 𝑢, all variables of 𝐺𝑊 and 𝐺 ′
𝑊

are
written as anonymous variables (underscore) and all the variables
of𝐺𝑇 and𝐺 ′

𝑇
are replaced with named variables that have the same

name in both 𝐺 and 𝐺 ′.
As an example, given a predicate with the form 𝑔(𝑣1, ..., 𝑣4),

where the first parameter corresponds to𝐺𝑋 , the second parameter
to 𝐺𝑈 , the third parameter to 𝐺𝑊 and the last parameter to 𝐺𝑇 , a
preference statement 𝑢 : 𝑥 ≻ 𝑥 ′[𝑊] is expressed as:

𝑔(𝑥,𝑢, _,𝑇) ≻ 𝑔(𝑥 ′, 𝑢, _,𝑇) ← 𝑡𝑟𝑢𝑒

Main Track AAMAS 2022, May 9–13, 2022, Online

920

In order to prove that every preference statement expressed in
this form is a proper CP-Nets/CP-Theories expression we need to
show that the semantics of such statements are equivalent to their
definition in CP-Nets/CP-Theories when comparing two outcomes.
Using the previous example, given the statement of 𝑔(𝑥,𝑢, _,𝑇) ≻
𝑔(𝑥 ′, 𝑢, _,𝑇) ← 𝑡𝑟𝑢𝑒 and two (partially) grounded terms 𝑔(𝑡1, ..., 𝑡4)
and 𝑔(𝑡 ′1, ..., 𝑡

′
4), we can infer 𝑔(𝑡1, ..., 𝑡4) ≻ 𝑔(𝑡 ′1, ..., 𝑡

′
4) iff we have

𝑡1 = 𝑥 , 𝑡 ′1 = 𝑥 ′ and 𝑡2 = 𝑡 ′2 = 𝑢 and 𝑡4 = 𝑡 ′4 regardless of the values
of 𝑡3 and 𝑡 ′3. Intuitively, this is equivalent to the definitions of CP-
Nets/CP-Theories. By using induction we can see that the same
can be inferred for any number or parameters that correspond to
𝐺𝑈 ,𝐺𝑊 ,𝐺𝑇 or with any other rearrangement of the parameters.

3.3.2 Embedding in BDI agents. Pure CP-Theory (and by extension
CP-Net) statements can be expressed in the form of 𝐺 ≻ 𝐺 ′ ← 𝐶

where 𝐶 = 𝑡𝑟𝑢𝑒 , but, as BDI agents are designed to act in dynamic
environments, simply using static CP-Theory statements is not suf-
ficient. This is addressed by the activation condition𝐶 of preference
statements. This condition can be any arbitrary Prolog-like expres-
sion over the belief base of the agent. A preference statement is
active if the context condition can be proven from the belief base of
the agent. Intuitively this means that the left side of the rule holds
true if the right side can be proven. This can drastically increase the
expressivity of the preference statements in dynamic environments.

Definition 4 (Active Preference Statement). At any point
in the life-cycle of agent with a belief base 𝐵 and set of preference
statements Λ, a preference statement 𝐺 ≻ 𝐺 ′ ← 𝐶 is active iff 𝐶 is a
logical consequence of 𝐵.

The next example further explores this type of preferences, and
is an extended version of what is presented in the original CP-net
paper [4] to facilitate comparison.

Example 3. Let us consider some preferences over the actions of our
food ordering agent, starting from some preferences over the meal:
(R1) for the main course, meat is preferred to fish if at an Italian
restaurant; (R2) fish is preferred to meat if at a French restaurant;
(R3) if the main course is meat, then a fish soup is preferred to
vegetable soup; (R4) if the main course is fish, then a vegetable soup
is preferred; (R5) for drinks, red wine is preferred to any other type
of drink if vegetable soup is in the meal; likewise, (R6) white wine
is preferred to any other drinks if fish soup is in the meal.

