
First-Order Disjunctive Logic Programming vs Normal Logic Programming

Yi Zhou
Artificial Intelligence Research Group

School of Computing, Engineering and Mathematics
University of Western Sydney, NSW, Australia

Abstract
In this paper, we study the expressive power of first-
order disjunctive logic programming (DLP) and
normal logic programming (NLP) under the stable
model semantics. We show that, unlike the proposi-
tional case, first-order DLP is strictly more expres-
sive than NLP. This result still holds even if auxil-
iary predicates are allowed, assuming NP 6= coNP.
On the other side, we propose a partial transla-
tion from first-order DLP to NLP via unfolding and
shifting, which suggests a sound yet incomplete ap-
proach to implement DLP via NLP solvers. We
also identify some NLP definable subclasses, and
conjecture to exactly capture NLP definability by
unfolding and shifting.

1 Introduction
Answer Set Programming (ASP) has become a predom-
inant declarative programming paradigm [Niemelä, 1999;
Marek and Truszczynski, 1999] and has been used in many
application domains [Baral, 2003] due to its convenience for
modeling [Gebser et al., 2012] and its efficient implementa-
tions such as clasp.

Although the syntax of ASP is normally presented in a
first-order way, the original stable model/answer set seman-
tics is essentially propositional as it is defined by ground-
ing on the Hebrand universe [Gelfond and Lifschitz, 1988;
1991]. More importantly, it enforces the Unique Name As-
sumption and does not consider unknown objects, which is
inadequate for certain application domains to reason about
open worlds, e.g., the semantic Web [Eiter, 2007].

To address this issue, a number of approaches have been
developed to define the stable model/answer set semantics
directly on a first-order level [Bartholomew et al., 2011;
Bartholomew and Lee, 2013; Chen et al., 2006; Denecker et
al., 2012; Ferraris et al., 2011; Lee and Meng, 2011; Lifs-
chitz, 2012; Lin and Zhou, 2011; Pearce and Valverde, 2004;
Shen et al., 2014; Zhang and Zhou, 2010]. Based on which,
a new method for answer set solving has been developed
[Asuncion et al., 2012a; 2012b].

Similar to classical first-order logic, the answer sets of a
first-order logic program are structures. Then, a fundamen-
tal problem arises what are the expressive power of different

first-order ASP formalisms? In this paper, we study this prob-
lem for two of the most important fragments of first-order
ASP, namely disjunctive logic programming (DLP) and nor-
mal logic programming (NLP). Clearly, NLP is a subclass of
DLP. The question is the other way around, that is, whether
there exists an equivalent (i.e., having the same set of answer
sets) normal program for any given disjunctive program. This
problem is not only of theoretical importance but also of prac-
tical relevances as it can be applied to utilizing NLP solvers
for computing the answer sets of disjunctive programs.

The answer is yes in the propositional case. Eiter et al.
[2004] showed that the set of stable models of any proposi-
tional disjunctive program can be captured by a normal pro-
gram. Recently, Zhou [2014] proposed a syntactic translation
for this purpose via unfolding and shifting.

However, the answer is no in the first-order case. In this
paper, we show that first-order DLP is strictly more expres-
sive than NLP. That is, there exists a first-order disjunctive
program, which is not equivalent to any normal program over
the same vocabulary.

What if we allow to introduce auxiliary predicates? Note
that this is a quite common technique in the KR commu-
nity. Normally, to encode a problem in ASP, one needs to
use auxiliary predicates. We show that, on finite structures,
DLP has the same expressive power as NLP by allowing aux-
iliary predicates if and only if NP = coNP, which is generally
believed to be false in the complexity theory.

The above negative results point out that it seems impos-
sible to translate first-order DLP to NLP. Hence, we consider
to weaken the conditions. One approach is to consider par-
tially correct translations. In this paper, we propose such a
translation based on unfolding and shifting. More precisely,
given a disjunctive program, we can add some unfolded rules
then shift the program. We show that, the answer sets of the
resulting program, which is a normal one, are also answer
sets of the original disjunctive program, but not necessarily
vice versa. In this sense, this method suggests a sound yet
incomplete DLP solver by simply calling NLP solvers.

Another approach is to identify certain translatable sub-
classes. In this paper, we investigate several NLP-definable
subclasses, including head-cycle-free programs and choice-
bounded programs. We conjecture that, on arbitrary struc-
tures, a disjunctive program can be translated into a normal
one iff this can be done via unfolding and shifting.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3292



2 Preliminaries
We consider a first-order language with equality but with-
out function symbols. We assume the readers are familiar
with some basic notions and notations in classical first-order
logic. An atom is called an equality atom if it is of the form
t1 = t2, where t1 and t2 are terms. Otherwise, it is called
a proper atom. A substitution is a vector x1/t1 · · · , xn/tn,
where xi, 1 ≤ i ≤ n are variables and ti, 1 ≤ i ≤ n are
terms. A structure is called finite if its domain is finite. Let
M be a structure whose vocabulary contains another vocab-
ulary σ. The restriction of M on σ, denoted by M|σ, is
the σ-structure that agree with M on all interpretations of
predicates and constants in σ. LetM1 andM2 be two struc-
tures of two disjoint vocabularies σ1 and σ2 respectively, by
M1 ∪M2, we denote the σ1 ∪ σ2-structure that agree with
M1 (M2) on all interpretations of predicates and constants
in σ1 (σ2 resp.).

