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Abstract
Recent researches on transfer learning exploit deep
structures for discriminative feature representation
to tackle cross-domain disparity. However, few of
them are able to joint feature learning and knowl-
edge transfer in a unified deep framework. In this
paper, we develop a novel approach, called Deep
Low-Rank Coding (DLRC), for transfer learn-
ing. Specifically, discriminative low-rank coding
is achieved in the guidance of an iterative super-
vised structure term for each single layer. In this
way, both marginal and conditional distributions
between two domains intend to be mitigated. In
addition, a marginalized denoising feature transfor-
mation is employed to guarantee the learned single-
layer low-rank coding to be robust despite of cor-
ruptions or noises. Finally, by stacking multiple
layers of low-rank codings, we manage to learn
robust cross-domain features from coarse to fine.
Experimental results on several benchmarks have
demonstrated the effectiveness of our proposed al-
gorithm on facilitating the recognition performance
for the target domain.

1 Introduction
In machine learning and pattern recognition fields, there is
always a situation that we have plenty of unlabeled data
while no or insufficient labeled data for training in the tar-
get domain. Transfer learning [Pan and Yang, 2010] has
been demonstrated as a promising technique to address such
difficulty by borrowing knowledge from other well-learned
source domains, which might lie in different distributions
with the target one. Many recent researches on transfer learn-
ing have witnessed appealing performance by seeking a com-
mon feature space where knowledge from source can be
transferred to assist the recognition task of target domain
[Chen et al., 2012; Ding et al., 2014; Shao et al., 2012;
Shekhar et al., 2013; Long et al., 2014b]. Therefore, it is the
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key to uncover the rich and discriminative information across
source and target domains in transfer learning.

Recently, low-rank constraint [Liu et al., 2013] has been
widely studied in conventional transfer learning due to its lo-
cality aware reconstruction property, meaning that only ap-
propriate knowledge is transferred from one local space in
the source/target to another local space in the target/source.
Two representative methods are LTSL [Shao et al., 2014]
and L2TSL [Ding et al., 2014], which explicitly impose low-
rank constraint on the data reconstruction or latent factor in
a learned common subspace. Those methods only employ
a shallow architecture containing a single layer. However,
knowledge transfer can be better learned from multiple layers
with a deep structure.

Most recent researches on deep structure learning to cap-
ture a better feature representation attract increasing interest
[Chen et al., 2012; Nguyen et al., 2013; Zhou et al., 2014;
Chen et al., 2014], since discriminative information can be
embedded in multiple levels of the features hierarchy. In fact,
this is one of the major motivations to develop deep structure
learning framework, so that more complex abstraction can
be captured. However, current deep transfer learning meth-
ods failed to align different domains and learn deep structure
features simultaneously. Without any knowledge about tar-
get domain, the feature extraction process performed on the
source data would definitely ignore information important to
the target domain.

In this paper, we propose a Deep Low-Rank Coding frame-
work (DLRC) for transfer learning. The core idea of DLRC is
to jointly learn a deep structure of feature representation and
transfer knowledge via an iterative structured low-rank con-
straint, which aims to deal with the mismatch between source
and target domains layer by layer (Figure 1). Our main con-
tributions are summarized as:

• A deep structure is designed to capture the rich infor-
mation across source and target domains. Specifically,
the deep structure is stacked by multiple layer-wise low-
rank codings. Therefore, it can refine features for source
and target in a layer-wise fashion and preserve more es-
sential information to the target domain.

• An iterative structure term is developed for each Single-
layer Low-Rank Coding (SLRC), which works in a
local-aware reconstruction manner. Through labeling
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Figure 1: Illustration of our Deep Low-Rank Coding (DLRC).
Input (a) is the original data of source (blue) and target (red)
domains. (b) represents the first-layer low-rank coding guided
by marginal denoising regularizer and iterative structure term.
Marginal denoising regularizer aims to learn a transformation
matrix W 0, whilst iterative structure is designed to guarantee
the low-rank coding to have prior information, which is up-
dated in a layer-wise manner. (c) denotes the second-layer
low-rank coding, whose input is the low-rank coding pro-
duced from the first-layer (b) ZS,0 for source and ZT ,0 for
target, respectively. The whole framework stacks such multi-
ple layers as (b) together to learn multi-level discriminative
features across two domains.

most confident samples in target domain, the learned
features become more discriminative, since the marginal
and conditional disparities are both leveraged.