While multiple preferences are defined over the meal, still they
do not translate directly to any of the events that the agent can
handle. To fix this, we add a simple but important (meta-)preference:
(R7) in the event of ordering anything, ordering something more
preferred is also preferred to ordering something less preferred. We
define at this point a few preferences about the restaurant: (R8) if
the agent is already located at a restaurant, it is preferred to order at
that restaurant (i.e. not to move) compared to any other restaurant,
regardless of the meal; (R9) the combination of Italian restaurant
with a meat main dish is preferred to any other restaurant and main
dish combination if the agent is not already at another restaurant.
The specification of these preferences can be seen in Listing 3. A
more detailed and practical explanation of how these statements
are written as Prolog rules can be found in Section 4.

We can draw as in Figure 2 the preferential relation graph associ-
ated to the predicate meal/3 with respect to preferences in Listing 3

(R1) meal(S,meat,W) >> meal(S,fish,W) :- at(italian).
(R2) meal(S,fish,W) >> meal(S,meat,W) :- at(french).
(R3) meal(fish,meat,W) >> meal(veg,meat,W) :- true.
(R4) meal(veg,fish,W) >> meal(fish,fish,W) :- true.
(R5) meal(veg,M,red) >> meal(veg,M,_) :- true.
(R6) meal(fish,M,white) >> meal(fish,M,_) :- true.
(R7) !order(M1) >> !order(M2) :- M1 >> M2.
(R8) !go_order(L,_) >> !go_order(_,_) :- at(L).
(R9) !go_order(italian, meal(S,meat,W))

>> !go_order(L,meal(S,_,W)) :- not at(L).

Listing 3: Preferences of Food-ordering agent

and the beliefs in Listing 2. The graph clearly suggests that, in this
context, meal(veg,fish,red) is the most preferred (undominated)
option. Note however that this graph would have been different if
the agent had the belief at(italian) instead of at(french).

3.3.3 Generalization. The preference statements in Listing 3 have
been chosen because they offer a good representation of the possible
uses of the proposed method, and can be easily generalized. First of
all, we observe that only R3 and R4 are pure CP-Theory preferences.
The statements R1, R2 are conditioned on beliefs that are external
with respect to the variables of the preference itself (in this case, the
location of the agent). This type of conditional statements result in
multiple preferential relations that may also be contradictory. For
instance, if both conditions at(french) and at(italian) were true
at any time, then the two preferences would be contradictory and
the preference relations concerning meal/3 would be unsatisfiable.

The statements R5 and R6 specify preferences that, although
simple, cannot be expressed directly in standard CP-Theories, as
they give conditional preference to a value of a variable (drinks)
over any other value of that variable (erga omnes preference); this
can be very useful in cases where the domain of values of a variable
are unknown at design time, but the designer is aware of a few
values that are always either desired or to be avoided.

As it was already observed, R7 is a meta-preference. The condi-
tion of this statement does not consult the belief-base of the agent,
but rather the preferences of the agent. It works as a mapping of a
preference expressed as object level to a preference expressed as
action level. In general, any preference over objects is implicitly
referring to a certain domain of activities, and it is as such only
a more compact representation. Preferences as R7 are needed to
make explicit this connection. The technical aspects of this step
will be explained more in detail in Section 4.

The statement R8 is conditional over a belief that the agent
may have (at(L)), and also connects the variable of this condition
L (that will be grounded at run-time) to the preference relation
itself, creating an interesting parameterized preference structure
capturing in this case “I prefer the place I am already at”.

Finally, also R9 presents a statement that cannot be expressed
in CP-Theories, in which two different variables are part of the
preference. This can be useful but can also easily lead to cyclic
preferences, so this type of statement should be used with care.

3.4 Goal Refinement via Preferences
The integration of preferences into the BDI reasoning cycle can
be implemented as a unifier ordering step prior the plan selection,
that only applies when the triggering event contains unbounded

Main Track AAMAS 2022, May 9–13, 2022, Online

921

Figure 2: Preference Structure of the Agent over meal/3

variables. To achieve this, when the agent selects a partially un-
bounded event 𝜖 , first it needs to find all the relevant unifiers by
consulting the plan library, and then find all the applicable unifiers
by consulting the belief base. Afterwards, the agent can create a
partial ordering between the applicable unifiers.