Let A be a domain. A ground atom on A is of the form
P (−→a ), where P is a predicate and −→a a tuple of elements
that matches the arity of P . For convenience, we also use
P (−→a ) ∈ M, orM |= P (−→a ), to denote −→a ∈ PM. Let H
be a set of ground atoms. We use H ⊆ M, orM |= H, to
denote that for every P (−→a ) ∈ H, M |= P (−→a ). For con-
venience, we also use M ∪ H to denote the structure ob-
tained from M by extending every interpretation of predi-
cates with the corresponding ground atoms in H, i.e., for ev-
ery P , PM∪H = PM ∪ {−→a | P (−→a ) ∈ H}.

A disjunctive rule (rule for short) is of the form:

α1; . . . ;αm ← βm+1, . . . , βn, not γn+1, . . . , not γk, (1)

where 0 ≤ m ≤ n ≤ k, αi, 1 ≤ i ≤ m is a proper atom, βj
(m+ 1 ≤ j ≤ n) and γs (n+ 1 ≤ s ≤ k) are atoms. Let r be
a rule of the form (1). The head of r, denoted by Head(r),
is {α1, . . . , αm}; the body of r, denoted by Body(r), is
{βm+1, . . . , βn, not γn+1, . . . , not γk}. For convenience, we
use Pos(r) to denote {βm+1, . . . , βn}, the positive body of
r, andNeg(r) to denote {not γn+1, . . . , not γk}, the negative
body of r respectively. A disjunctive logic program (program
for short if clear from the context) is a finite set of rules. A
rule is said to be normal if m = 1, and datalog if m = 1
and k = n. Consequently, a program is said to be normal
(datalog) if all rules in it are normal (datalog resp.). Let r be
a rule of the form (1) and η an assignment from variables and
constants to domain elements. A ground rule of r on η is the
following rule

α1η; . . . ;αmη ← βm+1η, . . . , βnη, not γn+1η, . . . , not γkη.

We distinguish between intensional and extensional predi-
cates. A predicate P in a program Π is said to be intensional
if P occurs in the head of some rules in Π, and extensional
otherwise. Let Π be a program. We use τ(Π), τint(Π) and
τext(Π) to denote the vocabulary, the intensional vocabulary
and the extensional vocabulary of Π respectively.

A number of approaches have been proposed to define the
stable model/answer set semantics for disjunctive programs
directly on a first-order level. Here, we briefly review the
translations to second-order logic [Ferraris et al., 2011] and
the progress semantics [Zhou and Zhang, 2011] as they will
be needed in our paper.

Given a program Π. Let τint(Π)∗ = {Q∗1, . . . , Q∗n} be a
new set of predicates corresponding to τint(Π). Given a rule
r in Π of the form (1), by r̂, we denote the universal closure
of the following formula

βm+1 ∧ · · · ∧ βn ∧ ¬γn+1 ∧ · · · ∧ ¬γk → α1 ∨ · · · ∨ αm;

by r∗, we denote the universal closure of

β∗m+1 ∧ · · · ∧ β∗n ∧ ¬γn+1 ∧ · · · ∧ ¬γk → α∗1 ∨ · · · ∨ α∗m;

where α∗i = Q∗j (−→x ) if αi = Qj(
−→x ), 1 ≤ j ≤ n and

β∗i =

{
Q∗(
−→
t ) if βi = Q(

−→
t ) and Q ∈ τint(Π)

βi otherwise.

By Π̂, we denote the first-order sentence
∧

r∈Π r̂; by Π∗, we
denote the first-order sentence

∧
r∈Π r

∗.
Let Π be a program. We use SM(Π) to denote the follow-

ing second-order sentence:

Π̂ ∧ ¬∃τint(Π)∗(τint(Π)∗ < τint(Π) ∧Π∗),

where τint(Π)∗ < τint(Π) is the abbreviation of the formula∧
1≤i≤n

∀−→x (Q∗i (−→x )→ Qi(
−→x ))∧¬

∧
1≤i≤n

∀−→x (Qi(
−→x )→ Q∗i (−→x )).

Definition 1 A structureM of τ(Π) is called an answer set
(or a stable model) of Π if it is a model of SM(Π).

We use AS(Π) to denote the set of answer sets of a program
Π. Two programs are said to be equivalent if they have the
same set of answer sets. Note that the second-order sentence
SM(Π) presented here is slightly different from the one in
[Ferraris et al., 2011], mainly because we do not consider
nested expressions and quantifiers in this paper. Nevertheless,
they are equivalent when restricted into first-order disjunction
logic programs.