• Marginal denoising regularizer is incorporated to guide
the low-rank coding by seeking a robust and discrimi-
native transformation shared by two domains, which is
jointly optimized with low-rank reconstruction by un-
covering rich information from complex data across two
domains.

2 Related Work
In this section, we briefly discuss some related works, and
highlight the differences between them and our method.

Transfer learning has been widely discussed recently and
for the survey of state-of-the-art methods, please refer to
[Pan and Yang, 2010]. Recently, low-rank transfer learning
has been well-studied to ensure that accurate data align-
ment is achieved after data adaptation [Shao et al., 2014;
Ding et al., 2014; Ding and Fu, 2014]. The low-rank con-
straint enforced on the reconstruction coefficients matrix be-
tween domains is able to reveal underlying data structure,
especially when the data lie in multiple subspaces, which
can guide the conventional transfer subspace learning. Dif-
ferent from existing methods in this line, we introduce iter-
ative structure learning to recover the low-rank structure of
the coefficient matrix in a supervised way. Furthermore, we
employ the low-rank constraint on the data transformed by
a mapping learned from marginal denoising regularizer, and
therefore our method is more robust to corrupted data.

Most recently, the thought of deep structure is incorporated
into transfer learning to uncover the rich information across
domains. Chen et al. developed marginalized Stacked denois-

ing Autoencoder (mSDA) to learn a better representation by
reconstruction, recovering original features from data that are
artificially corrupted with noise [Chen et al., 2012]. Zhou et
al. managed to learn a feature mapping between cross-domain
heterogeneous features as well as a better feature representa-
tion for mapped data to reduce the bias issue caused by the
cross-domain correspondences [Zhou et al., 2014]. In this
paper, we also adopt the thought of deep transfer learning,
however, our method jointly learns the low-rank codings and
transfers knowledge from source to target in a unified deep
structure framework. By stacking multiple layers’ low-rank
coding, we build a deep structure to capture more discrimina-
tive features across two domains.

3 Deep Low-Rank Coding
In this section, we first briefly discuss our motivation, then
propose our single-layer low-rank coding with its solution.
Finally, we introduce our deep low-rank coding framework
by stacking single-layer low-rank coding to multiple layers.

3.1 Motivation
Recently, mSDA [Chen et al., 2012] and its variants [Zhou
et al., 2014], achieve exciting recognition results for trans-
fer learning by extracting layer-wise features across different
domains. These works stack marginalized denoising Autoen-
coder (mDA) layer by layer to capture the rich and discrimi-
native features. mDA has shown the effectiveness in transfer
learning and proven to be much more efficient [Chen et al.,
2012], due to its linear property.

Considering previous work only learn deep structure fea-
ture [Chen et al., 2012], or separately learn feature and trans-
fer knowledge [Zhou et al., 2014], we propose to refine layer-
wise features and align different domains in a unified frame-
work. In such way, knowledge from source domain can be
transferred to the target one layer by layer, which guides low-
rank coding to produce more discriminative and important
feature to the target domain. In the following sections, we
will present our Deep Low-Rank Coding (DLRC) based on
Single-layer Low-Rank Coding (SLRC).

3.2 Single-layer Low-Rank Coding
Given a set of target domain XT = {xT ,1, · · · , xT ,nT }
with nT unlabeled data points and a set of source domain
{XS , YS} = {(xS,1, yS,1), · · · , (xS,nS , yS,nS )} with nS la-
beled data points and YS is the label vector. Assume X =
[XS , XT ] ∈ Rd×n, where d is the original dimension of two
domains and n = nS + nT is the total size of two domains.

Our Single-layer Low-Rank Coding (SLRC) adopts the
thought of conventional low-rank transfer learning [Shao et
al., 2014; Ding et al., 2014] to seek discriminative low-
rank codings. With its locality-aware reconstruction prop-
erty, marginal distribution divergence across source and tar-
get domains would be reduced so that well-established source
knowledge can be passed to target domain. Therefore, we de-
velop the following objective function as:

min
Z,W

rank(Z) + λΩ(W ), s.t. WX = WXSZ, (1)
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where rank(Z) is the operator to calculate the rank of low-
rank coding matrix Z ∈ RnS×n, which can be solved with
nuclear norm [Liu et al., 2013]. W ∈ Rd×d is the transfor-
mation matrix (or rotation) on original data shared by two
domains. Ω(W ) is the loss function concerned W and λ is
the trade-off parameter.