To extend the definition of Section 3.3 to unifiers, assuming 𝜖
is a partially unbound event and (𝜎𝛿), (𝜎𝛿)′ are two applicable
unifiers for 𝜖 , we say (𝜎𝛿) ≻ (𝜎𝛿)′ satisfies a preference statement
𝐺 ≻ 𝐺 ′ ← 𝐶 if 𝜖 (𝜎𝛿) can be unified with 𝐺 and 𝜖 (𝜎𝛿)′ can be
unified with 𝐺 ′. Given Λ, a set of acyclic preference statements
in this form, we say Λ is satisfied by a preference ordering ≻ iff
≻ satisfies each of the active (i.e. 𝐶 is entailed by the belief base)
conditional preferences expressed in Λ. Then, Λ |= (𝜎𝛿) ≻ (𝜎𝛿)′
iff (𝜎𝛿) ≻ (𝜎𝛿)′ holds in every preference ordering that satisfies Λ.
We can then say (𝜎𝛿) is consistently orderable or weakly preferred
to (𝜎𝛿)′ iff Λ ̸ |= (𝜎𝛿)′ ≻ (𝜎𝛿). We can now define the undominated
or most preferred unifier:

Definition 5 (Most preferred unifier). A unifier (𝜎𝛿) is re-
ferred to as an undominated or most preferred unifier for an event
𝜖 iff 𝜎𝛿 is an applicable unifier for 𝜖 and for every other applicable
unifier (𝜎𝛿)′ we have Λ ̸ |= (𝜎𝛿)′ ≻ (𝜎𝛿).

Surprisingly, with this definition, finding the most preferred
unifier is simple in a Prolog program as it matches well with how
Prolog engines work. Normally in a Prolog program it is not easy to
query if a fact holds with respect to every rule concerning that fact,
but if a query about a fact fails, this means that all the rules about
that fact have failed, i.e. that the fact cannot be proven (by refutation,
a contradiction cannot be found). Thus, to find if a unifer (𝜎𝛿) is
the most preferred one for an event 𝜖 , it is enough to ask if, for
every other unifier (𝜎𝛿)′, the query (𝜎𝛿)′ ≻ (𝜎𝛿) fails. Intuitively,
running this query for every unifier of 𝜖 will result in finding the
most preferred unifier. More details on the implementation of this
algorithm is presented in Section 4.

For simplicity, it is assumed that the agent uses the plan selection
function typical in BDI frameworks, i.e. selecting the first applica-
ble unifier for each event. This assumption means that the agent
always uses an undominated or most preferred unifier to ground
the variables of a (partially) abstract goal if this unifier exists, or
reverts to the default behavior of selecting the first applicable uni-
fier in case of inconsistencies with preferences that may result in
situations that no unifier is the most preferred.

Example 4. Consider again the agent script given in Example 1, with
the beliefs of Example 2, and with the preferences of Example 3.
Assume that this agent receives an abstract event !go_order(L,M).
Then, as in Example 2, two applicable unifiers will be created. P1
will be applicable with the unifier {Loc/italian, Meal/M} and P2
with the unifier {Loc/french, Meal/M}. Because the agent has the
belief at(french), we can see that the relation:
!go_order(italian,M) >> !go_order(french,M)

cannot be proven from the preferences (R8 and R9 cannot conclude
it) but the relation:
!go_order(french,M) >> !go_order(italian,M)

can be proven to be true (based on R8), so {Loc/french, Meal/M} is
the single most preferred unifier, and P2 will be selected as this is
the only plan applicable with this unifier. Next, when the sub-goal
!order(Meal) is being considered, there are 8 applicable unifiers for
plan P3, assuming the at(french) belief still stands, and based on the
given preference rules, the ordering in Fig. 2 will apply, and then the
most preferred unifier will be {S/veg, M/fish, W/red}. This means
that the abstract goal will be refined to !order(meal(veg,fish,red))
and consequently plan selection will instantiate the plan associated
to it (P3).

Example 5. To show how partially abstract goals would be grounded
with this method, consider the same agent as before, with the same
set of preferences and beliefs, except that this time the agent has
the belief at(home) instead of at(french), and the agent receives an
event with ordering a meal with meat as the main course:
!go_order(L,meal(S,meat,W)).

