
Who Should Fix This Bug?

John Anvik, Lyndon Hiew and Gail C. Murphy
Department of Computer Science
University of British Columbia

{janvik, lyndonh, murphy}@cs.ubc.ca

ABSTRACT

Open source development projects typically support an open
bug repository to which both developers and users can re-
port bugs. The reports that appear in this repository must
be triaged to determine if the report is one which requires
attention and if it is, which developer will be assigned the
responsibility of resolving the report. Large open source de-
velopments are burdened by the rate at which new bug re-
ports appear in the bug repository. In this paper, we present
a semi-automated approach intended to ease one part of this
process, the assignment of reports to a developer. Our ap-
proach applies a machine learning algorithm to the open bug
repository to learn the kinds of reports each developer re-
solves. When a new report arrives, the classifier produced
by the machine learning technique suggests a small number
of developers suitable to resolve the report. With this ap-
proach, we have reached precision levels of 57% and 64% on
the Eclipse and Firefox development projects respectively.
We have also applied our approach to the gcc open source de-
velopment with less positive results. We describe the condi-
tions under which the approach is applicable and also report
on the lessons we learned about applying machine learning
to repositories used in open source development.

Categories and Subject Descriptors: D.2 [Software]:
Software Engineering

General Terms: Management.

Keywords: Problem tracking, issue tracking, bug report
assignment, bug triage, machine learning

1. INTRODUCTION
Most open source software developments incorporate an

open bug repository that allows both developers and users to
post problems encountered with the software, suggest possi-
ble enhancements, and comment upon existing bug reports.
One potential advantage of an open bug repository is that it
may allow more bugs to be identified and solved, improving
the quality of the software produced [12].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06,May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

However, this potential advantage also comes with a sig-
nificant cost. Each bug that is reported must be triaged

to determine if it describes a meaningful new problem or
enhancement, and if it does, it must be assigned to an ap-
propriate developer for further handling [13]. Consider the
case of the Eclipse open source project1 over a four month
period (January 1, 2005 to April 30, 2005) when 3426 re-
ports were filed, averaging 29 reports per day. Assuming
that a triager takes approximately five minutes to read and
handle each report, two person-hours per day is being spent
on this activity. If all of these reports led to improvements
in the code, this might be an acceptable cost to the project.
However, since many of the reports are duplicates of exist-
ing reports or are not valid reports, much of this work does
not improve the product. For instance, of the 3426 reports
for Eclipse, 1190 (36%) were marked either as invalid, a du-
plicate, a bug that could not be replicated, or one that will
not be fixed.

As a means of reducing the time spent triaging, we present
an approach for semi-automating one part of the process, the
assignment of a developer to a newly received report. Our
approach uses a machine learning algorithm to recommend
to a triager a set of developers who may be appropriate
for resolving the bug. This information can help the triage
process in two ways: it may allow a triager to process a
bug more quickly, and it may allow triagers with less overall
knowledge of the system to perform bug assignments more
correctly. Our approach requires a project to have had an
open bug repository for some period of time from which the
patterns of who solves what kinds of bugs can be learned.
Our approach also requires the specification of heuristics to
interpret how a project uses the bug repository. We believe
that neither of these requirements are arduous for the large
projects we are targeting with this approach. Using our ap-
proach we have been able to correctly suggest appropriate
developers to whom to assign a bug with a precision between
57% and 64% for the Eclipse and Firefox2 bug repositories,
which we used to develop the approach. We have also ap-
plied our approach to the gcc repository, but the results
were not as encouraging, hovering around 6% precision. We
believe this is in part due to a prolific bug-fixing developer
who skews the learning process.

The paper makes two contributions:

1Eclipse provides an extensible development environment,
including a Java IDE, and can be found at www.eclipse.org
(verified 31/08/05).
2Firefox provides a web browser and can be found at www.
mozilla.org/products/firefox/ (verified 07/09/05).

361

1. it presents an approach with promising results for help-
ing to automate bug assignments on open-source sys-
tems, and

2. it identifies difficulties in tracing information between
the bug and source code repositories used in an open-
source development that could easily be changed to
support this kind of automation.

We begin by presenting background information about
open bug repositories, including the information stored in
a bug report, the process used to handle bug reports, and
machine learning (Section 2). We then describe related ef-
forts that attempt to automate parts of the bug handling
process (Section 3). Given this background, we describe
our semi-automated approach to bug assignment (Section 4)
and present the results of applying the approach to the gcc
project (Section 5). We then discuss issues related to the
approach (Section 6) and summarize the paper (Section 7).

2. BACKGROUND
Understanding our approach requires knowledge about

open bug repositories and machine learning.

2.1 Open Bug Repositories
Bug repositories, which are sometimes referred to as issue-

tracking systems, provide a database of problem reports for
a software project. We use the term open bug repository to
refer to repositories in which anyone with a login and pass-
word can post a new report or comment upon an existing
report. These types of repositories play an important role
in open source projects because they provide a communica-
tion channel for geographically-distributed developers, and
because they allow the user community to view the progress
developers are making on the project.

A variety of open bug repositories are used in open source
development (e.g., Bugzilla3, GNATS4 and JIRA5). We de-
veloped our approach and have analyzed projects that use
Bugzilla-based repositories. Since other open bug reposi-
tories store similar information and support a similar bug
reporting and solving process, we believe our approach can
generalize to other bug repositories with minor changes.