To seek a better transformation matrix W in low-rank con-
straint, we incorporate recent popular mDA [Chen et al.,
2012], which is designed to seek a mappingW from the orig-
inal data to the corrupted one so that the learned W is robust
to corrupted data. mDA has an advantage on efficient perfor-
mance and small computational cost, whose objective func-
tion is formulated as follows:

Ω(W ) = tr
[
(X̄ −WX̃)T(X̄ −WX̃)

]
, (2)

where X̄ is the composition of X by repeating m times, and
X̃ is the corrupted version of X̄ with different ratios of cor-
ruption. And tr(·) is the operator to calculate the trace of a
matrix. Eq. (2) manages to minimize the original data with
its transformed corrupted version so that the learned transfor-
mation is robust to noise and captures more shared discrim-
inative information across domains. In this way, the learned
transformation matrix would well leverage the disparity of
two domains.

It should be noted that the single-layer low-rank coding we
discussed only relies on data distributions. However, we are
always accessible to labels of source domain in transfer learn-
ing. Therefore, we could pre-load these label information into
model (1) where whole data with certain labels are only re-
constructed by source data with the corresponding labels.
Similar thought has been discussed in [Zhang et al., 2013]
where image codings are guided through structured low-rank
constraint. Then, we propose the final objective function:

min
W,Z
‖Z‖∗ + λtr(ETE) + α‖Zl −H‖2F,

s.t. WX = WXSZ,
(3)

where α is the balancing parameter and E = X̄ − WX̃ .
‖ · ‖∗ is the nuclear norm, which is a surrogate of rank() to
seek a low-rank representation, whilst ‖ · ‖F is the Frobenius
Norm, which aims to make the labeled representation Zl
approximate to the structure matrix H . This structure term is
optimized layer by layer, since most confident samples will
be labeled in the target domain (refer the detail to Section
3.4). Zl is the labeled partial columns out of Z, which
includes all source samples and partial target samples. We
define Z = [Zl, Zu], where each column of Zu is correlated
to unlabeled sample in target domain after each layer’s
optimization.

Discussion: Different from previous low-rank transfer learn-
ing methods [Shao et al., 2014; Ding et al., 2014], which em-
ploy the target domain to reconstruct the source one or op-
posite direction, we treat the transformed source domain as
the dictionary and employ it to reconstruct the transformed
whole data from two domains. Such constraint would opti-
mize W , coupling source with target and also itself. Further-
more, previous ones deploy low-rank constraint on the data

lying in the common subspace projection. However, our low-
rank coding reconstructs the transformed data with a linear
mapping learned from mDA, which would capture more dis-
criminative and robust information shared by two domains.

Our single-layer low-rank coding (3) is developed to seek
discriminative codings Z, which is guided with an iterative
structured term and optimized under the transformed data via
mDA [Chen et al., 2012]. In this way, single-layer low-rank
coding can mitigate both the marginal and conditional dis-
tributions across two domains, and therefore, it potentially
transfers knowledge from source to target and boosts the
recognition performance to the target domain. Furthermore,
we can stack the single-layer low-rank coding into a deep
structure, where the output coding Z = [ZS , ZT ] from the
previous layer would be the input of the next layer. ZS is the
low-rank coding for source, while ZT is for target.

3.3 Optimization Solution
To solve Eq. (3), we first introduce a relaxing variable J and
convert it to the following equivalent problem as:

min
W,Z,J

‖J‖∗ + λtr(ETE) + α‖Zl −H‖2F,
s.t. WX = WXSZ, Z = J,

(4)

which can be solved via the Augmented Lagrange Multiplier
(ALM) method [Lin et al., 2010]. Since Z = [Zl, Zu],we
introduce an auxiliary matrixH = [H,Zu]. We have the aug-
mented Lagrangian function of Eq. (4) as:

‖J‖∗ + λtr(ETE) + α‖Z −H‖2F
+tr(Y T

1 (WX −WXSZ)) + tr(Y T
2 (Z − J))

+µ
2 (‖WX −WXSZ‖2F + ‖Z − J‖2F),

(5)

where Y1 and Y2 are the two Lagrange multipliers and µ > 0
is the penalty parameter. Each variable in optimization (5)
can be addressed in an iterative manner by updating J, Z,W
one by one. Then, those variables are optimized in the t + 1
iteration as follows:
Update J :

