SUPPLEMENT

Table of Contents

Controlling Knowledge Deduction in a Neclarative Approach
. Gallaire and C., LaSSe@YrTE .eieiarsnstevssssasnssosssssnsnsnsanss S-1

Meta-Interpretation of Recursive l.ist-processing Programs
Dl Goossens ¢ & 4 0 & 0 ¢ ¢ 0 0 b 8P BB AR RN RGN OREY el R Ao e 5-7

Image Processing by Experimental Arrayed Processor
H. Matsushima, T. Uno, and M. Ejirl .iieeeetveetsncosccsnsscassns S-13

* Includes those papers not received In time to appear alphabetically in the Proceedings.

1131

CONTROLLING KNOWLEDGE DEDUCTION
IN A DECLARATIVE APPROACH

Herve Gallaire

ENSAE - CERT

2, Avenue Edouard Belin
31055 Toulouse Cedex
France

This paper is concerned with the problem of
the deduction process
just another piece of data,
and from the theorem prover.
Control information is embedded
in this paper.

Examples of its use are given and discussed.

1. INTRODUCTION

information from a know-
rules Is central

The process of deducing
ledge base and from deduction
to many fields proof theory, problem solvers,
expert systems in many areas. Whatever the
approach followed, be it more declarative or
more procedural, the major problem encountered
iIs that of guiding the deduction process, namely
the control problem.

Expressing control over the deduction process
IS but one aspect of metaknowledge, as shown in
L3] ; we give here an application-independent
formalism for expressing application-dependent
control, which is a way of heuristically guiding
a general process. The metarules presented here
for that purpose have been developed in a
declarative context and as such come close to
ideas from [2] ; we were influenced by [5] and
[8] too.

The paper is organized as follows. Section 2
presents the framework of this study and the
PROLOG system we use for knowledge and metaknow-
ledge expression. Section 3 gives an overview .
of the possible levels and means for metaknow-
ledge expression while section U presents the
metalanguage we have defined and examples of

its use.

Study sponsored in part by CNRS and DGRST.

S -1

introducing user-defined heuristic control
iIn a knowledge based system. Control
separated from the knowledge base the use of which
A declarative approach to control
In user's metarules
This metalanguage and a theorem prover

Claudine Lasserre

ENSAE

10, Avenue Edouard Belin
31055 Toulouse Cedex

France

over
information is seen as being
it controls
expression was retained.
taken from the metalanguage presented

interpreting it have been implemented.

2. THE DERIVATION PROCESS

2.1. A point of view for deduction control

Reasoning strategies have been of main concern
in many fields of A.l investigated at CERT [9],
[12]. For instance Data Base systems need to be
enhanced with deduction of implicit information
from the explicit one or with checking of
integrity constraints to be satisfied by the
stored data ; CAD systems need problem solving
techniques for exhibiting some kind of intelli-
gence in the design process [10], etc.

Most of the systems built at CERT rely on a
declarative approach [15]. But we do not deny
the practical interest of more procedural
approaches [15]. In these studies the choice was
guided by the interest Iin separating knowledge
expression from the expression of algorithmic
information on how to use it, and in studying
this relationship ; a declarative approach, toge-
ther with the use of logic as a formalism,proved
to provide a very interesting basis for that.
Its benefits in knowledge representation - ease
of specification, clarity, adaptability, ease

of modification of the knowledge base, power of
the deductive or proof mechanism - are well
known. Besides, we don't believe the proof mecha-
nism to be more complex, although it is more
powerful, than dynamic pattern-directed invoca-
tion ; it is reasonably efficient when improvements
are made in specific areas such as clause inde-
Xxing and retrieval.

As the declarative approach makes it necessary

to express "how to use what we know" ie meta- starting from purely negative clauses. At each

knowledge, it gives a good framework for experi- step i of the derivation we are given the first

menting not only the different possible levels (negative) parent clause Ci (FPCL) ; we have to

of metaknowledge expression but its different choose the literal —Cij in Ci as the literal to

effects on the same data too. Here stands the be resolved upon at this step (Cij is called

basic point of this paper, namely that metarules SEL) ; we also have to choose among all clauses

- ie rules on how to use the knowledge base [2] - those whose head unifies with Cij (making the

can actually he expressed in a declarative man- UNIFCLSET) ; finally we have to choose in

nor separately from the knowledge the use of UNIFCLSET the second parent clause (SELCL) ;

which they control. It is important to note that resolution yields resolvent C'i ; Cij is said to

the necessity of expressing control is not an be the parent of the literals in the body of

additional work which could be viewed as a de- SELCL. AIll the above choices will be guided by a

fault of the declarative approach : as argued in strateqgy.