Now we turn into the progression semantics. Let S be a
set and σ = {S1, . . . , St, . . . } a collection of subsets of S. A
subset H ⊆ S is a hitting set of σ if for all i, H ∩ Si 6= ∅.
Furthermore, H is said to be a minimal hitting set of σ if H
is a hitting set of σ and there is no H ′ ⊂ H such that H ′ is
also a hitting set of σ. Let Π be a program andM a structure
of τ(Π). An evolution sequence of Π based onM, denoted
by σM(Π), is a sequence σ0

M(Π), σ1
M(Π), . . . , σt

M(Π), . . .
of structures of τ(Π) such that
• σ0
M(Π) = M|τext(Π) ∪ E|τint(Π), where E is the

empty structure in which all predicates are interpreted
as empty;
• σt+1
M (Π) = σt

M(Π) ∪ Ht, where Ht ⊆ M and Ht is a
minimal hitting set of the collection of

Head(r)η,

where there exists a rule r and an assignment η such
that Head(r)η ∩ σt

M (Π) = ∅, σt
M(Π) |= Pos(r)η and

M |= Neg(r)η.
An evolution sequence starts with the extensional database.

In each step, the structure is expanded by a collection of
ground atoms that is a minimal hitting set of the heads of

3293



ground rules applicable at the current step. Here, a ground
rule is applicable at stage t if its head is not satisfied by the
current structure σt

M(Π) in the evolution sequence, its pos-
itive body is satisfied by σt

M(Π) and its negative body is
satisfied by the original structure M itself. Notice that at a
certain stage, there could be many minimal hitting sets. In
this sense, there could be many evolution sequences of a pro-
gram Π based on a candidate structure M. Nevertheless, if
the program is normal, then there is only one minimal hitting
set, which is the collection of all heads of ground rules appli-
cable at the current stage. Hence, for normal logic programs,
the progression yields a unique evolution sequence.

Definition 2 (Progression semantics) Let Π be a program
andM a structure of τ(Π). M is called a stable model (or
an answer set) of Π iff there exists at least one evolution se-
quence, and for all evolution sequence σ of Π based onM,
σ∞M(Π) =M, where σ∞M(Π) =

⋃
t≥0 σ

t
M(Π).

The progression semantics coincides with the translation sta-
ble model semantics [Zhou and Zhang, 2011].
Example 1 [Originated from Example 2 in [Eiter et al.,
1997]] Consider the following program 3− color

R(x);G(x);B(x)←, NC ← E(x, y), R(x), R(y),

NC ← E(x, y), G(x), G(y), NC ← E(x, y), B(x), B(y),

NC;C ← .

This disjunctive program defines the 3-colorability of a
graph, whose edges are represented by E(x, y). It can be
checked that a stable model of 3− color is corresponding
to a 3-coloring solution of the graph, where R(x), G(x) and
B(x) mean that the node x should be colored by red, green
and blue respectively, and NC means that the graph is not
3-colored.

If we replace the last rule with the following rules

R(x)← NC, G(x)← NC,

B(x)← NC, NC ← notNC.

Then, the new program non− 3− color defines non-3-
colorability of the graph. That is, a graph is non-3-colorable
iff non− 3− color has a stable model, which must contain
NC. As we shall show later in the paper, while the program
3− color can be converted into a normal one, the program
non− 3− color cannot.

3 NLP<DLP
The same as in classic first-order logic, stable models/answer
sets of programs are standard first-order structures. Then, a
fundamental problem arises what are the expressive power
of different first-order ASP formalisms. The expressiveness
problem is one of the most fundamental problems both in
the logic community (particularly in model theory and finite
model theory) and in the knowledge representation and rea-
soning community. Moreover, this problem is not only the-
oretically important but also practically relevant. If one for-
malism can be expressed by another, then we can use solvers
for the latter to solve the former.

In this section, we study the expressive power between
first-order DLP and NLP. Clearly, NLP is a subclass of DLP.

The question is the other way around whether DLP can be
expressed by NLP, more precisely, for any given disjunctive
program, whether there always exists an equivalent normal
program, i.e., having the same set of answer sets.

If we consider the propositional case, the answer is yes.
Eiter et al. [1994] showed that, from the class of answer sets
of a propositional disjunctive program, one can always con-
struct a corresponding normal program. Nevertheless, this
translation is purely semantical as the construction needs to
know all answer sets in advance. Recently, Zhou [2014] pro-
posed a syntactic translation. More precisely, by adding suffi-
ciently enough unfolded rules into a disjunctive program, the
shifted program, which is a normal one, must have the same
answer sets.

Now we show that this is not the case for the first-order
case. That is, there exists a first-order disjunctive program
whose answer sets cannot be captured by any normal program
over the same vocabulary.

Theorem 1 NLP < DLP.

Proof: sketch We show that the program non− 3− color
presented in Example 1 cannot be encoded into NLP over
the same vocabulary. Assume that Π0 is equivalent to
non− 3− color. Then, given a graph represented by the
only extensional predicate E, if it is 3-colorable, then Π0

has no answer sets, else if it is non-3-colorable, then Π0 has
exactly one answer set, whose intensional database contains
NC and the full interpretations ofR,G andB. The following
two lemmas are needed in our proof.
Lemma 1 Suppose that G1, . . . , Gn are non-3-colorable
graphs. There exists a non-3-colorable graph G such that
for any Gi, 1 ≤ i ≤ n, Gi is not a subgraph of G.