2.1.1 Anatomy of a Bug Report

Figure 2 shows an example of a bug report for Eclipse
stored in Bugzilla.6 Each bug report includes pre-defined
fields, free-form text, attachments, and dependencies.

The pre-defined fields provide a variety of categorical data
about the bug report. Some values, such as the report identi-
fication number, creation date, and reporter, are fixed when
the report is created. Other values, such as the product,
component, operating system, version, priority, and sever-
ity, are selected by the reporter when the report is filed,
but may also be changed over the lifetime of the report.
Other fields routinely change over time, such as the person
to whom the report is assigned, the current status of the
report, and if resolved, its resolution state. There is also a
list of the email addresses of people who have asked to be
kept up to date on the activity of the bug.

3www.bugzilla.org/, verified 26/08/05
4www.gnu.org/software/gnats/, verified 07/09/05
5www.atlassian.com/software/jira/, verified 07/09/05
6Personal information has been removed from the figure.

NEW

REOPENED

ASSIGNED RESOLVED

VERIFIED

CLOSED

WORKSFORME

FIXED

DUPLICATE

WONTFIX

INVALID

Figure 1: The life-cycle of an Eclipse bug report.

The free-form text includes the title of the report, a full
description of the bug, and additional comments. The full
description typically contains an elaborated description of
the effects of the bug and any necessary information for a
developer to reproduce the bug. The additional comments
include discussions about possible approaches to fixing the
bug, and pointers to other bugs that contain additional in-
formation about the problem or that appear to be duplicate
reports.

Reporters and developers may provide attachments to re-
ports to provide non-textual additional information, such as
a screenshot of erroneous behaviour.

The bug repository tracks which bugs block the resolu-
tion of other bugs and the activity of each bug report. The
activity log provides a historical report of how the report
has changed over time, such as when the report has been
reassigned, or when its priority has been changed.

2.1.2 The Life-cycle of a Bug Report

Bugs move through a series of states over their lifetime.
We illustrate these states using the life-cycle of a bug report
for the Eclipse bug project (Figure 1). Other projects vary
slightly from this model. We describe such differences when
necessary later in the paper.

When a bug report is submitted to the Eclipse repository,
its status is set to NEW. Once a developer has been either
assigned to or accepted responsibility for the report, the sta-
tus is set to ASSIGNED. When a report is closed its status
is set to RESOLVED. It may further be marked as being
verified (VERIFIED) or closed for good (CLOSED). A re-
port can be resolved in a number of ways; the resolution
status in the bug report is used to record how the report
was resolved. If the resolution resulted in a change to the
code base, the bug is resolved as FIXED. When a devel-
oper determines that the report is a duplicate of an existing
report then it is marked as DUPLICATE. If the developer
was unable to reproduce the bug it is indicated by setting
the resolution status to WORKSFORME. If the report de-
scribes a problem that will not be fixed, or is not an actual
bug, the report is marked as WONTFIX or INVALID, re-
spectively. A formerly resolved report may be reopened at
a later date, and will have its status set to REOPENED.

2.1.3 Interactions with Bug Reports

People play different roles as they interact with reports
in a bug repository. The person who submits the report is
the reporter or the submitter of the report. The triager is
the person who decides if the report is meaningful and who
assigns responsibility of the report to a developer. The one
that resolves the report is the resolver. A person that con-

362

Figure 2: A sample Bugzilla bug report from Eclipse.

Table 1: Daily bug submissions around and after
product release.

Around Release After Release
Mean Min Max Mean Min Max

Eclipse 48 1 192 13 1 124
Firefox 8 1 37 5 1 37

tributes a fix for a bug is called a contributor. A contributor
may also contribute comments about how to resolve a bug
or additional information that leads to the resolution of a
report.

A person may assume any one of these roles at any time.
For example, a triager may resolve a report as the dupli-
cate of an existing report. Alternatively, a developer may
submit a report, assign it to himself, contribute a fix, and
then resolve the report. For that report, a single person has
fulfilled all the roles.

2.1.4 Bug Triage Today

In Section 1, we briefly outlined the number of reports
triaged during a four month period for the Eclipse open
source project. As a further analysis of the problem, Ta-
ble 1 shows the rate at which bug reports were submitted for
two time periods. The first time period (“Around Release”)
is the three months before and after the release dates for
Eclipse V.3.0 (released on June 25, 2004) and Firefox V.1.0
(released on November 9, 2004). The second time period
(“After Release”) is between the project release dates and
August 8, 2005. As one would expect, the average number
of bugs submitted daily is higher around the release of a
project.

Each project uses a different manual strategy for perform-
ing triage. Because of the volume of reports, reports sub-

mitted to the Mozilla bug repository7 are triaged by quality
assurance volunteers, rather than the developers. A triager
from the project commented:

Everyday, almost 300 bugs appear that need triag-
ing. This is far too much for only the Mozilla
programmers to handle.8

Early on, the Eclipse project had a single developer triage
their bug reports. However, as the task became too over-
whelming for a single person, the triaging was decentralized
and now each component team monitors the bug report in-
box for their component.9 Regardless of the approach used,
a manual approach to bug triage takes up resources that
might be better applied to other problems within the devel-
opment project.

2.2 Machine Learning: Text Categorization
The area of machine learning most related to bug triage

is text categorization, which involves the classification of
text documents into a set of categories [15]. For the bug
assignment problem, the text documents are the bug reports
and the categories into which reports are classified are the
names of developers suitable to resolve the report.