[5], the possibility for the user to mix control

to his program in the procedural approach will 2.3. Background on PROLOG

raise a problem of interpreter control instead

of a program control problem. PROLOG [13] is a theorem prover which takes as
input a set of Horn clauses of type (1) and (2)

This study on control of the deduction mecha- above and a theorem to be proved, or actually

nism rests upon the logical system PROLOG as a its negation of type (3). It uses a static stra-

formalism and inference mechanism both for rules tegy complete for Horn clauses, namely LUSH

and metarules. Ideas developed here could as well resolution [6]; it is "top-down®, starting from

he carried over to other systems, such as rule- the purely negative clause it is given ; it

based systems, production systems, provided they chooses as SEL the leftmost literal in FPCL,
working "depth-first", and chooses clauses from

oiler leatures similar to the second-order logi c

ones that PROLOG gives. UNIFCLSET in the exact order they were input to

the theorem prover by the user. Further, the
process s controlled by an automatic backtra-

2.2. Notations and interpretations _ _ , , _
cking mechanism activated in case of incorrect

We shall use the First order predicate calculus clause choice and in order to find all proofs
(FOPC) under clausal form, restricted to Horn of the alleged theorem. Very important to our
clauses [8] and assume the reader to be fami- work is that, due to LUSH resolution results,
liar with theorem proving [|I]. We use the follo- any other SEL selection strategy would preserve
wing notation : completeness.
(1) +A -Bl .. -Bn stands for (BIA..ABn) — A
(2) +A stands for A We must note that PROLOG implementation is not
(J) -HIl.. -Bn stands for (BIA..ABn) complete, due to the unbound depth-first mecha-
nism and to the lack of loop cheeks. But PROLOG
Literals are either positive (eg + A) or negative exhibits great advantages for metaknowledge ex-
(eg-Bi). A is the head of the clause, the rest pression : it allows using clauses and predicates
of it is its body. as terms, i.e as arguments of other predicates ;
through built-in predicates it offers access to
These Horn clauses can be interpreted in many input-output, to the proof tree (ETAT predicate)
different ways. Their standard interpretation and to the various parts of clauses and terms
is . if x,y.. are all variables in the clause, (VAR, UNIV predicates) ; one can also alter the
then (1) asserts that for all x,y.. A if Bl set of axioms (ADD and SUPP predicates) ; it is
and ... and Bn ; (2) asserts that for all x,y.. also possible to alter the standard backtrack
A ; and (3) asserts that for no x,y.. Bl and. step by eliminating return points : any selec-
Bn (i.e.*wa_By.. B!A”AB“)- Other interpre- tion of the '/' predicate in a SELCL will sup-
tations are possible, in terms of problem sol- press all remaining choices for all the already
ving ((1) being an operator, (2) an assertion, solved literals in SELCL and for their parent.
(3) a problem), or of programming languages, ((1)
and (2) being procedures, (3) a procedure call). Example : the following is a set of axioms for
We shall stick to the logic language as much as proving that Z is an element of list L satisfy-
possible in the sequel. ing predicate P. The '.' is the concatenation

symbol and NIL is the empty list.

As for the -proof procedure we shall only consi-
der derivation or refutation procedures, based (1) +ELEM(X.Y,X) -P(X)
on resolution, restricted to linear strategies (2) +ELEM(X.Y,Z) -ELEM(Y,Z)

S-2

When used to prove 3Z ELEM(1.,Z2) axiom (1) will
unify Z and the first element of the given list
L ; then i1f Z satisfies P, the theorem will have
been proved (the value of Z being the answer of
PROLOG) . Due to PROLOG strategy for choosing
SEL.CL, axiom (2) is used in case axiom (1) does
not ylield the empty clause, i.e when P(X) cannot
be proved ; in that case a new theorem is to be
proved, namely 37 ELEM(Y,Z), where Y is the rest
of the list. If +P(b), +P(c) are axioms and the
theorem to prove is 37 ELEM(a.b.c.NIL,Z), the de-
rivation tree will be