Proof: By the Hajós construction [Jensen and Toft, 2011],
there are infinite number of 4-critical graphs, which are
non-3-colorable graphs but any subgraph is 3-colorable. �

Lemma 2 Let G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉 be two 3-
colorable graphs such that V1∩V2 is a singleton a. Then, the
union G1 ∪G2 = 〈V1 ∪V2, E1 ∪E2)〉 is 3-colorable as well.

Step 1: The program obtained from Π0 by adding the follow-
ing rules is also equivalent to non-3-color:

NC ← notNC, R(x)← notR(x),

G(x)← notG(x), B(x)← notB(x).

We denote this program by Π1.
Step 2: Let Π2 be the program obtained from Π1 by delet-
ing all rules not from the above ones but whose negative parts
mention some intensional predicates. Then, Π2 is also equiv-
alent to non-3-color.

A stable modelM of a program containing the rules above
must have full interpretations on all intensional predicates.
For a ground rule r whose negative part mentions some in-
tensional predicates, its negative part will never be satisfied
byM. Hence,M |= r̂. Therefore,M is a model of a pro-
gram Π̂1 iffM is a model of Π̂1\{r}.
Step 3: Consider the rules in Π2. Other than the above added
rules in Step 1, Π2 only has rules in which the negative bodies

3294



mention no intensional predicates. Let r be a ground rule of
some rule in Π2. Notice that the extensional ground atoms
in the positive body of r form a graph whose nodes are the
mentioned domain elements and whose edges are specified
by the positive extensional ground atoms in the body of r.
In this case, we say that this is the graph represented by r.
Moreover, we say that r represents a non-3-colorable graph if
the graph represented by r is non-3-colorable. Otherwise, we
say that r represents a 3-colorable graph.

By Lemma 1, there exists a sufficiently large graph G0,
which is non-3-colorable and any non-3-colorable graph rep-
resented by some ground rule in Π2 is not a subgraph of G0.
However, the structure G+

0 , which takes all edges in G0 for
the extensional predicate E and the full interpretations for all
intensional predicates, is an answer set of Π2 sinceG0 is non-
3-colorable. Note that for any ground rule r that represents a
non-3-colorable graph, r will not be used in the progression
of Π2 based on G+

0 . In other words, all ground rules appli-
cable in the progression of Π2 based on G+

0 must represent
some 3-colorable graph.

Now we consider the earliest stage deriving NC in the
progression of Π2 based on G+

0 . Suppose that NC is jus-
tified by such a ground rule r1 whose positive body con-
tains some intensional ground atoms of the form R(a) (or
G(a), B(a)) and r1 represents a 3-colorable graph G1. Then,
those ground atoms in the positive body of r1 will be jus-
tified by other ground rules earlier in the progression, and
those ground rules represent 3-colorable graphs as well. Fur-
thermore, the ground atoms in those rules will be justified
even earlier. Then, this forms a tree, where each node is a
ground atom and each edge forms a justification/dependency
relationship. Nevertheless, the depth of this tree is bounded
since NC is justified at a finite step in the progression. We
construct a graphGNC associated with this tree. Started from
G1, if one ground atom R(a) in r1 is justified by another
rule r2 with a G2 to represent its body, then we consider the
union of G1 ∪ G′2, where G′2 is G2 with all nodes except
node a renamed to new constants. By Lemma 2, G1 ∪ G′2
is 3-colorable as well. Hence, we obtain a finite graph GNC

to justify NC. By induction on the structures and Lemma 2,
GNC is 3-colorable since allGi’s in the rules are 3-colorable.

Similarly, we can obtain a 3-colorable graphGR(a) (GG(a)

andGB(a) respectively) to justify an intensional ground atom
R(a) (G(a) and B(a) respectively). Finally, we construct a
graph G recursively as follows. The construction starts from
GNC . At each step, for each node b in the current graph,
we construct a graph GR(b) (GG(b) and GB(b) respectively),
which is obtained from GR(a) (GG(a) and GB(a) respec-
tively) by renaming the node a to b and other nodes to new
constants. Then, we take the union of the current graph and
all such newly constructed graphs together. On one side, G
is a 3-colorable graph by Lemma 2. On the other side, G+,
the structure expanded form G by full interpretations on all
intensional predicates, is a stable model since all intensional
ground atoms can be justified, a contradiction. �

Theorem 1 is only concerned with the expressive power
over the same vocabulary, which is the standard concept of
expressiveness from a (finite) model theory point of view.

Nevertheless, from a knowledge representation and reason-
ing point of view, auxiliary predicates are often allowed when
talking about translations from one KR formalism to another.
Using auxiliary predicates is a quite common technique in
the ASP community. Normally, to encode a problem in ASP,
one needs to use auxiliary predicates, e.g. the predicate
otherroute in the well known Hamiltonian circuit program
[Niemelä, 1999].