This time plan P2 will be applicable with two unifiers:
{Loc/italian, Meal/meal(S,meat,W)}
{Loc/french, Meal/meal(S,meat,W)}

because the agent has the belief at(home), the statement R8 is not
active for any of the unifiers and based on the the statement R9,
the Italian restaurant is preferred to any other restaurant as long
as there is meat main course, so again while the relation:
!go_order(italian,meal(S,meat,W)) >> !go_order(french,meal(S,meat,W))

can be proven (based on R9), but the relation:
!go_order(french,meal(S,meat,W)) >> !go_order(italian,meal(S,meat,W))

cannot be proven from the preference statements (R8 and R9 cannot
conclude it), so the first unifier will be the most preferred one and
then P2 is selected with it. Next, assuming the move_to action works
correctly, the belief at(home) will be retracted, at(italian) will be
added to the belief-base, and the sub-goal !order(meal(S,meat,W))
will be adopted. At this point (see the example in [4]), based on
the preference statements and agent’s beliefs, the most preferred
unifier will be {S/fish, M/meat, W/white}, meaning the goal will

Main Track AAMAS 2022, May 9–13, 2022, Online

922

be refined to !order(meal(fish,meat,white)), and then the plan for
this goal (P3) will be instantiated by the plan selection.

An interesting point in this example is the interaction between
preference statements R1 and R9. In normal CP-Nets, these two
statements make the network cyclic: the preference over main
dish is dependent on the location (R1), and the preference over
the location depends on the main dish (R9). But in this work such
preferences can be defined for two reasons: (1) framing: the two
preferences, although being about the same variables, are defined
in two different frames of choice; and (2) context: as the agent
resides and acts in a dynamic environment, it perceives changes and
modifies its beliefs, which in turn modifies the agent’s preferences,
e.g. while the agent has the belief at(home), R1 and R2 are not active,
and so they are not part of unifier selection process.

4 IMPLEMENTATION
This section presents a practical implementation of the transfor-
mation method from CP-Theory logic to Prolog logic proposed in
Section 3.3.1.

Preference operator. First, we need to express a preference state-
ment 𝐺1 ≻ 𝐺2 ← 𝐶 , where 𝐺1,𝐺2 are partially grounded terms
with the same functor and arity. The mapping from CP-Theory
statements to this statement is presented in Section 3.3.1. This bi-
nary operator ≻ will be introduced both into the syntax of the agent
programming language and as a binary predicate into the belief
base of the agent. In the syntax, the operator ≻ will be denoted as
>> making a relation such as𝐺1 ≻ 𝐺2 to be written as G1 >> G2. To
write full contextually conditioned statements as 𝐺1 ≻ 𝐺2 ← 𝐶 ,
we can utilize the Prolog inference rules. The former preference
statement can then be written as G1 >> G2 :- C.

Applicability. Next, as the method is implemented by utilizing the
belief-base of the agent, a modification is needed to allow prefer-
ence statements about different types of goals to be part of the belief
base, as e.g. in the R8 statement from Listing 3. To do this, a supple-
mentary predicate 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒/2 is introduced. When a preference
statement𝐺1 ≻ 𝐺2← 𝐶 is defined where𝐺1 and𝐺2 are triggering
events e.g. achievement goal (!𝐺), test goal (?𝐺), the preference
statement is transformed at compile/interpretation time to:

𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (𝑡,𝐺1) ≻ 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (𝑡,𝐺2) ← 𝐶

where 𝑡 is a predefined atom describing the type of the event, e.g:
the preference statement R8 in Listing 3 will be rewitten as:
applicable(achievement,go_order(L,_))

>> applicable(achievement,go_order(_,_))
:- at(L).

As this is a normal Prolog rule, it can be simply added to the belief
base of the agent. Then, preference relations can be queried from
any context, as e.g. the (meta-)preference R7 in Listing 3, in which
a preference relation is used as the condition of another preference,
or, more importantly, to exploit Prolog queries to find the most
preferred unifier for abstract events.