-ELEM(a.b.c.NIL,Z)

\(2)

|-P (a) - > -ELEM(b.c.NIL,Z) |
:Nﬂue (”//-m_ﬁ)_""
| ~-P(b) ~ -ELEM(c.NIL,Z)
|l /o \<z>
-P(c) -ELEM(NIL,
7
buccqul 0ther
= Y ¢ |
...._......___(..Z_t.))__ e l pyoof ?
. |
Failure
success
S T No other
(Z=c) :
solution
Recall that PROLOG gives all possible proofs ;

recorded an alternative is
looked for. In this tree the arrows indicate the
order in which the nodes of the tree are built.
If one wanted only one proof of that theorem, it
would be simple to modify (I) and to write it
+ELEM(X.Y,X) - P(X) -/ In that case we would
get a tree limited to the one enclosed in the
box above.

hence when success IS

3. PARAMETERS OF THE DERIVATION PROCESS

A choice strategy rests upon a selection func-
tion. Such a function may or may not depend on
the object on which it bears ; for instance it
may depend on the specific clause from which to
extract SEL, or it may not depend on the speci-
fic UNIFCLSET from which to extract SELCL. Simi-
larly it may or may not depend on the context of
the object on which it bears ; by context we
mean the derivation tree or part of it.

The information needed by the selection function
may be either implicit or explicitly specified
by the user. Autonomous selection functions use
implicit information (which may even be void,eg

S-3

the leftmost-literal-first rule seen in PROLOG)
as in the literal-with-the-least-number-of-ins-
tantiated-variables-first rule, or in the shor-
test-clause-first rule, etc. Such functions will
not be discussed in this paper, although an inte-
ractive choice of such strategies is offered to

the user In some systems.
This paper is precisely concerned with the expre-
ssion of information to be used by selection

functions ; we shall only deal with the means of
expression, not with designing specific criteria.
Important to this work is the notion of context ;
to express context information, the user must

choose between a l|ocal context (part of the pro-
of tree, eg the parent of a literal, its parame-
ters, its descendants) and a more global one

(ancestors of a literal, the whole proof tree
itself). Although the declarative approach that
we follow, especially the logic one, seems to be
well suited to that latter choice through the
notion of proof, we have not investigated it,
thus restricting ourselves to local context ex-
pression. Neither shall we discuss the pragmatic
control expression that clause writing always
conveys [7].

There are two basic ways for expressing control
of the deduction process.

a. As is typical of the procedural approach,
control information can be mixed with the know-
ledge base, ie with the application data (clau-
ses) used in the derivation process. For instan-
ce the user can modify his set of clauses so
that the order of his original clauses in the
UNIFCLSET they belong to becomes dependent on
SEL. We do not reject such an approach ; its
systematic use Iis reported in [9].

b. More coherently with
ach,

the declarative appro-
one can separate control information from

the knowledge base ; at the user level this beco-
mes another piece of data, ie a set of clauses
expressing a heuristic control. This is the choi-

ce that was made here.

We shall now present our metalanguage for sta-
ting the metarules expressing this heuristic

control. It uses content-directed invocation [2]
heavily- and we feel we have the correct tools
for 1t. Our metalanguage is coherent with the
base language [95].

4. A PROPOSAL FOR A METALANGUAGE

There are two types of metarules in this langua-
ge, expressing control either over the choice of

SEL or over the choice of SELCL : for the user

writing them, such metarules are true assertions,
iIn the logical sense, about priorities and orde-
rings as explained below ; they will be used as
axioms by the theorem prover.

4.1. Ordering «of UNIFCLSET

The METAL metarules to be described here have as
primary purpose the expression of assertions on
priorities of individual clauses in UNIFCLSET,

SELCL being the clause of higher priority. Then

let P, R be terms or variables, let L be a term

LI,L2...Lr.NIL or a variable (see 2.3 for the

"." notation and for NIL) ; let CI,...Cn be posi-
tive literals ; then Metarule

+ METAL(P,L,R,K) -ClI -Cn

asserts that any user's clause matching (unify-

ing) with clause +P-L1-..-Lr has priority Kin
the UNIFCLSET it belongs to, provided R matches
the parent of SEL and the existential closure of
CIA...ACn can be proved ; in the sequel we talk

more simply of the proof of CIA...ACn. We must

remark that

- Li,R,P are terms in METAL but literals inuser's
clauses (second order featureX

- when any of P, L is a variable,
matching will instantiate it ;
iIs a variable it is instantiated to the value of
SEL ; this feature allows to have metarules ap-
plying to many user's clauses, the target clau-

ses, thus avoiding much redundancy, and making

it, easier to write metarules by specifying just
what is necessary to match the targetclause(s).