Jt+1

= arg min
J

‖J‖∗ + tr(Y T
2,t(Zt − J)) + µt

2 ‖Zt − J‖
2
F

= arg min
J

1
µt
‖J‖∗ + 1

2‖J − (Zt +
Y2,t

µt
)‖2F,

(6)
which can be solved by Singular Value Thresholding (SVT)
[Cai et al., 2010].
Update Z:

Zt+1 = arg min
Z

α‖Z −H‖2F + tr(Y T
1,tWt(X −XSZ))

+tr(Y T
2,t(Z − Jt+1)) + µt

2 (‖Wt(X −XSZ)‖2F
+‖Z − Jt+1‖2F),

which is convex and has closed form solution as follows:

Zt+1 =
(
(2α+ µt)Iz + µtΨ

T
t Ψt

)−1(
ΨT
t Y1,t

−Y2,t + µtΨ
TWtX + µtJt+1 + 2αH

)
,

(7)

where Iz is the identity matrix of size nS × nS and Ψt =
WtXS .
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Update W :

Wt+1 = arg min
W

λtr
[
(X̄ −WX̃)T(X̄ −WX̃)

]
+

tr(Y T
1,tWRt) + µt

2 ‖WRt‖2F,
(8)

where Rt = X − XSZt+1. Eq. (8) is convex and we can
achieve its closed form solution by defining P = X̄X̃T and
Q = X̃X̃T:

Wt+1 = (Y1,tR
T
t + λP )(λQ− µtRtRT

t )−1 = P̂tQ̂t
−1
,

where the repeated number m for X̄ is expected to be ∞,
giving rise to a robust denoising transformationWt+1 learned
from infinitely many copies of noisy data. Fortunately, the
matrices P̂t and Q̂t converge to their expectations when m
becomes very large with the weak law of large numbers. In
this way, we can derive the expected values of P̂t and Q̂t, and
calculate the corresponding mapping Wt+1 as:

Wt+1

= E[P̂t]E[Q̂t]
−1

= E[λP + Y1,tR
T
t ]E[λQ− µtRtRT

t ]−1

=
(
λE[P ] + E[Y1,tR

T
t ]
)(
λE[Q]− E[µtRtR

T
t ]
)−1

=
(
λE[P ] + Y1,tR

T
t

)(
λE[Q]− µtRtRT

t

)−1
(9)

where Y1,tRT
t and µtRtR

T
t are treated as constant values

when optimizing Wt+1. The expectations E[P ] and E[Q] can
be derived in a similar way as in mDA [Chen et al., 2012].
The detailed optimization is outlined in Algorithm 1.

Algorithm 1 Solving Problem (3) by ALM
Input: X = [XS , XT ], λ, α,H ,
Initialize: W0 = Z0 = J0 = Y1,0 = Y2,0 = 0, µ0 = 10−6,

µmax = 106, ρ = 1.1, ε = 10−6, t = 0.
while not converged do
1. Fix others and update Jt+1 by Eq. (6);
2. Fix others and update Zt+1 by Eq. (7);
3. Fix others and update Wt+1 by Eq. (9);
4. Update two multipliers via
Y1,t+1 = Y1,t + µtWt+1(X −XSZt+1);
Y2,t+1 = Y2,t + µt(Zt+1 − Jt+1);

5. Update µ via µt+1 = min(ρµt, µmax);
6. Check the convergence conditions:
‖Wt+1(X −XSZt+1)‖∞ < ε, ‖Zt+1 − Jt+1‖∞ < ε.

7. t = t+ 1.
end while
output: Z, J,W

3.4 Deep Low-Rank Coding
So far, model (3) works in a single-layer way to capture
the shared information between two domains and meanwhile
couple them in an iterative structure low-rank constraint.

As illustrated in our framework (Figure 1), we design a
deep structure to learn more discriminative and richer infor-
mation from source and target domains in a layer-wise man-
ner. That is, we stack single-layer model (3) into multi-layer
structure. Each single layer produces iteratively structured
low-rank coding for both domains ZS and ZT , which would
be the input of next layer. Specifically, the output from the
k-1th layer ZS,k−1 and ZT ,k−1 would be the input of the

kth layer, which produces ZS,k and ZT ,k. In such a layer-
wise scheme, DLRC would generate multi-level features for
both domains and refine them from coarse to fine. The de-
tails of DLRC are shown in Algorithm 2. In the experiments,
we employ five-layer features and combine them together to
evaluate the final performance of our DLRC.

