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For human v is ion to be explained by a computational theory, the f i r s t question is 
p l a i n : What are the problems the brain solves when we see? It is argued tha t 
v i s i on is the construction of e f f ic ient symbolic descriptions from images of the 
wor ld. An important aspect of vision is therefore the choice of representat ions 
for the d i f f e ren t kinds of information in a visual scene. An overal l framework is 
suggested for ex t rac t ing shape information from images, in which the ana l ys i s 
proceeds through three representations; (1) the primal sketch, which makes 
e x p l i c i t the in tensi ty changes and local two-dimensional geometry of an image, (2) 
the 2 1/2-D sketch, which is a viewer-centred representat ion of the depth , 
o r i en ta t i on and discont inui t ies of the v is ib le surfaces, and (3) the 3-D model 
r e p r e s e n t a t i o n , which al lows an ob ject -cent red d e s c r i p t i o n of the t h r e e -
dimensional structure and organization of a viewed shape. The c r i t i c a l act in 
formulat ing computational theories for processes capable of construct ing these 
representa t ions is the discovery of va l id constraints on the way the wor ld 
behaves, that provide suf f ic ient additional information to allow recovery of the 
desired character is t ic . Final ly, once a computational theory for a process has 
been formulated, algorithms for implementing it may be designed, and t h e i r 
performance compared with that of the human visual processor. 

1. In t roduc t ion 
Modern neurophysiology has learned much about 
the operation of the individual nerve c e l l , but 
unpleasantly l i t t l e about the meaning of the 
c i r cu i t s they compose in the brain. The reason 
for th is can be attr ibuted, at least in part, 
to a fa i lu re to recognize what it means to 
understand a complex information-processing 
system; for a complex system cannot be 
understood as a simple extrapolation from the 
properties of i t s elementary components. One 
does not formulate, for example, a description 
of thermodynamical effects using a large set of 
equations, one for each of the part icles 
involved. One describes such effects at their 
own level , that of an enormous col lect ion of 
par t ic les, and t r ies to show that in pr inc ip le, 
the microscopic and macroscopic descriptions 
are consistent with one another. 

The core of the problem is that a system as 
complex as a nervous system or a developing 
embryo must be analyzed and understood at 
several d i f ferent levels. Indeed, in a system 
that solves an information processing problem, 
we may dist inguish four important levels of 
descript ion [Marr & Poggio 1977, Marr 1977a). 

At the lowest, there is basic component and 
c i r c u i t analysis -- how do transistors (or 
neurons), diodes (or synapses) work? The 
second level is the study of part icular 
mechanisms: adders, mult ip l iers, and memories, 
these being assemblies made from basic 
components. The th i rd level is that of the 
algorithm, the scheme for a computation; and 
the top level contains the theory of the 
computation. A theory of addition, for example, 
would encompass the meaning of that operation, 
quite independent of the representation of the 
numbers to be added -- say Arabic versus Roman. 
But it would also include the real izat ion that 
the f i r s t of these representations is the more 
suitable of the two. An algorithm, on the other 
hand, is a part icular method by which to add 
numbers. It therefore applies to a part icular 
representation, since plainly an algorithm that 
adds Arabic numerals would be useless for 
Roman. At s t i l l a further level down, one comes 
upon a mechanism for addition -- say a pocket 
calculator -- which simply implements a 
part icular algorithm. As a second example, take 
the case of Fourier analysis. Here the 
computational theory of the Fourier transform 
— the decomposition of an arbi t rary 
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mathematical curve into a sum of sine waves of 
d i f f e r ing frequencies -- is well understood, 
and is expressed independently of the 
part icular way in which it might be computed. 
One level down, there are several algorithms 
for computing a Fourier transform, among them 
the so-called Fast Fourier Transform (FFT), 
which comprises a sequence of mathematical 
operations, and the so-called spatial 
algorithm, a single, global operation that is 
based on the mechanisms of laser optics. Al l 
such algorithms produce the same result, so the 
choice of which one to use depends upon the 
part icular mechanisms that are available. If 
one has fast d ig i ta l memory, adders, and 
mul t ip l ie rs , one w i l l use the FFT, and if one 
has a laser and photographic plates, one w i l l 
use an "opt ica l " method. 

Now each of the four levels of description w i l l 
have i t s place,in the eventual understanding of 
perceptual information processing, and of 
course there are logical and causal relations 
among them. But the important point is that the 
four levels of description are only loosely 
related. Too often in attempts to relate 
psychophysical problems to physiology there is 
confusion about the level at which a problem 
arises — is it related, for instance, mainly 
to the physical mechanisms of vision ( l ike the 
after-images such as the one you see after 
staring at a l ightbulb) or mainly to the 
computational theory of vision ( l ike the 
ambiguity of the Necker cube?). More 
disturbingly, although the top level is the 
most neglected, it is also the most important 
This is because the nature of the computations 
that underly perception depend more upon the 
computational problems that have to be solved 
than upon the particular hardware in which 
thei r solutions are implemented. To phrase the 
matter another way, an algorithm is l i ke ly to 
be understood more readily by understanding the 
nature of the problem that it deals with than 
by examining the mechanism (and the hardware) 
by which it is embodied. There is, after a l l , 
an analog to a l l of this in physics, where a 
thermodynamical approach represented, at least 
h i s to r i ca l l y , the f i r s t stage in the study of 
matter: it succeeded in producing a theory of 
gross properties such as temperature. 

This research was conducted at the A r t i f i c i a l 
Intel l igence Laboratory of the Massachusetts 
Ins t i tu te of Technology. Support for the 
Laboratory's a r t i f i c i a l intel l igence research 
is provided in part by the Advanced Research 
Projects Agency of the Department of Defense 
under Office of Naval Research contract number 
N00014-75-C-0643, and in part by NSF grant 
MCS77-07569. 