A problem arises whether Theorem 1 still holds if auxil-
iary predicates are allowed. On finite structures, this is not
possible providing some general assumptions in the complex-
ity theory. As shown in the literature, while normal logic
programming under the stable model semantics exactly cap-
tures the complexity class NP [Saccà, 1997; Schlipf, 1995;
Marek and Remmel, 2003; Dantsin et al., 2001], disjunc-
tive logic programming under the stable model semantics ex-
actly captures the complexity class ΣP

2 [Eiter et al., 1997;
Dantsin et al., 2001]. Hence, on finite structures, NLP =∗

DLP if and only if NP = ΣP2 if and only if NP = coNP.

4 A Partial Translation via Unfolding and
Shifting

The previous section shows that, unlike the propositional
case, first-order DLP is strictly more expressive than first-
order NLP, even if auxiliary predicates are allowed. Hence,
it seems impossible to develop a faithful translation T from
first-order DLP to NLP in the sense that for any disjunc-
tive program Π, T (Π) is a normal program and AS(Π) =
AS(T (Π)|τ(Π)).

In order to still utilizing NLP solvers for implementing
first-order DLP, we consider to weaken the conditions. We
investigate two approaches in this direction. One is to con-
sider partially correct translations and another is to consider
NLP definable subclasses of first-order DLP.

In this section, we propose a sound but incomplete trans-
lation via unfolding [Brass and Dix, 1999; Sakama and Seki,
1997] and shifting [Gelfond et al., 1991; Ben-Eliyahu and
Dechter, 1994]. Unfolding and shifting are two classical op-
erators in the literature that have been widely used. Interest-
ingly, it is only till recently to observe that these two operators
can be used to fully translate propositional disjunctive pro-
grams to normal ones [Zhou, 2014]. More precisely, by un-
folding sufficiently enough rules in any given propositional
disjunctive program, its shifted program, which is a normal
one, must have the same answer sets.

Nevertheless, according to Theorem 1, this result cannot be
lifted into the first-order case. It remains an interesting ques-
tion why this is the case. Let us recall the proof ideas in the
propositional case, which can be divided into three assertions.
First, adding any unfolded rule into a program does not affect
the answer sets. Second, for programs closed under unfold-
ing, i.e., any unfolded rule must be in the program itself, the
shifted program has the same answer sets. Finally, by adding
sufficiently enough unfolded rules, a propositional disjunc-
tive program must be closed under unfolding. In this section,
we shall show that, while the first two assertions remain true
in the first-order case, the last one is not.

Let r1 and r2 be two rules, P (
−→
t ) an atom in Head(r1)

3295



and η a substitution such that P (
−→
t )η ∈ Pos(r2). Then, the

rule obtained by unfolding P (
−→
t ) on r1 and r2 with respect

to η, denoted by Unfold(r1, r2, P (
−→
t )η) is a new rule whose

head is (Head(r1)\P (
−→
t ))η ∪Head(r2) and whose body is

Body(r1)η∪(Body(r2)\P (
−→
t )η). Let r be a rule of the form

(1). The result of shifting r, denoted by Shift(r), is the set of
following rules {αi ← Body(r), not {Head(r)\αi}}, where
1 ≤ i ≤ m and not {Head(r)\αi} is the set {notα | α ∈
Head(r), α 6= αi}.

Example 2 Consider the following program:

P (x);Q(x)←, P (x)← Q(x), Q(x)← P (x).

Clearly, it has a unique answer set, which contains full inter-
pretations of both P and Q. Shifting the program, the first
rule will be replaced by

P (x)← notQ(x), Q(x)← notP (x).

The shifted program has no answer sets. Nevertheless, if we
add the unfolded rule (i.e., P (x)) of the first two rules w.r.t.
the substitution from ~x to itself into the program, then the
shifted program has the same answer sets.

Theorem 2 Let Π be a first-order disjunctive program. Let
Π′ be a program obtained from Π by iteratively adding some
unfolded rules. Then, AS(Shift(Π′)) ⊆ AS(Π).

Proof: sketch This assertion follows from a) for all pro-
grams Π and all unfolded rules Unfold(r1, r2, P (

−→
t )η),

AS(Π) = AS(Π ∪ Unfold(r1, r2, P (
−→
t )η)); and

b) for all programs Π, AS(Shift(Π)) ⊆ AS(Π).
For a), we show that |= SM(Π) ≡ SM(Π ∪
Unfold(r1, r2, P (

−→
t )η)), which follows from the fact

that |= Π̂ ≡ ̂
Π ∪ Unfold(r1, r2, P (

−→
t )η) and τint(Π)∗ <

τint(Π) |= Π̂∗ ≡ ̂
(Π ∪ Unfold(r1, r2, P (

−→
t )η))∗. For b),

we are able to show that |= SM(Shift(Π))→ SM(Π). �

Theorem 3 Let Π be a first-order disjunctive program closed
under unfolding. Then, AS(Shift(Π)) = AS(Π).