Optimality. Next, the algorithm should be implemented for finding
an optimal outcome, that is, the most preferred unifier(s) for a
partially abstract term. The algorithms originally introduced for
CP-Nets and CP-Theories generate an optimal outcome by sweeping

through the network from top to bottom (i.e., from ancestors to
descendants) setting each variable to its most preferred value given
the instantiation of its parents. While these algorithms are efficient
and intuitive, they are not applicable for the transformed Prolog-like
rules. Unlike CP-Nets and CP-Theories, the preferential structure
of an agent is not static because of the presence of extra-contextual
conditions; also, with the new form of statements, the parent-child
relation of the variables is not explicit anymore. For these reasons,
new algorithms are needed that do not rely on the hierarchy of the
variables but instead utilize the backtracking feature of Prolog.

Referring at the definition 5, given a set of preference statements
as Prolog rules in a belief base 𝐵, to prove that a unifier (𝜎𝛿) is the
most preferred unifier for a partially unbound term (or event) 𝜖 ,
it is sufficient to prove that for every other unifier (𝜎𝛿)′ of that
term, the relation 𝜖 (𝜎𝛿)′ ≻ 𝜖 (𝜎𝛿) is not a logical consequence
of 𝐵. Intuitively, with the semantics of Prolog, this means that
this relation could not be concluded from any of the preference
statements of 𝐵. With this, a simple algorithm that can find the
most preferred (or undominated) unifier(s) for a partially unbound
term is a backtracking search that goes through every possible
(partial) grounding of that term to find one where there is no other
(partial) grounding of that term which is more preferred to it. Such
algorithm can be implemented by adding this Prolog rule to the
agent’s belief base:
most_prefered(G) :-

copy_term(G,G2), G, forall(G2,((G2 >> G)-> fail; true)).

The copy_term/2 is a standard predicate in many Prolog implemen-
tations that unifies G2 with a copy of G in which all variables are
replaced by new variables. When this rule is queried with a partially
unbound term G, first a copy of G is created as G2, then the term
G itself is called, starting a backtracking search over all possible
groundings of G, and then forall/2 predicate starts a nested loop
over all groundings of G2 and fails if it can find a grounding of
G2 that (G2 >> G), otherwise if no such G2 is found it returns true
meaning the current grounding of G is the most preferred one. For
the incremental derivation of Prolog, if there is more than one most
preferred (undominated) grounding, asking for more answers will
return them. Finally, to make this algorithm work we need to add:
T >> T :- !,fail. specifying that a term cannot be preferred to
itself. With these rules added to the belief base, given a partially
unbound term, we can run queries to find the most preferred uni-
fier for that term. If we consider the example agent, querying the
belief base with the term most_preferred(meal(S,M,W)) will give
the result in one answer with the unifier {S/veg, M/fish, W/red}.

Embedding in the decision-making cycle. Now that the belief base can
answer queries about the most preferred unifier for a term, the next
step is to allow the agent’s reasoning engine to ask queries about
the most preferred unifier for an event. To do this, the 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒/2
predicate that was defined before is used again. At compile/inter-
pretation time, for each plan of the form 𝑒 : 𝐶 ⇒ 𝐻 a Prolog rule is
added to the belief base of the agent in the form of:

𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (𝑡,𝐺) ← 𝐶

where 𝑡 is an atom that represents the type of the event 𝑒 and 𝐺 is
the term associated with 𝑒 . As an example, the rule for plan P1 is:

Main Track AAMAS 2022, May 9–13, 2022, Online

923

applicable(achievement,go_eat(L,M)) :-
restaurant(L) & not at(L)

Intuitively, at any moment in run-time, by querying this predicate,
we can retrieve all possible applicable groundings of an event that
can be concluded from the plan library and the belief base. For in-
stance, by querying the term applicable(achievement,go_eat(L,M))

on the belief base of an agent with the beliefs, plans and pref-
erences described in Section 3, the agent obtains two answers:
{L/italian, M/M} and {L/french, M/M}. Then, by using this pred-
icate with combination of most_preferred/2, the agent can find
the most preferred applicable unifier for an event. This is possible
because the preference statements about events were already trans-
formed with the applicable predicate. Considering our running
example, by querying the term:
most_preferred(applicable(achievement,go_eat(L,M)))

only one answer {L/french, M/M} will be returned. At this point,
we need to embed the goal refinement step into the agent reasoning
cycle. After the event selection step, if the selected event 𝜖 contains
free variables, then the most preferred unifier(s) should be found
for this event by querying the belief base of the agent with the
aforementioned method, and the resulting answer(s) are sent to the
plan selection function.