A description in terms of mechanisms or 
elementary components -- in this case atoms and 
molecules -- appeared some decades afterwards. 

Our main point, therefore, is that the topmost 
of our four levels, that at which the necessary 
structure of computation is defined, is a 
crucial but neglected one. I ts study is 
separate from the study of particular 
algorithms, mechanisms, or hardware, and the 
techniques needed to pursue it are new. In the 
rest of th is a r t i c le , we summarize some 
examples of vision theories at the uppermost 
level . 

2. Convent ional Approaches 
The problems of visual perception have 
attracted the curiosity of scientists for many 
centuries. Important early contributions were 
made by Newton (1704), who la id the foundations 
for modern work on color vision, and Helmholtz 
(1910), whose treatise on physiological optics 
maintains i t s interest even today. Early in 
th is century, Wertheimer (1923) noticed the 
apparent motion not of individual dots but 
instead of wholes, or " f i e l ds , " in images 
presented sequentially, as if in a movie. In 
much the same way do we perceive the migration 
across the sky of a flock of geese, the flock 
somehow consti tut ing a single ent i ty, and not 
individual birds. This observation started the 
Gestalt school of psychology, which was 
concerned with describing the qual i t ies of 
wholes, including sol idari ty and distinctness, 
and try ing to formulate the laws that governed 
thei r creation. The attempt fai led for various 
reasons, and the Gestalt school dissolved into 
the fog of subjectivism. With the death of the 
school, many of i t s early and genuine insights 
were unfortunately lost to the mainstream of 
experimental psychology. 

The next developments of importance were recent 
and technical. The advent of electrophysiology 
in the 1940's and *50's made single ce l l 
recording possible, and with Kuff ler 's (1953) 
study of ret inal ganglion cel ls -- the neurons 
of the eye that give rise to the optic nerve — 
a new approach to the problem was born. I ts 
most renowned practit ioners are HubeH Wiesel 
(1962, 1968), who since 1959 have conducted an 
in f luent ia l series of investigations on single 
ce l l responses at various points along the 
visual pathway in the cat and the monkey. 
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Students of the psychology of perception were 
also affected by a technological advance, the 
advent of the d ig i ta l computer. Most notably, 
it allowed Bela Julesr in 1959 to devise 
random-dot stereograms [see Julesz 1971], which 
are image pairs constructed of dot patterns 
that appear random when viewed monocularly, but 
which fuse when viewed one through each eye to 
give a percept of shapes and surfaces with a 
clear three-dimensional structure. An example 
is shown in figure 1, Here the image for the 
l e f t eye is a matrix of black and white squares 
generated at random by a computer program. The 
image for the right is made by copying the l e f t 
image and then shift ing a square-shaped region 
at i t s center sl ight ly to the le f t , providing a 
new random pattern to f i l l in the gap that the 
sh i f t must create. If each of the eyes sees 
only one matrix, as if they were both in the 
same physical place, the result is the 
sensation of a square floating in space. 
Plainly such percepts are caused solely by the 
stereo disparity between matching elements in 
the images presented to each eye. 

More recently, considerable interest has been 
attracted by a rather different approach. In 
1971, Shepard & Metzler made line drawings of 
simple objects that differed from one another 
either by a three-dimensional rotation, or by a 
rotation plus a reflection (see figure 2). 

1. A random-dot stereogram 
(the top two images) and I t s 
decoding by Marr & Poggio's 
(1976) cooperat ive a lgor i thm. 
The i n i t i a l s ta te contains 
a l l possib le matches w i t h i n 
a given d i s p a r i t y range, and 
the a lgor i thm embodies the 
cons t ra in ts of uniqueness 
and c o n t i n u i t y to e l im ina te 
fa l se t a rge t s . Shades of grey 
are used to s i g n i f y matches 
a t d i f f e r e n t d i s p a r i t i e s . 
The f i gu re shows the i n i t i a l 
s t a t e , and the s ta tes a f t e r 
1 ,2 ,3 ,4 ,5 ,6 ,8 and 14 i t e r a t i o n s . 
The a lgor i thm progress ive ly 
reveals a nested set of t i e r s . 
This a lgor i thm is not the 
one used by the human v i s u a l 
system. 

2. Some drawings s i m i l a r to 
those used in Shepar & H e l t z e r ' s 
(1971) experiments on mental 
r o t a t i o n . Those shown in (a) 
and (b) are i d e n t i c a l and the 
r e l a t i v e angle between the two 
is 80 degrees. Those in (c) 
are not i d e n t i c a l and no 
r o t a t i o n w i l l b r i ng them 
i n t o congruence. 
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They asked how long it took to decide whether 
two depicted objects dif fered by a rotat ion and 
a re f lec t ion, or merely a rotation. They found 
that the time taken depended on the 3-D angle 
of rotat ion necessary to bring the two objects 
into correspondence. Indeed, it varied l inear ly 
with th is angle. One is led thereby to the 
notion that a mental rotation of sorts is 
actual ly being performed: that a mental 
descript ion of the f i r s t shape in a pair is 
being adjusted incrementally in orientat ion 
un t i l it matches the second, such adjustment 
requir ing greater time when greater angles are 
involved. 

Interesting and important though these findings 
are, one must sometimes be allowed the luxury 
of pausing to ref lect upon the overall trends 
that they represent, in order to take stock of 
the kind of knowledge that is accessible 
through these techniques. For we repeat: 
perhaps the most str ik ing feature of 
neurophysiology and psychophysics at present is 
that they describe the behavior of cel ls or of 
subjects, but do not explain i t . What are the 
visual areas of the cerebral cortex actually 
doing? What are the problems in doing it that 
need explaining, and at what level of 
description should such explanations be sought? 