In machine learning, the documents are called instances

and the attributes of an instance are called features. In-
stances may also have a label that indicates the category, or
class, to which it belongs. A supervised machine learning
algorithm takes as input a set of instances with known labels
7The Mozilla project comprises many projects, of which
Firefox is one, and they all share the same development pro-
cess and bug repository. When speaking of the development
process in general we refer to the Mozilla project, and refer
to Firefox when speaking of that project specifically.
8Personal communication with M.W., 05/03/05
9Personal communication with D.H., 23/02/05

363

and generates a classifier. The generated classifier can then
be used to assign a label to an unknown instance. The pro-
cess of creating a classifier from a set of instances is known
as training the classifier.

Our work focuses on the the use of supervised machine
learning for bug assignment.

3. RELATEDWORK
We are aware of only two other efforts in automated bug

assignment. Čubranić and Murphy [4] also used a text cate-
gorization approach, and with a different algorithm achieved
precision levels of around 30% on Eclipse. The approach
described in this paper expands on this previous work with
more thorough preparation of data, the use of additional
information beyond the bug description, the exploration of
more algorithms, and the determination of a better perform-
ing algorithm. Canfora and Cerulo [3] outline an approach
based on information retrieval in which they report recall
levels of around 20% for Mozilla. In this paper, we present
an approach that achieves a higher level of precision for this
project and describe when the approach may apply.

Podgurski et al. also applied a machine learning algo-
rithm to bug reports, but in their case the algorithm was
applied to cluster function call profiles from automated fault
reports [10]. The clusters were used to prioritize software
faults and to help diagnosis their cause rather than to as-
sign reports to appropriate developers.

In trying to determine developers with expertise in partic-
ular parts of the system, the bug assignment problem is sim-
ilar to the problem of recommending experts in particular
parts of the system to assist with the development process.
Mockus and Herbsleb’s Expertise Browser system, for ex-
ample, uses source code change data from a version control
system to determine experts for given elements of a software
project [9]. Our approach can be viewed as trying to rec-
ommend such experts but the recommendation is based on
different data for a different purpose. Specifically, when we
make a recommendation on experts to solve the report, we
only have available the information in the report when it is
filed, which is largely a free-form description of a problem
or possible enhancement.

4. A SEMI-AUTOMATED APPROACH TO

BUG ASSIGNMENT
Given a new bug report, our approach uses a supervised

machine learning algorithm to suggest developers who may
be qualified to resolve the bug. We recommend a small
list of potential resolvers because groups of developers often
work on similar kinds of problems. The recommendations
we make are based on bug reports that the developers have
previously been assigned or resolved for the system.

Our approach is semi-automated because the triager must
select the actual developer from the recommended set to
whom the bug will be assigned. The triager may make this
choice based on knowledge other than that available in the
bug repository, such as the workloads of the developers, or
who is on vacation.

Our approach consists of four steps:

1. characterizing bug reports,

2. assigning a label to each report,

3. choosing reports to train the supervised machine
learning algorithm, and

4. applying the algorithm to create the classifier for
recommending assignments.

We used data from two Bugzilla repositories to develop
the approach: the Eclipse platform project and Firefox.
Specifically, our training sets consisted of reports from these
projects that had been resolved or assigned between Septem-
ber 1, 2004 and May 31, 2005. The training sets included
8655 reports for Eclipse and 9752 for Firefox.

As is typical in machine learning, we evaluate the perfor-
mance of our approach using the measures of precision and
recall. Precision measures how often the approach makes an
appropriate assignment recommendation for a report (For-
mula 1). Recall measures how many of the developers who
may be appropriate to resolve the report are actually rec-
ommended (Formula 2). Appendix A presents the details
of our evaluation process. Using this process our test sets
consisted of 170 reports for Eclipse and 22 reports for Fire-
fox from May 2005 that met particular characteristics. We
report the average precision and recall over all reports in the
test set.

Precision =
of appropriate recommendations

of recommendations made
(1)

Recall =
of appropriate recommendations
of possibly relevant developers

(2)

4.1 Characterizing Bug Reports
Our approach requires an understanding of which bug re-

ports are similar to each other so that we can learn the
kinds of reports typically resolved by each developer. In the
context of machine learning, this requirement translates to
picking features to characterize a bug report. Reports with
similar features can then be grouped.

As described in Section 2.1.1, each bug report contains a
substantial amount of information. Our approach uses the
one-line summary and full text description to characterize
each report as they uniquely describe each report.

Before we can apply a machine learning algorithm to the
free-form text found in the summary and description, the
text must be converted into a feature vector. We follow
the standard approach of first removing all stop words and
non-alphabetic tokens [1]. The remaining words are used
to create a feature vector indicating the frequency of the
terms in the text. We then normalize the frequencies based
on document length, intra-document frequency and inter-
document frequency as outlined by Rennie et al. [14].

We chose not to use stemming10 because earlier work [4]
showed that it had little effect.

4.2 Labeling Bug Reports
To train the classifier, we need to provide a set of re-

ports that are labeled with the name of the developer who
was either assigned to the report or who resolved it. New,
unconfirmed, or reopened reports are not labeled as it is
unknown who will handle the report.

10Stemming identifies grammatical variations of a word, such
as ‘see’, ‘seeing’, and ‘seen’, and treats them as a being the
same word.

364

At first glance, this step seems trivial as it seems obvious
to use the value of the assigned-to field in the bug re-
port. However, the problem is not this simple because each
project tends to use the status and assigned-to fields of a
bug report differently. For example, in both the Eclipse plat-
form and Firefox projects, the value of the assigned-to field
does not initally refer to a specific developer. Instead new
and unconfirmed reports are first assigned to a default email
address before they are assigned to an actual developer.11

For reports with a trivial resolution, such as duplicate, the
assigned-to field is often never changed.