Algorithm 2 Algorithm of Deep Low-Rank Coding (DLRC)
Input: XS , XT , L is the number of layers,
for k = 1 to L do

1. Use Algorithm 1 to learn coding ZS,k and ZT ,k;
2. Set XS,k+1 = ZS,k and XT ,k+1 = ZT ,k;
3. Update Hk via Eq. (10);

end for
output: Low-rank codings {ZS,k, ZT ,k}, (k = 1, · · · , L).

For each layer, we need to update the iterative structure
matrix H by introducing the pseudo labels of most confi-
dent samples in target domains. Suppose we label nkT samples
from the target domain in the kth layer, and therefore, Hk in
the kth should be an nS × (nS + nkT ) matrix. Hi,j

k denotes
the element of i-th row and j-th column in Hk. We seek Hi,j

k
through:

Hi,j
k =

s(W kxi,W
kxj)∑

yi=yj
s(W kxi,W kxj)

, (10)

where yi denotes the label of xi from the labeled source and
pseudo-labeled target domains.W k is the transformation ma-
trix in the kth layer. And s(W kxi,W

kxj) = exp(−‖W kxi−
W kxj‖2/2σ2) is Gaussian kernel function with σ as band-
width (we set σ = 1 in our experiment). In this way, we can
achieve the structure matrix Hk, which guides the low-rank
reconstruction to minimize the conditional distribution be-
tween source and target domains. Since it is optimized layer
by layer, we define it as iterative structure learning. In the
experiments, we first employ the nearest neighbour classifier
to predict the labels of target data using source data. Then,
we label 50% target samples, which are most closest to the
labeled source data according to the Euclidean distances.

3.5 Complexity Analysis
The time-cost parts of our DLRC are (1) Trace norm compu-
tation in Eq. (6); (2) Matrix multiplication and inverse in Eqs.
(7) and (9).

First, Eq. (6) solved by SVD computation would cost
O(n2Sn) for J ∈ RnS×n. Generally, nS is the same order
of magnitude with n. When n is very large, this step would
be computationally expensive. But Eq. (6) can be improved
to O(rn2) by accelerations of SVD, where r � n is the
rank of J . Second, Eqs. (7) and (9) both include a few ma-
trix multiplications and a matrix inverse operation. There-
fore, Eq. (7) takes (l1 + 1)O(n3) and Eq. (9) would take
(l2 + 1)O(d3), where l1 and l2 are the number of multipli-
cations for Eq. (7) and Eq. (9), respectively. In sum, the to-
tal cost of each single-layer low-rank coding is: TSLRC =
O(t(rn2 + (l1 + 1)n3 + (l2 + 1)d3)), where t is the iteration
of Algorithm 1. Finally, the total cost of DLRC is LTSLRC,
where L is the number of layers.
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4 Experimental Results
In this section, we evaluate our proposed method on several
benchmarks. We will first introduce the datasets and experi-
mental setting. Then comparison results will be presented fol-
lowed by some properties analysis and discussion.

4.1 Datasets & Experimental Setting
MRSC+VOC includes two datasets: (1) MSRC dataset1 is
provided by Microsoft Research Cambridge, which contains
4,323 images labeled by 18 classes; (2) VOC2007 dataset2
contains 5,011 images annotated with 20 concepts. They
share the following 6 semantic classes: aeroplane, bicycle,
bird, car, cow, sheep. We construct MSRC+VOC by selecting
all 1,269 images in MSRC and all 1,530 images in VOC2007
following [Long et al., 2013]. We uniformly rescale all im-
ages to be 256 pixels in length, and extract 128-dimensional
dense SIFT (DSIFT) features.

USPS+MNIST3 includes 10 common classes of digits
from two datasets: (1) USPS dataset consists of 7,291 training
images and 2,007 test images; (2) MNIST dataset has a train-
ing set of 60,000 examples and a test set of 10,000 examples.
To speed up experiments, we randomly sample 1,800 images
in USPS as one domain, and randomly select 2,000 images
in MNIST as the other domain. We uniformly resize all im-
ages to 16×16, and represent each one by a feature vector
encoding the gray-scale pixel values.

Reuters-2157824 is a difficult text dataset with many top
and subcategories. The three largest top categories are orgs,
people, and place, each of which is comprised of many sub-
categories. For fair comparison, we adopt the preprocessed
version of Reuters-21578 studied in [Gao et al., 2008].