3. A C o m p u t a t i o n a l A p p r o a c h to V i s i o n 
In t ry ing to come to grips with these problems, 
our group at the M.I.T. A r t i f i c i a l Intel l igence 
Laboratory has adopted a point of view that 
regards visual perception as a problem 
primari ly in information processing. The 
problem commences with a large, gray-level 
intensi ty array, which suffices to approximate 
an image such as the world might cast upon the 
retinas of the eyes, and it culminates in a 
description that depends on that array, and on 
the purpose that the viewer brings to i t . Our 
part icular concern in this a r t i c le w i l l be with 
the derivation of a description well-suited for 
the recognition of three-dimensional shapes. 

3. 1 The Primal Sketch. It is a commonplace that 
a scene and a drawing of the scene appear very 
simi lar, despite the completely d i f ferent gray-

level images to which they give r ise. This 
suggests that the a r t i s t ' s symbols correspond 
in some way to natural symbols that are 
computed out of the image during the normal 
course of i t s interpretation. Our theory 
therefore asserts that the f i r s t operation on 
an image is to transform it into a pr imit ive 
but r ich description of the way i t s intensi t ies 
change over the visual f i e ld , as opposed to a 
description of i t s particular intensity values 
in and of themselves. This yields a description 
of markedly reduced size that s t i l l captures 
the important aspects required for image 
analysis. We cal l it a primal sketch [Marr 
1976). Consider, for. example, an intensity 
array of 1,000 by 1,000, or a mi l l ion points in 
a l l . Even if the possible intensity at any one 
point were merely black or white -- two 
d i f fe rent brightnesses -- the number of a l l 
possible arrays would s t i l l be 21,ooo,ooo. In a 
real image, however, there tend to be 
cont inui t ies of intensity -- areas where 
brightness varies uniformly -- and this tends 
to eliminate poss ib i l i t ies in which the black 
and white osci l la te wildly. It also tends to 
simplify the array. Typically, therefore, a 
primal sketch need not include a set of values 
for every point in an image. As stored in a 
computer, it w i l l instead constitute an array 
with numbers representing the directions, 
magnitudes, and spatial extents of intensity 
changes assigned to certain specific points in 
an image -- points that tend to be places of 
local ly high or low intensity. The positions of 
these points, part icular ly their arrangement 
amongst their immediate neighbors -- that is to 
say, the local geometn of the image -- must 
also be made exp l ic i t in the primal sketch, as 
it would otherwise be lost. ( I t was Impl ic i t , 
of course, in the 1, 000-by-l, 000 array, but we 
are no longer retaining data for each of those 
mi l l ion places.) One way to do this is to 
specify "v i r tua l l ines" -- directions and 
distances -- between neighboring points of 
interest in the sketch. 

The process of computing the primal sketch 
involves several steps. The f i r s t is the 
derivat ion of the raw primal sketch (see Marr & 
Hi ldreth 1979], which involves detecting and 
representing the intensity changes in the 
image. Fi rs t , the image is f i l t e red through a 
set of medium bandpass second d i f fe rent ia l 
operators V2G, (where V2 is the Laplacian and 
G is a Gaussian d is t r ibut ion) , and the zero-
crossings in the f i l te red images are found (see 
f igure 3). This representation of the 
intensi ty changes is probably complete [Marr, 
Poggio & Ullman 1979). 
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3. The image (a), which is 320 by 320 pixels, has been convolved with 
V2G, a centre-surround operator with central excitatory region of 
width 20 = 6, 12 and 24 pixels. These f i l t e rs span approximately the 
range of f i l t e r s that operate in the human fovea, (b), (c), and (d) 
show the zero-crossings of the f i l tered images. These are the 
precursors of the raw primal sketch (from Marr & Hildreth 1979 figure 
6). 
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4. The primal sketch makes explicit information held in an intensity 
array (a). There are two kinds of information: (b) one concerns 
changes in intensity,. represented by oriented edge, bar and blob 
primitives, together with associated parameters that measure the 
contrast and spatial extent of the intensity change; and the other (c) 
is the local geometry of significant places in the image. Such places 
are marked by place-tokens, which can be defined in a variety of ways, 
and the geometric relations between them are represented by vir tual 
l ines (Marr 1976 figures 7 and 12a). 
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Although in general there is no reason why the 
zero-crossings found by the different channels 
should be related, in practise they w i l l be. 
The reason is that most intensity changes in an 
image arise from physical phenomena that are 
spat ial ly localized. This constraint allowed 
Marr & Hildreth to formulate the spatial 
coincidence assumption which states: If a zero-
crossing is present in a set of independent 
V2G channels over a contiguous range of sizes, 
and it has the same position and orientation in 
each channel, then the set of such zero-
crossings may be taken to indicate the presence 
of an intensity change in the image that is due 
to a single physical phenomenon (a change in 
reflectance, il lumination, depth or surface 
orientat ion). 

This assump 
crossings f 
segment des 
4b), which 
obtain the 
elements ar 
into units 
properties 
so for th wi 
19761. Vir 
represent t 
tokens (see 

tion allows one to combine the zero-
rom different channels into edge-
criptors, bars and blobs (see figure 
constitute the raw primal sketch. To 
f u l l primal sketch, these primit ive 
e grouped, perhaps hierarchically, 
called place-tokens, which associate 
l ike length, width, brightness and 
th positions in the image (Marr 
tual lines may then be used to 
he local geometry of these place 
figure 4c and Stevens 1978). 

Recently, Marr 5 Ullman (1979) have-extended 
the work of Marr & Hildreth to include the 
detection and use of directional select iv i ty. 
They have proposed specific roles for the X-
and Y-channels found original ly by Enroth-
Cugell i Robson (1966), and in an expl ic i t 
model for one class of cortical simple ce l l , 
they showed how to combine X and Y information 
to form a directionally selective unit. 