Instead of using the assigned-to field, we use project-
specific heuristics to label the reports. These heuristics can
be derived either from direct knowledge of a project’s pro-
cess or by examining the logs of a random sample of bug
reports for the project. We took the latter approach for the
Eclipse platform and Firefox projects resulting in a set of
heuristics, four of which we provide here.12

• If a report is resolved as FIXED, it was fixed by who-
ever submitted the last approved patch. (Firefox)

• If a report is resolved as FIXED, it was fixed by who-
ever marked the report as resolved. (Eclipse)

• If a report is resolved as DUPLICATE, it was resolved
by whoever resolved the report of which this report is
a duplicate. (Eclipse and Firefox)

• If a report is resolved as WORKSFORME, it was marked
by the triager, and it is unknown which developer
would have been assigned the report. The report is
thus labeled as unclassifiable. (Firefox)

4.3 Selecting Training Reports
We first refine the set of training reports by filtering out

those for which the project-specific heuristics cannot pro-
vide a useful label. For the Eclipse project, only 1% of the
reports could not be labeled. In contrast, 49% of the Firefox
reports could not labeled due to a large proportion (47%)
of the training reports being marked as WORKSFORME,
WONTFIX, INVALID, or the duplicate of a NEW bug re-
port.

Even after this filtering, we must still refine the training
set further to remove reports that provide information about
developers who no longer work on the project and developers
who have only fixed a small number of bugs. We filter for
the former because it is not useful to recommend a developer
who is no longer available for assignment, and we filter for
the latter because the classifier does not have sufficient data
to learn about a low-activity developer.

We base the second refinement on profiles of each devel-
oper’s activity. Through experimentation, we have found
that an effective filter is to remove the reports from any
developer that has not contributed at least nine bug reso-
lutions in the most recent three months of the project. Ta-
ble 2 shows the effect of various developer activity profiles on
our recommendations for the Eclipse and Firefox projects.
We choose an average value of nine resolutions over three

11A user name in the Bugzilla system is an email address.
12The full set of heuristics is available on-line at
http://www.cs.ubc.ca/labs/spl/projects/bugTriage/
assignment/heuristics.html.

Table 2: The effect of developer profile filtering on
recommender accuracy and recall.

Dev. Precision/Recall
(%)

Firefox Eclipse Firefox Eclipse
No Profile 414 146 23/1 58/7

>1 Fix in 3 mo. 94 82 59/2 57/7
1 66 50 64/2 57/7

Avg. 2 33 42 59/2 57/7
Fixes 3 26 40 64/2 57/7

Per Month 4 21 40 64/2 58/7
Over 5 18 39 59/2 59/7
3 mo. 6 13 37 45/1 57/7

months (corresponding to the shaded row in Table 2) be-
cause this value provides the greatest stability in the preci-
sion/recall results over both of the projects.13 This profile
filtering removes 4% of the Eclipse reports and 29% of the
Firefox reports.

4.4 Applying a Machine Learning Algorithm
We use Support Vector Machines (SVM) [6] in our bug

assignment approach and we recommend presenting one rec-
ommendation to the human triager. We chose this algorithm
and recommendation set size after comparing the results of
three algorithms: Näıve Bayes [8], SVM, and C4.5 [11]. We
evaluated Näıve Bayes, a probabilistic classification algo-
rithm, because it was used in the previous effort to auto-
mate bug assignment [4] and thus provided a lower bound for
finding a more appropriate algorithm. We evaluated SVM,
a non-linear classification algorithm, because it has been
shown to be effective for text categorization [7]. Finally, we
evaluated C4.5, a popular decision tree algorithm, because
the methods used by human triagers are similar to that of
traversing a decision tree. Table 3 shows the precision and
recall of each of these three different classifiers for increasing
numbers of recommendations for each project. The data to
train the classifier was prepared according to the techniques
that we have outlined in this section.

5. VALIDATINGWITH GCC
To determine how our approach performs on a project

other than those that we used to tune the approach, we
measured our ability to provide bug assignment recommen-
dations for the gcc compiler project.14 To train our ap-
proach for gcc, we used 2629 reports from September 2004
to April 2005, after applying the filtering described in Sec-
tion 4.3.15 We tested the approach with 194 reports from
May 2005. Table 4 reports the results. Disappointingly, our
results were much lower than we anticipated with a preci-
sion rate of 6% for one recommendation and 18% for two
or three recommendations. We believe that this lower than
expected precision value is due to both characteristics of the

13We believe that the precision and recall values for Firefox
with an average of one fix per developer per month is an
over-estimate due to the relatively small number of reports
in the test set.

14www.gnu.org/software/gcc/gcc.html, verified 26/08/05
15Initally there were 3440 reports; 16% were removed for in-
active developers and 8% were removed for not being labeled
by our heuristics.

365

Table 3: The effect of different machine learning algorithms on recommender accuracy and recall.
Predictions Näıve Bayes SVM C4.5

Firefox Eclipse Firefox Eclipse Firefox Eclipse
1 59/2 54/6 64/2 58/7 64/2 40/5
2 59/2 49/11 52/3 52/13 41/3 34/9
3 59/2 44/15 57/6 47/16 42/5 31/12

Table 4: Precision and recall for gcc.
Predictions Precision/Recall

1 6/0.3
2 18/2
3 18/3

project that make our approach unsuitable, and difficulties
in accurately measuring precision and recall.