Proof: sketch It suffices to show that AS(Π) ⊆
AS(Shift(Π)). If Π is closed under unfolding, then
for any answer set M of Π, there exists a unique evolution
sequence σ such that σ1

M(Π) = M = σ∞M(Π). Then,
it can be checked that for Shift(Π), σ1

M(Shift(Π)) =
σ1
M(Π) = M = σ∞M(Shift(Π)). Hence, M is an answer

set of Shift(Π) as well. �

Theorem 2 shows that one can still use unfolding and shift-
ing to convert a first-order disjunctive program into a normal
one. However, this is just a partially correct translation. In
case that the program is closed under unfolding by adding a
number of unfolded rules, Theorem 3 guarantees that the con-
verse holds as well. Nevertheless, unlike the propositional
case that the program will eventually be closed under unfold-
ing since the number of propositional rules are finite, for first-
order programs, unfolding may never end.

Example 3 Consider again the program non− 3− color in
Example 1. It can be shown that for any non-3-colorable
graph G, the rule NC ← BodyG can be obtained from
non− 3− color by iteratively unfolding some rules. By
Lemma 1, there are infinitely many non-3-colorable graphs.
Hence, for the non− 3− color program, no matter how
many unfolded rules are added, it is not closed under unfold-
ing. Therefore, the converse of Theorem 2 does not hold for
non− 3− color as there are always bigger non-3-colorable
graphs that cannot be covered by the unfolded rules.

Theorem 2 enables us to develop a sound yet incomplete
first-order disjunctive ASP solver by calling an NLP solver.
The basic idea is to perform the unfolding operation for some
rules in a given disjunctive program and then perform the
shifting operation. Calling an NLP solver for the shifted pro-
gram, if there exists an answer set, then, guaranteed by The-
orem 2, it must be an answer set of the original disjunctive
program. In case that no answer sets is found, one can obtain
some information in the solving process. Based on which,
one can construct new rules to be unfolded and continue the
above processes. As shown in Example 3, this process might
not end in the first-order case so that the procedure might be
incomplete. The key issue is how to deliberately select those
rules to be unfolded based on the information obtained when
failing to find an answer set for the shifted program. We leave
this as one of our focuses for future investigations.

5 NLP Definable Subclasses
In this section, we consider to identify some NLP definable
subclasses for DLP. Of course, the class NLP itself is a trivial
case. Also, all propositional disjunctive programs form an-
other class [Eiter et al., 2004; Zhou, 2014]. Pointed out by
Theorem 3, the class of all disjunctive programs closed under
unfolding is an NLP definable class as well.

In the literature, particularly for propositional disjunctive
programs, a well known class that has attracted much atten-
tion is so-called head-cycle-free programs [Ben-Eliyahu and
Dechter, 1994]. It is shown that, in the propositional case, all
head-cycle-free programs can be encoded in NLP, in partic-
ular, by its shifted program. One can lift this into the first-
order case. Let Π be a disjunctive program. The predicate
dependency graph of Π, is a directed graph whose nodes are
intensional predicates in Π, and there is an edge from a pred-
icate P to another predicate Q iff there exists r ∈ Π such
that Head(r) mentions P and Body(r) mentions Q. A loop
L of the program Π is a cycle in the predicate dependency
graph going through all nodes in L. Then, Π is said to be
head-cycle-free if there is no loop L and rule r such that L
contains two or more occurrences of predicates mentioned in
Head(r). Clearly, all NLP programs are head-cycle-free.
Example 4 The program 3− color presented in Example
1 is head-cycle-free, while the program non− 3− color is
not since {NC,R,G,B} forms a loop that contains 3 pred-
icates in the first disjunctive rule. The program presented in
Example 2 is not head-cycle-free either.

It is shown that, in the propositional case, all head-cycle-
free disjunctive programs are equivalent to their shifted pro-
grams [Ben-Eliyahu and Dechter, 1994]. This result can be

3296



lifted into the first-order case by using a similar technique.
Nevertheless, head-cycle-free is a sufficient but not necessary
condition for NLP definability. For instance, the program
presented in Example 2 is not head-cycle-free but NLP defin-
able. In this section, we consider whether we can characterize
NLP definability for first-order disjunctive programs, similar
to the notion of boundedness to characterize first-order defin-
ability for datalog programs [Ajtai and Gurevich, 1994] and
NLP programs [Zhang and Zhou, 2010]. Recall the notion
of boundedness for normal logic programs [Zhang and Zhou,
2010]. A normal program Π is said to be bounded if there ex-
ists a natural number k such that for all answer setsM of Π,
the progression of Π based onM will end within k-steps. On
arbitrary structures, a normal program is first-order definable
if and only if it is bounded [Zhang and Zhou, 2010].

Analogously, we can extend the notion of boundedness
for disjunctive programs. Naturally, a disjunctive program
Π is said to be bounded if there exists a natural number k
such that for all answer sets M of Π, the progression of
Π based on M will end within k-steps. However, bound-
edness itself alone can capture neither first-order definabil-
ity nor NLP definability for disjunctive programs. For in-
stance, the non− 3− color program presented in Example
1 is bounded within 2 steps, but it is neither first-order defin-
able nor NLP definable over the same vocabulary.