3.2 Modules o/ Early Visual Processing. The 
primal sketch of an image is typical ly a Urge 
and unwieldy collection of data, even despite 
i t s simpli f icat ion relative to a gray-level 
array; for this is the unavoidable consequence 
of the i r regular i ty and complexity of natural 
images. The next computational problem is thus 
i t s decoding. Now the tradit ional approach to 

machine vision assumes that the essence of 
such a decoding is a process called 
segmentation, whose purpose is to divide a 
primal sketch, or more generally an image, into 
regions that are meaningful, perhaps as 
physical objects. Tenenbaum h Barrow (1976), 
for example, applied knowledge about several 
di f ferent types of scene to the segmentation of 
images of landscapes, an off ice, a room, and a 
compressor. Freuder (1974) used a similar 
approach to identify a hammer in a simple 
scene. Upon finding a blob, his computer 
program would tentatively label it as the head 
of a hammer, and begin a search for 
confirmation in the form of an appended shaft. 
If this approach were correct, it would mean 
that a central problem for vision is arranging 
for the right piece of specialized knowledge 
to be made available at the appropriate time in 
the segmentation of an image. Freuder's work, 
for example, was almost entirely devoted to the 
design of a system that made this possible. 
But despite considerable efforts over a long 
period, the theory and practice of segmentation 
remain rather primitive, and here again we 
believe that the main reason l ies in the 
fa i lure to formulate precisely the goals of 
this stage of the processing — a fa i lure, in 
other words, to work at the topmost level of 
visual theory. What, for example, is an 
object? Is a head an object? Is it s t i l l an 
object if it is attached to a body? What about 
a man on horseback? 

Marr (1978) argued that the early stages of 
visual information processing ought instead to 
squeeze the last possible ounce of information 
from an image before taking recourse to the 
descending influence of "high-levelw knowledge 
about objects in the world. Let us turn, then, 
to a brief examination of the physics of the 
situation. As we noted earl ier, the visual 
process begins with arrays of intensit ies 
projected upon the retinas of the eyes. The 
principal factors that determine these 
intensit ies are (1) the illuminant, (2) the 
surface reflectance properties of the objects 
viewed, (3) the shapes of the visible surfaces 
of these objects, and (4) the vantage point of 
the viewer. Thus if the analysis of the input 
intensity arrays is to operate autonomously, at 
least in i ts early stages, it can only be 
expected to extract information about these 
four factors. In short, early visual 
processing must be limited to the recovery of 
localized physical properties of the v is ib le 
surjaces of a viewed object — part icularly 
local surface dispositions (orientation and 
depth) and surface material properties (color, 
texture, shininess, and so on). More abstract 
matters such as a description of overall three-
dimensional shape must come after this more 

1114 



locat ion 
from one 
locat ion 

basic analysis Is complete. 

An example of early processing is stereopsis. 
Imagine that Images of a scene are avai lable 
from two nearby points at the same horizontal 
level - - t h e analog of the images that play 
upon the ret inas of your l e f t and r igh t eyes. 
The Images are somewhat d i f fe rent , of course, 
in consequence of the s l ight dif ference in 
vantage. Imagine further that a par t icu lar 

on a surface in the scene is chosen 
image; that the corresponding 
is ident i f ied in the other image; and 

that the re la t ive positions of the two versions 
of that locat ion are measured. This information 
w i l l suf f ice for the calculat ion of depth --
the distance of that location from the viewer. 
Notice that methods based on gray-level 
cor re la t ion between the pair of images f a i l to 
be sui table because a mere grey-level 
measurement does not re l iab ly define a point on 
a physical surface. To put the matter p la in ly , 
numerous points in a surface might fo r tu i tous ly 
be the same shade of gray, and differences in 
the vantage points of the observer's eyes could 
change the shade as wel l . The matching must 
evident ly be based instead on objective 
markings that l i e upon the surface, and so one 
has to use changes in reflectance. One way of 
doing th is is to obtain a. pr imi t ive descr ipt ion 
of the Intensi ty changes that exist in each 
image (such as a primal sketch), and then to 
match these descriptions. After a l l , the l i ne 
segments, edge segments, blobs, and edge 
termination points included in such a 
descr ip t ion correspond quite closely to 
boundaries and reflectance changes on physical 
surfaces. The stereo problem -- the 
determination of depth given a stereo pair 6( 
images -- may thus be reduced to that of 
matching two pr imi t ive descriptions, one from 
each eye; and to help in th is task there are 
physical constraints that translate into two 
rules for how the l e f t and r ight descript ions 
are combined: 

Uniqueness. Each item from each image may be 
assigned at most one d ispar i ty value -- that is 
to say, a unique posit ion re la t ive to i t s 
counterpart in the stereo pair. This condit ion 
rests on the premise that the Items to be 
matched have a physical existence, and can be 
in only one place at a time. 

Continuity. Disparity varies smoothly almost 
everywhere. This condition is a consequence of 
the cohesiveness of matter, and it states that 
only a re la t i ve l y small f ract ion of the area of 
an image is composed of d iscont inu i t ies in 
depth. 

In the case of random-dot stereograms, the 
computational problem is rather wel l -def ined, 
essent ia l l y because of Julesz's demonstration 

that random-dot stereograms, containing no 
monocular information, s t i l l y ie ld stereopsis. 
In 1976, Marr 6 Poggio developed a method for 
computing local d ispar i t ies in a pair of 
random-dot stereograms by an i t e ra t i ve , 
para l le l procedure known technical ly as a 
cooperative algorithm (see f igure 1, and Marr, 
Poggio & Palm 1977). This sort of algorithm 
has the property that it can be defined 
completely in terms of simple local 
in teract ions because at each of I t s I te ra t ions, 
each point is affected only by a calculat ion 
performed on i t s immediate neighborhood. Yet 
a l l points are so affected during each 
successive i t e ra t ion , so the transformations 
take on a complex global nature. Subsequent 
comparison of the algorithm's performance with 
psychophysical data showed that it did not hold 
up well as a model for human stereopsis. To be 
sure, it performed better than people do on the 
standard stereograms l i ke that shown In f igure 
1; but it did not explain people's a b i l i t y to 
see stereograms in which one of the two images 
is defocused s l i gh t l y or enlarged s l i gh t l y 
r e l a t i ve to the other. These observations led 
Marr & Poggio (1979) to devise another 
algori thm, th is one based on the human use of 
spatial-frequency-tuned channels and vergence 
eye movements. This algorithm is consistent 
wi th a l l of the currently known psychophysical 
data. 