Complexity. The algorithmic complexity of this approach is compa-
rable to the original algorithms of CP-Nets. Considering a CP-Net
with 𝑛 number of preference statements, the complexity of com-
paring two outcomes is 𝑜 (𝑛) [4, Theorem 5], then, if there are
𝑚 outcomes the complexity of finding the ordering between all
outcomes is 𝑜 (𝑛 ×𝑚2) [4, Theorem 6]. In this work, to compare
two outcomes (groundings), every preference statement should be
tested which give the same complexity of 𝑜 (𝑛), also, the core of the
method is the predicate most_preferred/1, and this rule has two
nested backtracking loops over the possible groundings of the input
term. In the worst case scenario, each two groundings of a term
should be queried with all the preference statements associated to
that rule. Then, for a term𝑇 , if the there are𝑚 possible groundings
at any time, and there are 𝑛 preference statements over 𝑇 , then, in
the worst case scenario, the time complexity of finding the most
preferred unifier will be 𝑜 (𝑛 ×𝑚2) which is the same polynomial
complexity of CP-Nets.

5 DISCUSSION AND CONCLUSION
This paper contributes to recent efforts to integrate preferences into
BDI agents. Despite the ‘D’ in the acronym, desires play a limited
role in contemporary BDI agent platforms, as they are generally
conflated to goals (procedural or declarative). This paper showed
that by interacting adequately with the belief base and plan library
of the agent, abstract goals can be refined, taking into considerations
the agent’s preferences. Stated differently, preferences act here as
background desires modifying/impacting goals, playing the role
in turn of contingent desires. (Note that in general the literature
suggests that preferences are derived from desires [18]; for our
purposes, however, we discovered that the two can be seen as
filling the same functional niche.)

Although this work illustrated the use of preferences focusing on
a single agent and on goal refinement, preference statements can be
relevant in other contexts too. For instance, MAS frameworks allow

agents to communicate and transmit their beliefs to each other.
Leveraging the present proposal, because preference statements
are implemented as beliefs, agents can directly communicate their
preferences to other agents. This can be very useful e.g. in social
simulation or social learning contexts, where the agents may need
to decide to act (or not to act) depending on both their own and
other agents’ preferences. Another interesting use-case for this ap-
proach could be the implementation of normative agents, utilizing
preference both to capture personal and societal norms (see the use
of CP-nets for deontic logic in [17]).

Preference statements introduced in this work are in a form pro-
cessable in Prolog logic programs. We have shown that a subset
of this form can be used to express pure CP-Theory preferences.
However, this new form can also be used to express contextually
conditioned and parameterized preferences, resulting in much more
flexibility than pure CP-Theories. Consider for instance the state-
ment R8 in Example 3: “I prefer the place I am already at”; that
depends completely on the state of the agent in the environment
and, if the environment is unknown and unpredictable, so will be
the preference statement. Also, unlike CP-Theories that are fully
qualitative, with the proposed form quantitative preferences can
be expressed by using arbitrary arithmetic equations in the con-
text condition of preferences; e.g: consider a statement “I prefer
a cheaper restaurant to a more expensive one” that can easily be
expressed in this form with an arithmetic comparison as the condi-
tion of the statement. Finally, one of the main requirement behind
this work is accessible usability. The transformation method from
CP-Theory preference statements to Prolog-like programs has been
conceived to enable its use almost directly with AgentSpeak(L)-like
frameworks [1, 3, 11, 20]. Indeed, no extra reasoning component is
introduced, all the preference reasoning and algorithms required
for goal refinement is done through beliefs and inferential rules.
Furthermore, unlike many of the works that embed preferences
into BDI frameworks, e.g. [8, 19, 22, 26, 27], this approach does not
require any extra annotation of the agent’s script with information
about effects of plans or actions and thus makes it more accessible
for the designer.