Let us consider the differences between first-order disjunc-
tive programs and normal programs from a progression se-
mantics point of view. It can be observed that a key point
is that, for normal programs, there is a unique evolution se-
quence, while for disjunctive programs, there could be many.
In this sense, the number of (nondeterministic) choices in pro-
gression indeed makes a big difference. The following theo-
rem states that if a disjunctive program only has a bounded
number of choices, i.e., different evolution sequences, then
it can be encoded in NLP. Let Π be a first-order disjunctive
program. If there exists a number k such that for all answer
setsM of Π, |ES(Π,M)| < k, where ES(Π,M) is the set
of all evolution sequences of Π based onM, then we say that
Π is choice-bounded.

Theorem 4 Choice-bounded programs are NLP definable.

Proof: sketch We first can show that if |ES(Π,M)| = 1 for
all answer setsM of Π, then AS(Π) = AS(Shift(Π)). If
there is only one evolution sequence forM on Π, then it must
coincide with the unique evolution sequence of Shift(Π)
based on M. Then, σ∞M(Shift(Π)) = σ∞M(Π) = M.
Next, we show that unfolding can always reduce the number
of choices. This is because by unfolding some rules in the
program, one can obtain more heads in each progression
step so that the number of choices are reduced. Finally, by
Theorem 2, this assertion holds. �

In fact, many NLP definable classes mentioned previously
belong to this class. Clearly, all NLP programs are choice-
bounded with a bound to be 1. All programs closed under
unfolding are choice-bounded as well. Also, all propositional
disjunctive programs are choice bounded since the number of
propositional variables in a program is finite. This also pro-
vides an alternative proof why all propositional disjunctive

programs can be translated into normal ones. However, head-
cycle-free programs are not necessarily choice-bounded.

Example 5 Consider the following program:

P (x);P (x)←, Q(x);Q(x)←, P (x)← Q(y),

Q(x)← P (y), P (x)← Q(y), Q(x)← P (y).

This program is head-cycle-free as the two predicate loops
{P,Q} and {P ,Q} do not go through two or more predicates
in the heads of any rule. On the other side, this program is
not choice-bounded as one can have an arbitrary guess of P
(or Q) at the first step of progression.

Hence, head-cycle-free and choice-bounded are two dis-
joint NLP definable subclasses. Interestingly, both of them
are highly related to the notion of unfolding and shifting.
Head-cycle-free programs are equivalent to their shifted pro-
grams, while choice bounded programs can be converted to
normal programs via unfolding and shifting. In addition, for
first-order definability of NLP programs, unfolding also plays
a key role. That is, a normal logic program is first-order de-
finable iff it is bounded by a number k iff it is equivalent to
its completion on the program by unfolding all possible rules
k times [Zhang and Zhou, 2010]. Based on the evidences, we
end up with our discussions with a conjecture.

Conjecture 1 On arbitrary structures, a disjunctive program
is NLP definable iff it is equivalent to the shifted program of
this program expanded with some unfolded rules.

6 Conclusion
In this paper, we have studied the expressive power of first-
order DLP and first-order NLP. Interestingly, unlike the
propositional case, first-order DLP is strictly more expres-
sive than NLP (see Theorem 1). Despite these negative re-
sults, we are still able to take advantage of NLP solvers for
solving first-order DLP by further weakening the conditions.
For instance, we have obtained a partially correct transla-
tion from first-order DLP to NLP via unfolding and shifting
(see Theorem 2). This enables us to develop a sound but
incomplete DLP solver, which is one of our focuses in our
future work. Also, we have identified some NLP definable
subclasses of DLP, including head-cycle-free programs and
choice-bounded programs (see Theorem 4). We conjecture
that, on arbitrary structures, a disjunctive program is NLP de-
finable iff this can be done via unfolding and shifting. We
leave this problem open to our future investigations.

References
[Ajtai and Gurevich, 1994] Miklós Ajtai and Yuri Gurevich.

Datalog vs first-order logic. J. Comput. Syst. Sci.,
49(3):562–588, 1994.

[Asuncion et al., 2012a] Vernon Asuncion, Fangzhen Lin,
Yan Zhang, and Yi Zhou. Ordered completion for first-
order logic programs on finite structures. Artif. Intell., 177-
179:1–24, 2012.

[Asuncion et al., 2012b] Vernon Asuncion, Yan Zhang, and
Yi Zhou. Ordered completion for logic programs with ag-
gregates. In AAAI-2012, pages 691–697, 2012.

3297



[Baral, 2003] Chitta Baral. Knowledge representation, rea-
soning and declarative problem solving. Cambridge Uni-
versity Press, 2003.

[Bartholomew and Lee, 2013] Michael Bartholomew and
Joohyung Lee. Functional stable model semantics and an-
swer set programming modulo theories. In IJCAI 2013,
2013.

[Bartholomew et al., 2011] Michael Bartholomew,
Joohyung Lee, and Yunsong Meng. First-order ex-
tension of the FLP stable model semantics via modified
circumscription. In IJCAI-2011, pages 724–730, 2011.

[Ben-Eliyahu and Dechter, 1994] Rachel Ben-Eliyahu and
Rina Dechter. Propositional semantics for disjunctive logic
programs. Ann. Math. Artif. Intell., 12(1-2):53–87, 1994.