5. The mot ion analogue of the random-dot 
stereogram. Two t r anspa ren t , concen t r i c 
c y l i n d e r s are r o t a t e d i n opposi te 
d i r e c t i o n s . Each has dots sca t te red on 
i t s su r face . A movie camera photographs 
the scene from the s i d e , and each frame 
conta ins on ly a p a t t e r n of random do ts . 
When a human watches the movie, however, 
he immediately perce ives the two coun te r -
r o t a t i n g c y l i n d e r s ( f rom Ullman 1979). 
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A second example of early visual processing 
concerns the derivation of structure from 
notion. It has long been known that as an 
object moves relative to the viewer, the way 
i t s appearance changes provides information 
that we can use to determine i ts shape (Wallach 
( O'Connell 1953). The motion analog of a 
random-dot stereogram is i l lustrated in figure 
5, and as expected, humans can easily perceive 
shape from a succession of frames, each of 
which on i ts own is merely a set of random-
dots. In various papers and a forthcoming book 
on the subject, Ullman (1979a & b) decomposed 
the problem into two parts: matching the 
elements that occur in consecutive images; and 
deriving shape information from measurements 
of their changes in position. Ullman then 
showed that these problems can be solved 
mathematically. His basic idea is that in 
general, nothing can be inferred about the 
shape of an object given only a set of 
sequential views of i t ; for some extra 
assumptions have to be made. Accordingly, he 
formulates an assumption of r ig id i ty , which 
states that if a set of moving points has a 
unique interpretation as a r ig id body in 
motion, that interpretation is correct. (The 
assumption is based on a theorem which he 
proves, stating that three dist inct views of 
four noncoplanar points on a r ig id body are 
suff ic ient to determine uniquely their three-
dimensional arrangement in space.) From this 
he derives a method for computing structure 
from motion. The method gives results that are 
quantitatively superior to the ab i l i t y of 
humans to determine shape from motion, and 
which f a l l in qualitat ively similar 
circumstances. Ullman has also devised a set 
of simple algorithms by which the method may be 
implemented. 

3. 3 The 2 1/2-Dimensional Sketch. Both of the 
techniques of image analysis discussed in the 
preceding paragraphs provide information about 
the relat ive distances to various places in an 
image. In the case of stereopsis, it is the 
matching of points in a stereo pair that leads 
to such information. In the case of structure 
from motion, it is the matching of points in 
{successive images. More generally, however, we 
know that vision provides several sources of 

nformation about shapes in the visual world. 
he most direct, perhaps, are the 

aforementioned stereo and motion, but texture 
gradients in a single image are nearly as 
effective. Furthermore, the theatrical 
techniques of facial make-up reveal the 
sens i t iv l ty of perceived shapes to srhading (see 
ijorn 1975), and color sometimes suggests the 
wanner in which a surface reflects l ight . It 
often happens that some parts of a scene are 
open to inspection bv some of these techniques, 

\ 

and other parts to inspection by others. Yet 
different as the techniques are, they a l l have 
two Important characteristics in common: they 
rely on information from the image rather than 
a priori knowledge about the shapes of the 
viewed objects; and the information they 
specify concerns the depth or surface 
orientation at arbitrary points in an image, 
rather than the depth or orientation associated 
with particular objects (see Table 1). 
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In order to make the most eff ic ient use of 
d i f ferent and often complementary channels of 
information deriving from stereopsis, from 
motion, from contours, from texture, from 
color, from shading, they need to be combined 
in some way. The computational question that 
now arises is thus how best to do this, and 
the natural answer is to seek some 
representation of the visual scene that makes 
exp l i c i t just the information these processes 
can deliver. We seek, in other words, a 
representation of surfaces in an image that 
makes expl ic i t their shapes and orientations, 
much as the Arabic representation of a number 
makes expl ic i t i ts composition by powers of 

ten. It might be contrasted with the 
representation of a surface as a mathematical 
expression, in which the orientation is only 
impl ic i t , and not at a l l apparent. We cal l 
such a representation the 2 1/2-dimensional 
sketch (Marr & Nishihara 1978; Marr 1978), and 
in the particular candidate for it shown in 
figure 6, surface orientation is represented by 
covering an image with needles. The length of 
each needle defines the dip of the surface at 
that point*, so that zero length corresponds to 
a surface that is perpendicular to the vector 
from the viewer to the point, and increasing 
lengths denote surfaces that t i l t increasingly 
away from the viewer. The orientation of each 
needle defines the local direction of dip. 