Office+Caltech-2565 select 10 common categories from
Office dataset and Caltech-256. Office dataset has been
widely adopted as the benchmark for visual domain adap-
tation. It has three distinct domains: Amazon, Webcam, and
DSLR, including 4652 images, and 31 common categories.
Caltech-256 is a standard database for object recognition, in-
cluding 30,607 images and 256 categories. We apply the 800-
dim features by SURF+BagOfWords.

Note that the arrow “→” is the direction from “source” to
“target”. For example, “Webcam→ DSLR” means Webcam
is the source domain whilst DSLR is the target one. In the
experiments, we learn five-layer features and combine them
together to evaluate the final recognition performance through
the nearest neighbor classifier.

4.2 Comparison Results
For MRSC+VOC and USPS+MNIST, we evaluate our al-
gorithm by comparing with four baselines: TSC [Long et al.,
2013], TCA [Pan et al., 2011], GFK [Gong et al., 2012], TJM
[Long et al., 2014b]. Both two groups of datasets have two

1http://research.microsoft.com/en-
us/projects/objectclassrecognition

2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007
3http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
4http://learn.tsinghua.edu.cn:8080/2011310560/mlong.html
5http://www-scf.usc.edu/∼boqinggo/domainadaptation.html
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Figure 2: Recognition results of 5 algorithms on four
cases from two groups of datasets: MSRC+VOC and
USPS+MNIST. For MSRC+VOC, we have two cases, M→V
and V→M, where M is short for MSRC and V for VOC.
For USPS+MNIST, we also have two scenarios, M→U and
U→M, where M represents MNIST and U denotes USPS.
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Figure 3: Recognition results of 6 algorithms on six differ-
ent cases from three domains in Reuters-215782 text dataset,
where Pe is short for people, O for orgs, and Pl for place,
respectively.

domains, therefore, we switch source and target to achieve
two results for each group. The results are shown in Figure 2.

For Reuters-215782, these five baselines: TCA [Pan et
al., 2011], MTrick [Zhuang et al., 2011], GTL [Long et al.,
2014b], GFK [Gong et al., 2012] and ARRLS [Long et al.,
2014a] are compared on six cases from three domains. The
recognition results are listed in Figure 3.

For Office+Caltech-256, we compare the following
baselines: SGF [Gopalan et al., 2011], LTSL [Shao et al.,
2014], GFK [Gong et al., 2012], TJM [Long et al., 2014b],
DASA [Fernando et al., 2013], TCA [Pan et al., 2011],
mSDA [Chen et al., 2012] and GUMA [Cui et al., 2014].
We strictly follow the configuration of [Gong et al., 2012]
where 20 images per category from Amazon, Caltech-256,
and Webcam. Since DSLR has a small number of samples,
we do not use it as source domain. Finally, we conduct 3× 3
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Table 1: Average recognition rate (%)± standard variation of 9 algorithms on Office+Caltech-256, where A = Amazon, D =
DSLR, C = Caltech-256 and W = Webcam. Red color denotes the best recognition rates. Blue color denotes the second best
recognition rates.

Config\Methods SGF DASA GFK LTSL TJM TCA mSDA GUMA Ours
C→W 33.9±0.5 36.8±0.9 40.7±0.3 39.3±0.6 39.0±0.4 30.5±0.5 38.6±0.8 42.3±0.3 41.7±0.5
C→D 35.2±0.8 39.6±0.7 38.9±0.9 44.5±0.7 44.6±0.8 35.7±0.5 44.5±0.4 44.7±0.4 47.5±0.6
C→A 36.9±0.7 39.0±0.5 41.1±0.6 46.9±0.6 46.7±0.7 41.0±0.6 47.7±0.6 46.7±0.6 49.7±0.4
W→C 27.3±0.7 32.3±0.4 30.7±0.1 29.9±0.5 30.2±0.4 29.9±0.3 33.6±0.4 34.2±0.5 33.8±0.5
W→A 31.3±0.6 33.4±0.5 29.8±0.6 32.4±0.9 30.0±0.6 28.8±0.6 35.4±0.5 36.2±0.5 38.5±0.7
W→D 70.7±0.5 80.3±0.8 80.9±0.4 79.8±0.7 89.2±0.9 86.0±1.0 87.9±0.9 73.5±0.4 94.3±1.1
A→C 35.6±0.5 35.3±0.8 40.3±0.4 38.6±0.4 39.5±0.5 40.1±0.7 40.7±0.6 36.1±0.4 42.7±0.5
A→W 34.4±0.7 38.6±0.6 39.0±0.9 38.8±0.5 37.8±0.3 35.3±0.8 37.3±0.7 35.9±0.3 42.8±0.9
A→D 34.9±0.6 37.6±0.7 36.2±0.7 38.3±0.4 39.5±0.7 34.4±0.6 36.3±0.5 38.2±0.8 41.8±0.6
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Figure 4: (a) Convergence curves of setting C → A on Office+Caltech and U → M on USPS+MNIST, where we only show
20 iterations. (b) Parameters analysis on λ and α of setting C → A on Office+Caltech, where the x-range and y-range from 1
to 11 means [10−4, 10−3, 10−2, 0.1, 0.5, 1, 10, 50, 100, 500, 103], respectively. (c) represents the influence of different layers.
Here we show three experiments on 7 layers to testify the recognition results with more layers’ coding.