[Brass and Dix, 1999] Stefan Brass and Jürgen Dix. Seman-
tics of (disjunctive) logic programs based on partial evalu-
ation. J. Log. Program., 40(1):1–46, 1999.

[Chen et al., 2006] Yin Chen, Fangzhen Lin, Yisong Wang,
and Mingyi Zhang. First-order loop formulas for normal
logic programs. In KR’06, pages 298–307, 2006.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg
Gottlob, and Andrei Voronkov. Complexity and expres-
sive power of logic programming. ACM Comput. Surv.,
33(3):374–425, 2001.

[Denecker et al., 2012] Marc Denecker, Yuliya Lierler,
Miroslaw Truszczynski, and Joost Vennekens. A tarskian
informal semantics for answer set programming. In ICLP
2012, pages 277–289, 2012.

[Eiter et al., 1994] Thomas Eiter, Georg Gottlob, and Heikki
Mannila. Expressive power and complexity of disjunctive
datalog under the stable model semantics. In IS/KI, pages
83–103, 1994.

[Eiter et al., 1997] Thomas Eiter, Georg Gottlob, and Heikki
Mannila. Disjunctive datalog. ACM Trans. Database Syst.,
22(3):364–418, 1997.

[Eiter et al., 2004] Thomas Eiter, Michael Fink, Hans Tom-
pits, and Stefan Woltran. On eliminating disjunctions in
stable logic programming. In KR, pages 447–458, 2004.

[Eiter, 2007] Thomas Eiter. Answer set programming for the
semantic web. In ICLP 2007, pages 23–26, 2007.

[Ferraris et al., 2011] Paolo Ferraris, Joohyung Lee, and
Vladimir Lifschitz. Stable models and circumscription.
Artif. Intell., 175(1):236–263, 2011.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Answer Set Solving
in Practice. Morgan & Claypool Publishers, 2012.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of ICLP’88, pages
1070–1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation
Comput., 9(3/4):365–386, 1991.

[Gelfond et al., 1991] Michael Gelfond, Halina Przymusin-
ska, Vladimir Lifschitz, and Miroslaw Truszczynski. Dis-
jective defaults. In KR’91, pages 230–237, 1991.

[Jensen and Toft, 2011] T.R. Jensen and B. Toft. Graph Col-
oring Problems. Wiley Series in Discrete Mathematics and
Optimization. Wiley, 2011.

[Lee and Meng, 2011] Joohyung Lee and Yunsong Meng.
First-order stable model semantics and first-order loop for-
mulas. J. Artif. Intell. Res. (JAIR), 42:125–180, 2011.

[Lifschitz, 2012] Vladimir Lifschitz. Logic programs with
intensional functions. In KR 2012, 2012.

[Lin and Zhou, 2011] Fangzhen Lin and Yi Zhou. From an-
swer set logic programming to circumscription via logic of
GK. Artif. Intell., 175(1):264–277, 2011.

[Marek and Remmel, 2003] V. Wiktor Marek and Jeffrey B.
Remmel. On the expressibility of stable logic program-
ming. TPLP, 3(4-5):551–567, 2003.

[Marek and Truszczynski, 1999] Victor W. Marek and
Miroslaw Truszczynski. Stable models and an alternative
logic programming paradigm. In The Logic Program-
ming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[Niemelä, 1999] Ilkka Niemelä. Logic programs with stable
model semantics as a constraint programming paradigm.
Ann. Math. and AI, 25(3-4):241–273, 1999.

[Pearce and Valverde, 2004] David Pearce and Agustı́n
Valverde. Towards a first order equilibrium logic for
nonmonotonic reasoning. In JELIA’2004, pages 147–160,
2004.

[Saccà, 1997] Domenico Saccà. The expressive powers of
stable models for bound and unbound DATALOG queries.
J. Comput. Syst. Sci., 54(3):441–464, 1997.

[Sakama and Seki, 1997] Chiaki Sakama and Hirohisa Seki.
Partial deduction in disjunctive logic programming. J. Log.
Program., 32(3):229–245, 1997.

[Schlipf, 1995] John S. Schlipf. The expressive powers of
the logic programming semantics. J. Comput. Syst. Sci.,
51(1):64–86, 1995.

[Shen et al., 2014] Yi-Dong Shen, Kewen Wang, Thomas
Eiter, Michael Fink, Christoph Redl, Thomas Krennwall-
ner, and Jun Deng. FLP answer set semantics without cir-
cular justifications for general logic programs. Artif. In-
tell., 213:1–41, 2014.

[Zhang and Zhou, 2010] Yan Zhang and Yi Zhou. On the
progression semantics and boundedness of answer set pro-
grams. In KR 2010, 2010.

[Zhou and Zhang, 2011] Yi Zhou and Yan Zhang. Progres-
sion semantics for disjunctive logic programs. In AAAI
2011, 2011.

[Zhou, 2014] Yi Zhou. From disjunctive to normal logic pro-
grams via unfolding and shifting. In ECAI 2014, pages
1139–1140, 2014.

3298