Project Characteristics We believe our approach may not
have performed well for gcc for three reasons. First, one
developer seems to dominate the bug resolution activity.
Based on our labeling heuristics, the most active developer
was assigned-to or resolved 1394 reports compared to the
next most active developer at 160 reports. The classifier
weights the active developer’s category more heavily, mak-
ing a new report eight times more likely to be similar to a
report in that category than any other. If the reports with
this developer’s label are removed from the training set so
that the distribution of reports is more even amongst the
classes, then the precision improves to 30%.

Second, our labeling heuristics may not be sufficiently ac-
curate.16 In the gcc project, an automated system enters
comments into the bug reports describing who has checked-
in code to resolve the report. If we use this data, which goes
beyond the normal data we expect in a bug report, we can
improve the labeling such that the most active developer is
seen by the classifier to resolve 956 reports and the second
most active developer resolves 163 reports. Using this CVS
information to label reports results in a modest increase in
precision for one recommendation to 11%.

Third, the spread of bug resolution activity was low. Our
filtering, for example, removed 63 developer names, resulting
in a classifier that knew about only 29 developers. It may
be that the size of the project is too small and the spread of
the bug resolution activity across developers is too skewed
to be suitable for our approach.

Measuring Precision and Recall We measured precision
and recall according to Formulas 1 and 2 presented earlier.
To calculate these measures, similar to the Eclipse and Fire-
fox projects, we had to estimate which developers may have
had the expertise to resolve a particular bug (Appendix A).
For gcc, we based this estimate on data from the CVS logs
and automatically generated CVS comments found in the
bug reports from May 2005. The difficulty we encountered
was in mapping the user names found in the CVS logs to the
email addresses used by Bugzilla and our recommender. We
were not able to map 32 of the 84 user names found in the
CVS logs to an email address. As precision depends on the
accuracy of a mapping, unresolved CVS user names lower
precision.

16Available on-line at http://www.cs.ubc.ca/labs/spl/
projects/bugTriage/assignment/heuristics.html.

0

5

10

15

20

25

30

1 2 3 4 5 6 7

of Recommendations
P

r
e

c
is

io
n

Naïve Approach

SVM

Figure 3: Using different approaches for a gcc
recommender.

Using an Alternate Approach Given that a single devel-
oper seems to dominate the resolution activity for gcc, a
näıve approach that recommends developers simply based
on the number of reports that they have resolved may work.
Figure 3 shows the results of applying this approach to the
gcc data. As the figure shows, the näıve approach performs
worse in general than SVM.

6. DISCUSSION
On two large software projects, Eclipse and Firefox, our

approach achieved precision rates of greater than 50%. How-
ever, for gcc, the precision rate with one recommendation is
only 6%. In this section, we discuss whether the precision
and recall rates we are achieving on Eclipse and Firefox are
good enough, and how we might better be able to judge
when the approach applies. We also report on various ex-
tensions we have considered to the approach, and lessons
we have learned in applying a machine learning approach to
bug report information.

6.1 Assessing the Value of our Approach

6.1.1 Is >50% Precision Good Enough?

The only sure way to know whether the 57% and 64%
precision rates we achieve for Firefox and Eclipse respec-
tively help human triagers is to perform an empirical study
in which we put the approach into the hands of the triagers.
We believe that the precision rates we report in this paper
for the two larger projects are sufficient to warrant such a
study and we plan one as part of our future work.

366

Table 5: The size of developer groups per project.
Min Mean Max

Eclipse 1 10 23
Firefox 10 30 53

gcc 2 12 34

We believe our approach warrants further study because
of the context in which it can be applied. Rather than try-
ing to completely automate bug assignment, we envision the
approach being used to help new triagers make better as-
signments faster, to potentially reduce the time spent in
performing triage, and to possibly help make the right as-
signment the first time. In the Eclipse project, for instance,
24% of reports are currently re-assigned before the bug is
resolved. Each re-assignment requires a new developer to
become acquainted with the problem. It may be that our
approach can reduce some of these re-assignments, regain-
ing time for developers to complete already assigned tasks
on the system.

6.1.2 Why is the Recall so Low?

It is commonly known that for classification there is a
trade-off between precision and recall. Even with this trade-
off, the recall values we report are quite low, often hovering
at a few percent. These values are low because of the way
that we calculate recall: the set of values we report is a
subset of those that we determine may be able to possibly
resolve the report. Table 5 shows the minimum, average,
and maximum groups size we determined for the reports
used for evaluation in each project. When we report only
one recommendation, the highest recall we can achieve on
average is 10% (Eclipse), 3% (Firefox) and 8% (gcc).

6.1.3 Applicability

Machine learning algorithms generally produce better re-
sults the more data there is available from which to learn.
Figures 4(a) and 4(b) show respectively the accuracy and
recall of our approach for differing amounts of reports per
developer. To form the graphs we selected from the Eclipse
data set those developers that had either been assigned to
or resolved at least 200 reports. The Eclipse data was used
as there were 14 developers that met this criteria; the other
data sets had only a few. Classifiers were then trained with
increasing numbers of reports per developer, and evaluated
using the Eclipse test set. Since we used the full Eclipse test
set instead of including only the test reports for the selected
developers, the precision and recall in Figure 4 are lower
than was seen previously (Table 3). However, as we are
interested in the shape of the line, the values are not as im-
portant as the relative differences between trials. We found
that at roughly 60 reports per developer the line plateaus.
This may have contributed to the poor performance of our
approach for gcc. Although there appeared to be sufficient
data based on the total number of reports, with 39% of the
reports being for one developer, only 10 of the 29 developers
had more than 60 reports for training.