6. I l l us t ra t i on of the 2 1/2-dimensional sketch. In (a) the perspective 
views of small squares placed at various orientations to the viewer are 
shown. The dots with arrows show a way of representing the 
or ientat ions of such surfaces symbolically. In (b), th is 
representation is used to show the surface orientations of two 
cy l indr i ca l surfaces in front of a background orthogonal to the viewer. 
The f u l l 2 '-dimensional sketch would include rough distances to the 
surfaces as well as their orientations, contours where surface 
or ientat ion changes sharply, and contours where depth is discontinuous 
(subjective contours). A considerable amount of computation is 
required to maintain these quantities in states that are consistent 
with one another and with the structure of the outride world (see Marr 
1978 section 3). (From Marr & Nishihara 1978 figure 2). 
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Our argument is that the 2 1/2-D sketch is useful 
because it makes expl ic i t information about the 
image in a form that is closely matched to what 
image analysis can deliver. To put it another 
way, we can formulate the goals of this stage 
of visual processing as being primarily the 
construction of this representation, 
discovering, for example, what are the surface 
orientations in a scene, which of the contours 
in the primal sketch correspond to surface 
discontinuit ies and should therefore be 
represented in the 2 1/2-D sketch, and which 
contours are missing in the primal sketch and 
need to be inserted into the 2 1/2-D sketch in 
order to bring it into a state that is 
consistent with the nature of three-dimensional 
space. This formulation avoids the 
d i f f i cu l t i e s associated with the terms "region" 
and "object" -- the d i f f i cu l t i es inherent in 
the image segmentation approach; for the gray 
level intensity array, the primal sketch, the 
various modules of early visual processing, and 
f i na l l y the 2 '-dimensional sketch i t se l f deal 
only with discovering the properties of 
surfaces in an image. One is pleased about 
that, for we know of ourselves as perceivers 
that surface orientation can be associated with 
unfamiliar shapes, so i ts representation 
probably precedes the decomposition of the 
scene into objects. One is thus free to ask 
precise questions about the computational 
structure of the 2 1/2-D sketch and of processes 
to create and maintain i t . We are currently 
much occupied with these matters. 

4. L a t e r Processing Prob lems. 
The f inal components of our visual processing 
theory concern the application of visually 
derived surface information for the 
representation of three-dimensional shapes in a 
way that is suitable specifically for 
recognition (Marr & Nishihara 1978). By this we 
mean the ab i l i t y to recognize a shape as being 
the same as a shape seen earl ier, and this in 
essence depends on being able to describe 
shapes consistently each time they are seen, 
whatever the circumstances of their positions 
relat ive to the viewer. The problem with local 
surface representations such as the 2 '-D 
sketch is that the description depends as much 
on the viewpoint of the observer as it does on 
the structure of the shape. In order to fadtor 
out a description of a shape that depends on 
i t s structure alone, the representation must be 
based on readily identif iable geometric 
features of the overall shape, and the 
dispositions of these features must be 
specified relative to the shape in i t se l f . In 
br ief , the coordinate system must be "object-
centered, w not "viewer-centered." One aspect of 

this deals with the nature of the 
representation scheme that is to be used, and 
another with how to obtain it from the 2 '-D 
sketch. We begin by discussing the f i r s t , and 
w i l l then move on to the second. 

4. 1 The 3-0 Model Representation. The most basic 
geometric properties of the volume occupied by 
a shape are (1) i t s average location (or center 
of mass); (2) i ts overall size, as exemplified, 
for example, by i ts mean diameter or volume; 
and (3) i t s principal axis of elongation or 
symmetry, if one exists. A description based on 
these qual i t ies would certainly be inadequate 
for an application such as shape recognition; 
after a l l , one can te l l l i t t l e about the three-
dimensional structure of a shape given only i t s 
posit ion, size, and orientation. But if a shape 
i t se l f has a natural decomposition into 
components that can be so described, this 
volumetric scheme is an effective means for 
describing the relative spatial arrangement of 
those components. The i l lus t ra t ion of figure 7 
shows a familiar version of this type of 
description, the stick figure (see Blum 1973). 
The recognizability of the animal shapes 
depicted in the i l lus t ra t ion is surprising 
considering the simplicity of representation 
used to describe them. 

The reason such a description works so well 
l ies , we think, in (1) the volumetric (as 
opposed to surface-based) def ini t ion of the 
primit ive elements -- the sticks — used by the 
representation; (2) the relatively small number 
of elements used; and (3) the relation of 
elements to each other rather than to the 
viewer. In short, this type of shape 
representation is volumetric, modular, and can 
be based on object-centered coordinates. The 
figure 8 i l lustrates the scheme of 
representation that was developed from these 
ideas. Here the description of a shape is 
composed of a hierarchy of stick-f igure 
specifications we call 3-D models. In the 
simplest, a single axis element is used to 
specify the location, size, and orientation of 
the entire shape; the human body displayed in 
the i l l us t ra t ion w i l l serve as an instance. 
This element is also used to define a 
coordinate system that w i l l specify the 
dispositions of subsidiary axes, each of these 
specifying in turn a coordinate system for 3-D 
models of "arm," "hand," and so on. This 
hierarchical structure makes it possible to 
treat any component of a shape as a shape in 
i t se l f . It also provides f l e x i b i l i t y in the 
detai l of a description. 
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7. The portrayal of animals by a small number of plpecleaners serves 
to show that the representation of a three-dimensional shape need not 
make e x p l i c i t i t s surface in order to describe it so well that it can 
eas i l y be recognised. The success of the representation is due, one 
suspects, in large measure to the correspondence between the 
pipecleaner:, and the axes of the volumes they stand for. (From Marr 5 
N'ishihara 1978 f igure 1). 
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8. The arrangement of 3-D models 
i n t o the representat ion of a human 
shape. F i r s t the o v e r a l l form — 
the*body''— is given an a x i s . 
This y i e l ds an ob jec t -cent red 
coordinate system which can then be 
be used to spec i fy the arrangement 
o f the "arms," " l e g s , " " t o r s o , " 
and "head . " The p o s i t i o n of each 
of these is spec i f i ed by an ax is 
o f i t s own, which in t u rn serves 
to def ine a coordinate system f o r 
spec i f y ing the arrangement of 
f u r t h e r subs id ia ry pa r t s . This 
gives a h ierarchy of 3-D models, 
shown here extending downwards as 
i f they were c y l i n d r i c a l , but tha t 
i s pure ly f o r i l l u s t r a t i v e convenience, 
(From Marr & N ish ihara , 1978 f i g u r e 3 ) . 