A concrete Prolog implementation of ordering queries of CP-
Nets/CP-Theories was presented, and a working proof of concept
for this approach is publicly available2. Analyzing its complexity, we
showed that the proposed algorithm run in polynomial time. Such
worst-case scenario could be however reduced by optimizing the
relative positions of preferential rules and groundings in the belief
base, for instance by exploiting statistical information concerning
their applicability or relevance for the decision-making cycle.

ACKNOWLEDGMENTS
The work as presented in this paper has been done as part of the
Dutch Research project Data Logistics for Logistics Data (DL4LD),
supported by the Dutch Organisation for Scientific Research (NWO),
the Dutch Institute for Advanced Logistics TKI Dinalog (http://
www.dinalog.nl/) and the Dutch Commit-to-Data initiative (http:
//www.dutchdigitaldelta.nl/big-data/over-commit2data) (grant no:
628.009.001).

2https://github.com/uva-cci/aamas2022-preferences-poc

Main Track AAMAS 2022, May 9–13, 2022, Online

924

REFERENCES
[1] Malte Aschermann, Sophie Dennisen, Philipp Kraus, and Jörg P. Müller. 2018.

LightJason, a Highly Scalable and Concurrent Agent Framework: Overview and
Application. In Proceedings of the 17th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS2018). 1794–1796.

[2] Meghyn Bienvenu, Christian Fritz, and Sheila A. McIlraith. 2006. Planning
with Qualitative Temporal Preferences. In Proceedings of the 10th International
Conference on the Principles of Knowledge Representation and Reasoning (KR2006).
134–144.

[3] Rafael H. Bordini, Jomi F. Hübner, and Renata Vieira. 2005. Jason and the Golden
Fleece of Agent-Oriented Programming. InMulti-Agent Programming: Languages,
Platforms and Applications. 3–37.

[4] Craig Boutilier, Ronen I Brafman, Carmel Domshlak, Holger H Hoos, and David
Poole. 2004. CP-nets: A tool for representing and reasoning with conditional
ceteris paribus preference statements. Journal of artificial intelligence research 21
(2004), 135–191.

[5] Michael E. Bratman. 1987. Intention, Plans, and Practical Reason. Vol. 10. Harvard
University Press.

[6] G Brewka. 2004. A Rank Based Description Language for Qualitative Preferences.
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI’04)
May (2004), 303–307.

[7] Roberta Calegari, Giovanni Ciatto, Viviana Mascardi, and Andrea Omicini. 2021.
Logic-Based Technologies for Multi-Agent Systems: Summary of a Systematic Lit-
erature Review. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems (Virtual Event, United Kingdom) (AAMAS ’21).
International Foundation for Autonomous Agents and Multiagent Systems, Rich-
land, SC, 1721–1723.

[8] Aniruddha Dasgupta and Aditya K. Ghose. 2010. Implementing reactive BDI
agents with user-given constraints and objectives. International Journal of Agent-
Oriented Software Engineering 4, 2 (2010), 141.

[9] Mehdi Dastani. 2008. 2APL: A practical agent programming language. Au-
tonomous Agents and Multi-Agent Systems 16, 3 (2008), 214–248.

[10] Lavindra de Silva and Lin Padgham. 2004. A Comparison of BDI Based Real-
Time Reasoning and HTN Based Planning. November (2004), 1167–1173. https:
//doi.org/10.1007/978-3-540-30549-1

[11] Akshat Dhaon and Rem W. Collier. 2014. Multiple Inheritance in AgentSpeak(L)-
Style Programming Languages. In Proceedings of the 4th International Workshop
on Programming Based on Actors Agents & Decentralized Control. Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2687357.
2687362

[12] Jürgen Dix and Yingqian Zhang. 2005. Impact: A Multi-Agent Framework with
Declarative Semantics. Vol. 15. 69–94. https://doi.org/10.1007/0-387-26350-0_3

[13] Carmel Domshlak, Eyke Hüllermeier, Souhila Kaci, and Henri Prade. 2011. Pref-
erences in AI: An overview. Artificial Intelligence 175, 7-8 (2011), 1037–1052.