The applicability of our approach also depends on how
well labels can be assigned to the reports selected for the
training set. For the Eclipse and gcc projects, there were few
reports that our heuristics could not label with a developer.
In contrast, many of the reports from the Firefox project

could not be assigned a label. The reports that could not
be labeled for this project consisted of reports resolved as
WONTFIX, WORKSFORME, INVALID, or the duplicate
of NEW, UNCONFIRMED, or REOPENED bug reports.
From the 9647 potential reports that could have been used
for training, 4884 had to be removed because they could not
be labeled with a developer’s name. Compare this to the
Eclipse project where only 70 of 8117 could not be labeled,
or gcc where 259 of 3440 could not be labeled.

The amount of data available is one way to determine if
the approach might be useful. Initally, we had chosen the
Apache Ant project17 for validation. However, an exami-
nation of the number of reports assigned or resolved from
September 2004 to April 2005 resulted in 423 reports for
30 developers. We concluded that the project contained in-
sufficient data to warrant the use of our approach, and the
gcc project was selected instead. That project showed us
that data is not enough, it also must have a particular pro-
file, such as the resolved reports not being dominated by
one developer. Part of our future work involves a better
determination of the characteristics the reports in the bug
repository need to exhibit for the approach to be expected
to give good results.

6.1.4 Evaluation Using Cross Validation

The standard method for evaluating a machine learning
technique is ten-fold stratified cross validation [17]. To evalu-
ate a bug assignment recommender using this technique, the
reports used for training would be partitioned into ten sets
with random reports in each set such that each set would
contain a proportionate number of reports for each devel-
oper (e.g., if a developer had ten reports, each partition
would contain one of these reports). We chose not to use
this approach because of the sparseness of the bug assign-
ment information. Even for the active developers considered
in our approach (see Section 4.3), there are still an insuffi-
cient number of training reports. For the Firefox and gcc
projects, 75% and 86% of the developers have less than 100
reports with which to train a classifier. Holding back of a
tenth of these reports for use as a test set represents a sub-
stantial loss of information for those developers, particularly
if those developers work on a range of problems.

6.2 Extensions and Alternatives

6.2.1 Unsupervised Machine Learning

We chose to use a supervised machine-learning algorithm
to recommend bug assignments. This choice means that we
must provide a label for each report or not use the report
for training or testing.

Alternatively, we could incorporate an unsupervised algo-
rithm, such as Expectation Maximization [17], which does
not require report labeling. Čubranić and Murphy [4] sug-
gested the use of such an algorithm as a way to include
reports that cannot be labeled. The algorithm could also
be used to avoid the creation of project-specific heuristics.
However, in tests that we performed using Expectation Max-
imization, we found it performed worse than Näıve Bayes
and as a result, we abandoned the use of this algorithm.

17http://ant.apache.org/ (verified 07/09/05).

367

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 150 200

Reports / Developer

P
re

c
is

io
n

 (
%

)

1 Predicition

2 Predictions

3 Predictions

(a) Precision with varying amounts of developer data.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 150 200

Reports / Developer

R
e
c
a
ll

 (
%

)

1 Predicition

2 Predictions

3 Predictions

(b) Recall with varying amounts of developer data.

Figure 4: Precision and recall for classifiers trained with differing amounts of data from the Eclipse project.

6.2.2 Incremental Machine Learning

The approach we present in this paper trains the classifier
using a batched set of data. Alternatively, an incremental
algorithm could be used whereby instances are provided one
at a time to the classifier and the classifier updates itself
appropriately [16]. An incremental classifier would mimic
how information flows in and alters a bug repository. It
also allows the classifier to incorporate new team members
or changes between teams more quickly. However, an initial
investigation that we performed that used an incrementally-
updated Näıve Bayes classifier resulted in a recommender
that only achieved a maximum of 28% average accuracy af-
ter 400 instances were added and degraded thereafter when
using four months of the Eclipse data.

6.2.3 Incorporating Additional Sources of Data

Our approach uses only data extracted from bug reports.
The accuracy of our approach might be improved by using
additional data sources.

An example of an additional data source is code owner-
ship, such as from an ownership architecture [2]. When cou-
pled with execution stack traces from bug reports that would
provide a pointer to the code of interest for a report, code
ownership may lead to better assignment recommendations.
However, this approach is not likely to greatly improve the
precision as we found that only 11% (1273 of 11223) of re-
ports from the Eclipse project contained exception traces.
Also exception traces are notoriously misleading as to the
cause of the problem, so in fact including them in the learn-
ing process may degrade the accuracy.

The developer profiles from Section 4.3 were created by
a statistical analysis of resolved reports in a bug repository.
Developer profiles created via surveys could provide more
accurate information about developers’ experience and ex-
pertise with the system. However, creating such profiles is
labour-intensive and the profiles quickly become outdated.
Another means of acquiring developer profiles may be an

Table 6: Number of components for which a
developer has resolved a bug report.

Project
Components

Min Mean Max

Eclipse 17 1 1.8 9
Firefox 30 1 2.9 29

gcc 30 1 3.2 28

Table 7: Results of using a component-based
classifier.