9. The d e f i n i t i o n of a general ized cone. 
I t is the surface created by moving a 
c ross-sec t ion along a given s t r a i g h t a x i s . 
The c ross-sec t ion may vary smoothly in 
s i z e , but i t s shape remains constant . 
Several examples are shown here. In 
each, the c ross-sec t ion is shown at 
several pos i t i ons along the t r a j e c t o r y 
that spins out the cons t ruc t i on . 
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4. 1. 1 Shapes Admitting 3-0 Model Descriptions. If 
the scheme for a given shape is to be uniquely 
defined and stable over unimportant variat ions 
such as viewpoint -- i f , in a word it is to be 
canonical — i t s def in i t ion must take advantage 
of any salient geometrical characterist ics that 
the shape inherently possesses. If a shape has 
natural axes, then those should be used. The 
coordinate system for a sausage should take 
advantage of i t s major axis, and for a face, of 
i t s axis of symmetry. 

Highly symmetrical objects, l ike a sphere, a 
square, or a circular disc, w i l l inevitably 
lead to ambiguities in the choice of coordinate 
systems. For a shape as regular as a sphere 
th is poses no great problem, because i t s 
descript ion in a l l reasonable systems is the 
same. One can even allow other factors, l i ke 
the di rect ion of motion or spin, to influence 
the choice of coordinate frame. For other 
shapes, the existence of more than one possible 
choice probably means that one has to represent 
the object in several ways, but this is 
acceptable provided that their number is small. 
For example, there are four possible axes on 
which one might wish to base the coordinate 
system for representing a door, namely the 
midlines along i t s length, i t s width, and i t s 
thickness, and also the axis of i t s hinges. 
(This last would be especially useful to 
represent how the door opens.) For a 
typewriter, there are two reasonable choices, 
an axis paral le l to i t s width, because that is 
usually i t s largest dimension, and the axis 
about which a typewriter is roughly 
symmetrical. 

In general, if an axis can be distinguished in 
a shape, it can be used as the basis for a 
local coordinate system. One approach to the 
problem of defining object-centered coordinates 
is therefore to examine the class of shapes 
having an axis as an integral part of their 
structure. Consider, accordingly, the class of 
so-called generalized cones, each of these being 
the surface swept out by moving a cross-section 
of constant shape but smoothly varying size 
along an axis, as shown in figure 9. Binford 
(1971) has drawn attention to this class of 
constructions, suggesting that it might provide 
a convenient way of describing three-
dimensional surfaces for the purposes of 
computer vision (see also Agin 1972, Nevatia 
1974]. We regard it as an important class not 
because the shapes themselves are easily 
describable, but because the presence of an 
axis allows one to define a canonical local 
coordinate system. Fortunately, many objects, 
especially those whose shape was achieved by 
growth, are described quite naturally in terms 
of one or more generalized cones. The animal 

shapes of figure 7 provide some examples; the 
individual sticks are simply the axes of 
generalized cones that approximate the shapes 
of parts of these creatures. Many a r t i fac ts 
can also be described in this way — say a car 
(a small box s i t t i ng atop a longer one) or a 
bui lding (a box with a vert ical axis). 

It is important to remember, however, that 
there exist surfaces that cannot conveniently 
be approximated by generalized cones, for 
example a cake that has been transected at 
some arbi t rary plane, or the surface formed by 
a crumpled newspaper. Cases l ike the cake 
could be dealt with by introducing a suitable 
surface primit ive for describing the plane of 
the cut, In much the same way as an axis in the 
3-D model representation is a primit ive that 
describes a volumetric element. But the 
crumpled newspaper poses apparently intractable 
problems. 

4. 2 Finding the Natural Coordinate System. Even 
if a shape possesses a canonical coordinate 
frame, one s t i l l is faced with the problem of 
f inding it from an image. Our own interest in 
th is problem grew from the question of how to 
interpret the outlines of objects as seen in a 
two-dimensional image [Marr 1977b], and our 
star t ing point was the observation that when 
one looks at the silhouettes In Picasso's 
"Rites of Spring" (reproduced here in f igure 
10), one perceives them in terms of very 
part icular three-dimensional shapes, some 
fami l iar , some less so. This is quite 
remarkable, because the silhouettes could in 
theory have been generated by an i n f i n i t e 
variety of three-dimensional shapes which, from 
other viewpoints, would have no discernible 
s im i la r i t i es to the shapes we perceive. One 
can perhaps at t r ibute part of the phenomenon to 
a fami l i a r i t y with the depicted shapes, but not 
a l l of i t , because one can use the medium of a 
si lhouette to convey a new shape, and because 
even with considerable ef fort It is d i f f i c u l t 
to imagine the more bizarre three-dimensional 
surfaces that could have given rise to the same 
silhouettes. The paradox, then, is that the 
bounding contours in Picasso's "Rites" 
apparently t e l l us more than they should about 
the shape of the figures. For example, 
neighboring points on such a contour could in 
general arise from widely separated points on 
the or ig inal surface, but our perceptual 
interpretat ion usually ignores this 
poss ib i l i t y . 

The f i r s t observation to be made is that the 
contours that bound these silhouettes are 
contours of surface discontinuity, which are 
precisely the contours with which the 2 1/2-D 
sketch is concerned. Secondly, because we can 



in terpret the silhouettes as three-dimensional 
shapes, then impl ic i t in the way we interpret 
them must l i e some a priori assumptions that 
allow us to infer a shape from an out l ine. If 
a surface violates these assumptions, our 
analysis w i l l be wrong, in the sense that the 
shape we assign to the contours w i l l d i f f e r 
from the shape that actually caused them. An 
everyday example is the shadowgraph, where the 
appropriate arrangement of one's hands can, to 
the surprise and delight of a ch i ld , produce 
the shadow of a duck or a rabbit. 