[14] C. Gonzales and P. Perny. 2004. GAINetworks for Utility Elicitation. In Proceedings
of the 9th International Conference on the Principles of Knowledge Representation
and Reasoning (KR2004). 224–233.

[15] Koen V. Hindriks. 2009. Programming Rational Agents in GOAL. In Multi-agent
programming: Languages, platforms and applications. Chapter 4, 119–157.

[16] Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas. 2001.
JACK Intelligent Agents - Summary of an Agent Infrastructure. (01 2001).

[17] Andrea Loreggia, Emiliano Lorini, and Giovanni Sartor. 2020. A Ceteris Paribus
Deontic Logic. In Proceedings of the 35th Italian Conference on Computational
Logic - CILC 2020, Rende, Italy, October 13-15, 2020 (CEUR Workshop Proceedings,
Vol. 2710), Francesco Calimeri, Simona Perri, and Ester Zumpano (Eds.). CEUR-
WS.org, 248–262. http://ceur-ws.org/Vol-2710/paper16.pdf

[18] Emiliano Lorini. 2017. Logics for games, emotions and institutions. The IfCoLog
Journal of Logics and their Applications 4, 9 (2017), 3075–3113.

[19] Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers. 2019. Integrating
CP-Nets in Reactive BDI Agents. In PRIMA 2019: Principles and Practice of Multi-
Agent Systems. Springer International Publishing, 305–320.

[20] Mostafa Mohajeri Parizi, Giovanni Sileno, Tom van Engers, and Sander Klous.
2020. Run, Agent, Run! Architecture and Benchmark of Actor-based Agents.
proceedings of Programming based on Actors, Agents, and Decentralized Control
(AGERE20), ACM.

[21] Lin Padgham and Dhirendra Singh. 2013. Situational preferences for BDI plans.
12th International Conference on Autonomous Agents and Multiagent Systems
(2013), 1013–1020. http://dl.acm.org/citation.cfm?id=2485080

[22] Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers. 2021. Declarative
Preferences in Reactive BDI Agents. In PRIMA 2020: Principles and Practice of
Multi-Agent Systems, Takahiro Uchiya, Quan Bai, and Iván Marsá Maestre (Eds.).
Springer International Publishing, Cham, 215–230.

[23] Gabriella Pigozzi, Alexis Tsoukiàs, and Paolo Viappiani. 2016. Preferences in
artificial intelligence. Annals of Mathematics and Artificial Intelligence 77, 3-4
(2016), 361–401.

[24] Anand S. Rao. 1996. AgentSpeak(L): BDI agents speak out in a logical computable
language. In Agents Breaking Away. 42–55.

[25] Anand S. Rao and Michael P. Georgeff. 1995. BDI agents: From theory to prac-
tice.. In Proceedings of the First International Conference on Multi-Agent Systems
(ICMAS1995). 312–319.

[26] Simeon Visser, John Thangarajah, and James Harland. 2011. Reasoning about
preferences in intelligent agent systems. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI2011). 426–431.

[27] Simeon Visser, John Thangarajah, James Harland, and Frank Dignum. 2016.
Preference-based reasoning in BDI agent systems. Autonomous Agents and Multi-
Agent Systems 30, 2 (2016), 291–330.

[28] Wietske Visser, Reyhan Aydoǧan, Koen V. Hindriks, and Catholijn M. Jonker.
2012. A framework for qualitative multi-criteria preferences. ICAART 2012 -
Proceedings of the 4th International Conference on Agents and Artificial Intelligence
1 (2012), 243–248. https://doi.org/10.5220/0003718302430248

[29] Nic Wilson. 2004. Extending CP-Nets with Stronger Conditional Preference
Statements. In Proc. 19th National Conf. on Artificial Intell. (AAAI’04), Vol. 4.
735–741.

Main Track AAMAS 2022, May 9–13, 2022, Online

925