different groups of domain adaptation experiments. The
recognition results are shown in Table 1.

Discussion: We experiment on such transfer learning scenar-
ios, where we are only accessible to the labels of source do-
main. However, there are two lines. The first line, e.g. SGF,
DASA, TCA, mSDA, trains in a totally unsupervised way,
that is, the source label is not used in the training stage. The
other line employs the source labels into training, e.g. GFK,
LTSL and TSC, even introduces the pseudo labels of the tar-
get domains, e.g. TJM, ARRLS and Ours. From the results
shown in Figures 2 & 3, and Table 1, we observe that our
DLRC outperforms the compared baselines in most of cases
under different scenarios on four benchmarks.

Compared with SGF and DASA, GFK, LTSL and TSC can
achieve better results in most cases, since they incorporate
the source label in order to transfer more useful knowledge to
target domain. Based on this, TJM, ARRLS and Ours intro-
duce the pseudo label of target domain into the training stage,
therefore, more discriminative information can be learned in
the training stage. However, mSDA in some cases performs
better than other compared algorithms, which indicates that
deep structure in feature learning could uncover more dis-
criminative information across two domains. Our deep low-

rank coding not only introduces the pseudo labels of the target
domain, but also builds a deep feature learning framework.
Therefore, our method could find plenty of rich information
inside two domains and learn more helpful features for the
target domains.

4.3 Properties Analysis
In this section, we evaluate on several properties of our
DLRC. First, we analyze the convergence and influence of
two parameters. Then, we testify the recognition performance
of our DLRC with different layers. We show the evaluation
results in Figure 4.

From Figure 4(a), we can observe our single-layer cod-
ing converges very fast, usually within 10-round iterations.
The influence of parameters presents the recognition results
on different values of two parameters in Figure 4(b). As we
can see, α generates more important influence compared with
λ. That means, our iterative structure term does play an im-
portant role in seeking more discriminative features for two
domains. However, the larger value produces worse results.
It results from the iterative structure term, which incorpo-
rates pseudo labels of target and they are not all accurate.
Therefore, the larger α is, the more inaccurate information
is introduced. In the experiments, we usually choose α = 10

3458



and λ = 1. From Figure 4(c), we witness that DLRC gener-
ally achieves better performance when the layer goes deeply.
That is, more discriminative information shared by two do-
mains can be uncovered with our deep low-rank coding. In
other words, features would be refined from coarse to fine
in a layer-wise fashion. However, we also observe that much
deeper structure would bring negative transfer and decrease
the recognition performance (see case C → D in Figure
4(c)). In the experiments, we achieve five-layer features and
combine them together to do the final evaluation.

5 Conclusion
In this paper, we developed a Deep Low-Rank Coding
(DLRC) framework for transfer learning. First, single-layer
low-rank coding guided by iterative structure learning is in-
corporated to align two domains, by minimizing the marginal
and conditional distributions across two domains. Mean-
while, marginal denoising regularizer aims to guide the low-
rank reconstruction by seeking a better transformation ma-
trix. Finally, by stacking several single-layer low-rank trans-
fer codings, we obtain multi-layer features with more dis-
crimination to target domain. Experimental results on several
benchmarks have demonstrated the superior of our proposed
algorithm, compared with the state-of-the-art transfer learn-
ing methods.
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