The f i r s t and second restr ic t ions say that each 
point on the contour of the image comes from 
one point on the surface (which is an 

assumption that fac i l i t a tes the analysis but is 
not of fundamental importance), and that where 
the surface looks continuous in the image, it 
real ly is continuous in three dimensions. The 
th i rd res t r i c t ion is simply the demand that the 
difference between convex and concave contour 
segments ref lects properties of the surface, 
rather than of the imaging process. 

It turns out to be a theorem that if the 
surface is smooth (for our purposes, if it is 
twice d i f ferent iab le with continuous second 
derivat ive) and if restr ic t ions 1 through 3 
hold for a l l distant viewing positions in any 
one plane (as i l lus t ra ted in f igure 11), then 
the viewed surface is a generalized cone. (The 
converse is also true: if the surface is a 
generalized cone, then conditions 1 through 3 
w i l l be found to be true). 

This means that if the convexities and 
concavities of a bounding contour in an image 
are actual properties of a surface, then that 
surface is a generalized cone or is composed of 
several such cones. In br ief , the theorem 
says that a natural l ink exists between 
generalized cones and the imaging process 
i t s e l f . The combination of these two must 
mean, we think, that generalized cones w i l l 
play an intimate role in the development of 
vision theory. 

10. "Rites of Spring" by Pablo Picasso. 
We immediately in terpret such si lhouettes 
in terms of par t icu lar three-dimensional 
surfaces — th i s despite the paucity of 
information in the image i t s e l f . In order 
to do t h i s , we p la in l y must invoke cer ta in 
5. P r i o r i assumptions and constrainsts about 
the nature of shapes. 



11. Four structures of importance in studying the a priori conditions 
mentioned in figure 10. (a) shows a three-dimensional surface X. (b) 
shows i t s silhouette SV as seen from viewpoint V, (c) shows the 
contour Cy of SV and (d) shows the set of points TV on E that project 
onto the contour. Finally, (e) i l lustrates schematically the meaning of 
the phrase "a l l distant viewing directions that l i e In a plane." 
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5. Discuss ion. 
We have tr ied in this survey of visual 
information processing to make two principal 
points. The f i r s t is methodological: namely 
that it Is important to be very clear about the 
nature of the understanding we seek. The 
results we try to achieve should be precise 
ones, at the level of what we cal l a 
computational theory. The c r i t i ca l act in 
formulating computational theories turns out 
to be the discovery of valid constraints on the 
way the world is structured — constraints that 
provide suff icient information to allow the 
processing to succeed. Consider stereopsis, 
which presupposes continuity and uniqueness in 
the world, or structure from visual motion, 
which presupposes r ig id i ty , or shape from 
contour, which presupposes the three 
restr ict ions just discussed, or even edge 
detection, which presupposes the assumption of 
spatial coincidence. The discovery of 
constraints that are valid and universal leads 
to results about vision that have the same 
quali ty of permanence as results in other 
branches of science. 

The second point is that the*cr i t ical issues 
for vision seem to us to revolve around the 
nature of the representations and the nature 
of the processes that create, maintain, and 
eventually interpret them. We have suggested an 
overall framework for visual information 
processing (summarized in table 2), that 
Includes three categories of representation 
upon which the processing is to operate. The 
f i r s t encompasses representations of intensity 
variations and their local geometry in the 
input to the visual system. One among these, 
the primal sketch, is expressly intended to be 
an ef f ic ient description of these variations 
which captures just that information required 
by the image analysis to follow. The second* 
category encompasses the representations of 
v is ib le surfaces — the descriptions, in other 
words, of the physical properties of the 
surfaces that caused the images in the f i r s t 
place. The nature of these representations --
the 2 '-dimensional sketch in particular — 
is determined primarily by what information can 
be extracted by modules of image analysis such 
as stereopsis and structure from motion. Like 
the primal sketch of the previous category, the 
2'-dimensional sketch is intended to be a 

2 
f inal or output representation: this is where 
the separate contributions from the various 
image-analysis modules can be combined into a 
unified description. The third category 
encompasses a l l representations which are 

subsequently constructed from information 
contained in the 2 1/2D sketch. The designs of 
these ter t iary representations are determined 
largely by the use to which they are to be put, 
as was the case for the 3-D model 
representation, to be used for shape 
recognition. If one had wanted instead, for 
example, to reprcseht a shape simply for later 
reproduction, say by the mill ing of a block of 
metal, then the 2 1/2-D sketch would i t se l f have 
been suff icient,as the mill ing process depends 
exp l i c i t l y on information about local depth and 
orientation, such as that sketch can provide. 

Finally, a remark of a rather dif ferent nature. 
As we have seen, some aspects of human early 
visual processing, l ike stereopsis, have 
apparently been understood well enough to 
implement them in machines IMarr 6 Poggio 1979, 
Marr & Grimson 1979). The computational power 
required by these early proceses is 
prohibi t ive, and unt i l recently the prospects 
for real-time implementation of human-like 
early vision were remote. It now appears, 
however, that the emerging VLSI and CCD 
technologies wi l l be able to supply the 
necessary processing power. This could make 
the next two decades very interesting. 



Table 2 

A framework for the derivat ion of shape information f ron images 

Describes the in tensi ty changes present in 
an image, labels distinguished locations 
l i ke termination points, and makes exp l i c i t 
local tatfo-dimensional geometrical re la t ions. 

Represents contours of surface discont inui ty, 
and depth and or ientat ion of v i s ib le surface 
elements, in a coordinate frame that is cen­
tered on the viewer. 

Shaoe description that include volumetric 
shape pr imit ives of a var iety of sizes, 
whose posit ions are defined using an object-
centered coordinate systen. This repre­
sentation imposes considerable modular 
organization on i t s descript ions. 
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