Predictions Eclipse Firefox gcc
1 86/12 64/2 6/0.4
2 82/23 64/5 10/1
3 77/32 53/6 10/2

approach such as used by the Expertise Browser [9] which
uses experience atoms derived from source code. However,
as explained in Section 6.3 correlating source code changes
to bug reports is challenging for some projects.

6.2.4 A Component-based Classifier

A natural structure for project teams is based on the com-
ponents of a system. The Eclipse project is structured in this
way. However, based on our heuristics, developers appear to
handle bugs outside of their particular component. Table 6,
for instance, shows the number of components comprising
each project and the number of components for which devel-
opers typically resolve reports. The data shows that Eclipse
developers stick closer to component boundaries with a max-
imum of nine components altered for a single bug than those
from the other two projects.

As mentioned in Section 2.1.4, the Eclipse project first
triages according to the component that the report is against,
and then reports are triaged by the component team. Ta-

368

Table 8: Number of developers per component.
Min Mean Max

Eclipse 1 8 30
Firefox 4 11 25

gcc 1 7 18

ble 7 shows the results of combining our approach with this
process. We first grouped the data by reported component,
and then use the groups of data to train a recommender for
each component. Again, a developer profile of an average of
three resolutions for each of the past three months was used.
For a new report, the recommender uses the appropriate
component-recommender to generate the recommendation.
Table 8 shows the minimum, mean, and maximum number
of developers for the component-recommenders trained for
each project.

Table 7 shows that for the Eclipse project the accuracy im-
proves, but that this component-centric approach provides
no improvements for Firefox and gcc. As the component-
centric approach mimics the process used by Eclipse, this is
not surprising.

6.3 Lessons Learned
In developing our approach we learned a number of lessons

about working with bug repository data. First, coordinat-
ing data from bug reports and CVS logs is challenging. To
evaluate our approach we compared the user names from the
bug reports to those found in the CVS logs to determine if
our approach recommends an appropriate developer. Unfor-
tunately, the user name in bug reports is the email address
of a developer, while for Eclipse and gcc a user name in
CVS is a login id for a system such as UNIX. To match the
two, we had to use a mapping to enable a proper compar-
ison for these two projects. Some mappings were trivial as
part of the email address matched a login name for CVS.
For Eclipse, we were able to match 69 of 83 (83%) CVS user
names because of similarity in the email addresses and login
names, for gcc, we were only able to match 61 of 84 (73%).
This problem could be solved by a small change in process
that enabled the determination of the identity of each devel-
oper across repositories by gathering mapping information
or changing the identifiers in one of the repositories.

The Firefox project presented a different challenge when
we tried to correlate bug reports and CVS logs. Although
the user name in a CVS log is the email address of the sub-
mitter, the submitter is usually not the one who created the
patch. As mentioned previously, Firefox employs a process
whereby patches are reviewed before being incorporated into
the source tree, and only a select group of people are autho-
rized to check in to CVS. Consequently, when a patch is
approved, the contributor often has to request that some-
one check in the patch, and the user name in CVS does
not reflect who actually fixed the problem. To overcome
this obstacle, we created a map between resolvers and fixers
based on who marked the bug report resolved and who our
heuristic identified as the person who fixed the problem. We
assumed that the person who marked the report as resolved
was the person who performed the check-in.

Another challenge that we encountered in coordinating
bug reports and CVS logs is the inconsistent inclusion of
references to bug report ids in the CVS comments. As the

Eclipse developers were more consistent in including the bug
id in their check-in comments, we were able to acquire more
data for evaluating our approach with the Eclipse project,
then with the Firefox project where the inclusion of the bug
id was more sporadic. Again this problem could be corrected
by a small procedural change whereby the inclusion of bug
ids is required for CVS check-ins. The gcc project employs
an alternate technique whereby a CVS comment is automat-
ically included in the bug report showing who submitted the
changes and what files were changed.

To increase the number of bug reports for our evaluation
of the Firefox project, we tried to correlate reports and CVS
check-ins based on a time window [5]. From the bug reports
that were fixed in May 2005, we gathered CVS check-in en-
tries in an 8-hour window around the time that the report
was resolved and correlated that with the user name of the
person who marked the report as resolved. Unfortunately,
this resulted in a fewer number of test reports than our previ-
ous approach. Upon closer examination we found cases of a
one month difference between when the report was marked
as resolved and when the check-in occurred, and different
bug ids associated with fixes.

Lastly, we report on one perhaps unexpected lesson re-
lated to the collection of data for projects like this one. As
our approach required a large quantity of data from bug
repositories, we used an automated script to extract the
data from the bug repositories. At one point during our
data collection, the computer that was running the script
was black-listed by the Eclipse bug repository firewall as
our crawling was mistaken for a server attack. The situ-
ation was corrected after contacting the webmaster for the
Eclipse site, but required us to be more vigilant in how often
we were querying the repository.

7. SUMMARY
In this paper, we have presented an approach to semi-

automating the assignment of a bug report to a developer
with the appropriate expertise to resolve the report. Our
approach uses a supervised machine learning algorithm that
is applied to information in the bug repository. For the
Eclipse and Firefox projects, we are able to achieve precision
rates of over 50%, reaching 64% on one recommendation
for Firefox. Our results for the gcc project were far worse,
where we achieved a precision rate for one recommendation
of only 6% because of characteristics of the project, such
as one developer dominating the report resolution process.
In addition to presenting our approach and results, we have
presented an in-depth analysis of the application of machine
learning to this problem and we have reported on lessons
learned in trying to make use of data in the bug repository.

We believe that our approach shows promise for improving
the bug assignment problem for open source software devel-
opments. Our future plans include an empirical study of the
use of the approach by bug triagers on an open source sys-
tem, an investigation of additional sources of information,
and a prescriptive means for determining when the approach
may be applicable.

8. ACKNOWLEDGMENTS
This research was funded in part by NSERC and in part

by an IBM Eclipse Innovation Grant.

369

APPENDIX

A. EVALUATIONPROCESS FORECLIPSE

AND FIREFOX
To evaluate the approach on the Eclipse and Firefox projects,

we needed to know for each bug report in the test set which
developers on the project might have had the relevant ex-
pertise and might have been assigned to resolve the report.
Because we did not have access to experts that could provide
this information, we developed a heuristics for each project
based on information in the source revision (CVS) reposito-
ries.

First, we formed the test set as consisting of all bugs in a
given time period (May 2005) for which the revision’s log en-
try specified that it resolved a specific bug. Next, we associ-
ated with each bug in the test set, the names of the modules
that contained the revisions specifying the bug number. The
meaning of a containing module for a revision varied with
each project. For the Eclipse platform project, we used the
component as the module, which resulted in 316 modules.
For the Firefox project, we used the sub-component level of
organization of the project as the containing module, which
resulted in 1739 modules. We then compiled a list of de-
velopers who had previously committed changes to these
modules by analyzing the revision history of each file in the
module. We considered this list of developers as potential
experts to resolve the bug because they had knowledge of
this part of the system. We used the notion of containing
module to derive this information because we felt that lim-
iting the list of relevant developers to particular files that
were touched was too constraining.

The result of this processing for each bug in the test set
is a list of developer user names from the source revision
repository. However, in the bug repository, developers are
identified by a separately chosen login, often one of their
email addresses. Because of the differences in these identi-
fiers, we had to construct a mapping between the identifiers
used in the bug repository and in the source repository. Dif-
ferences in the conventions used in each project meant a
separate manual mapping method was used in each case.
The Eclipse mapping was relatively straightforward as the
user names and emails differed mostly in abbreviation for-
mats. For Eclipse, we were able to map 69 out of 83 user
names used in the source revision repository. The mapping
for Firefox was more challenging because the project uses a
process in which fixes are reviewed and contributers must
request that their changes be checked in by a committer
(Section 6.3). As a result, the person who checks in a fix
is rarely the person that made the fix. In constructing a
mapping for this project, we assumed that the person who
marked a report as resolved is generally also the person who
checked in the fix. For Firefox, we were able to map 220
resolver emails from the bug reports in the training set to
a list of possible fixers for which they submitted revisions.
There were 35 resolver email addresses for which we were
unable to create a mapping for from the CVS logs.

B. REFERENCES

[1] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern

Information Retrieval. 1999.
[2] I. T. Bowman and R. C. Holt. Reconstructing

ownership architectures to help understand software

systems. In Proceedings of International Workshop on

Program Comprehension, pages 28–37, 1999.
[3] G. Canfora and L. Cerulo. How software repositories

can help in resolving a new change request. In
Workshop on Empirical Studies in Reverse

Engineering, 2005.
[4] D. Čubranić and G. C. Murphy. Automatic bug triage

using text classification. In Proceedings of Software

Engineering and Knowledge Engineering, pages 92–97,
2004.

[5] D. Čubranić, J. Singer, and K. S. Booth. Hipikat: A
project memory for software development. IEEE

Transactions on Software Engineering, 31(6):446–465,
2005.

[6] S. R. Gunn. Support Vector Machines for
classification and regression. Technical report,
University of Southampton, Faculty of Engineering,
Science and Mathematics; School of Electronics and
Computer Science, 1998.

[7] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
Proceedings of the 10th European Conference on

Machine Learning, pages 137–142, 1998.
[8] G. H. John and P. Langley. Estimating continous

distributions in Bayesian classifiers. In Proceedings of

the Eleventh Conference on Uncertainty in Artificial

Intelligence, pages 338–345, 1995.
[9] A. Mockus and J. D. Herbsleb. Expertise browser: A

quantitative approach to identifying expertise. In
Proceedings of the 24th International Conference on

Software Engineering, pages 503–512, 2002.
[10] A. Podgurski, D. Leon, P. Francis, Wes Masri,

M. Minch, Jiayang Sun, and B. Wang. Automated
support for classifying software failure reports. In
Proceedings of the 25th International Conference on

Software Engineering, pages 465–475, 2003.
[11] R. Quinlan. C4.5: Programs for Machine Learning.

1993.
[12] E. S. Raymond. The cathedral and the bazaar. First

Monday, 3(3), 1998.
[13] C. R. Reis and R. P. de Mattos Fortes. An overview of

the software engineering process and tools in the
Mozilla project. In Proceedings of the Open Source

Software Development Workshop, pages 155–175, 2002.
[14] J. D. M. Rennie, L. Shih, J. Teevan, and D. R.

Karger. Tackling the poor assumptions of Naive Bayes
classifiers. In Proceedings of International Conference

on Machine Learning, pages 616–623, 2003.
[15] F. Sebastiani. Machine learning in automated text

categorization. ACM Computing Surveys, 34(1):1–47,
2002.

[16] R. Segal and J. Kephart. Incremental learning in
SwiftFile. In Proceedings of the Seventh International

Conference on Machine Learning, pages 863–870,
2000.

[17] I. H. Witten and E. Frank. Data Mining: Practical

Machine Learning Tools with Java Implementations.
2000.

370