the process of
similarly when R

- the matching process is constrained not to ins-
tantiate any uninstantiated variable of the target
clauses or of the parent of SEL at the time mat-
ching takes place ; this restriction, enforced
by the theorem prover means that a metarule
shouldn't be used when it aims at a special case
of a target clause. This restriction implies that
during the proof of CIA...ACn no variable in P,
LLR is instantiated.

- there is a default metarule asserting a MEAN
priority value for clauses which aren't target

of any metarule +METAL(P,L,R,MEAN) where P,
L,R are variables.

- the set of metarules may be conflicting ie a
clause might be the target of two metarules ; as
no meta-metarule has been introduced yet, we can-
not handle it differently from PROLOG, ie the
first metarule that is proved is retained.

- the Ci predicates can be defined by any valid

PROLOG set of axioms.

Example +METAL(P(X,a),L,R(X,Y),0)
-PREDI(X,a) -PRED2(Y)
-PRED3(L,F)

This metarule asserts that priority 0 is the prio-
rity of any rule the head of which unifies with
P(X,a), the parent of SEL unifying withR(X,Y),
provided the conditions PRED are provable. The
matching process must comply with the above res-
trictions - eg as 'a' is constant, X variable,
this is not allowed to match P(T,U) where T,U
are variables, but P(b,a) would pass the test ;
during a proof of PREDI(X,a) it is not allowed
to instantiate X more than it is already.

4.2. Choice of SEL

We are to introduce local context evaluation for
SEL selection :; there are two selection factors :

- backtracking blocking corresponding to a dyna-
mic '/' introduction

- literal freezing preventing the theorem prover
from choosing as SEL a frozen literal ; this fea-
ture, the most interesting of all features we

present, allows for very dynamic control regimes.

Let P,L,CIl,..,.Cn be as described for METAL meta-

rules ; let | and F be terms to be described be-
low ; then

+METAX(P,L,I,LF) -ClI ... -Cn
asserts that if +P -L)-..-Lr matches the candi-
date SELCL, and if CIA...ACn is provable, then :

- if 1 is the term INH(I1-...Im.NIL) where each
lj matches some Lh, any backtracking on Lh and
on its parent will be blocked ; INH (NIL) blocks
P only ; if | is NIL no blocking occurs.

- if F is the term FRZ(F1,V1) FRZ(Fs,Vs).NIL
where each Fj matches some Lh, then Lh will be
frozen as long as none of its arguments appea-

ring in list Vj is instantiated (ie anything but
a pure variable) ; if F is NIL no literal is to
be frozen.

We must remark that much of what was noted for
METAL metarules applies to METAX ones and is not
repeated here, especially for instantiation.
Also, there might be cases where all literals
are frozen ; we unblock the situation by choosing
the leftmost one (default rule). We are now to
see examples and to examine more deeply the free-
zing capability, already investigated but solved
differently by Colmerauer [16].

Exaqples on freezin& literals

The following set of PROLOG clauses can be used
to prove that two trees X,Y have identical lists
of leaves when traversed from left to right :

+IDLF (X,Y)-LF(X,S)-LF(Y,S)

+LF (X,X.NIL) - ATOM(X)

+LF(U.V,2) -LF(U,X) -LF(V,Y) - CONC(X,Y,Z)
+CONC (NIL,Y,Y)

+CONC(A.Z,Y,A.V) ~-CONC(Z,Y,V)

If 1t has been given clauses ATOM(a,, ATOM(b),
ATOM(c) and if IDLF((a.b).c, a.(b.c¢)) 1is a
theorem to be proved, PROLOG will succeed ; howe-
ver the control regime of this proof 1s quite
unsatisfactory for, if it were to fail, much
useless work might have been carried out before
checking anything. This is a classical example
for coroutine need, as a coroutine would allow
checking each leaf as soon as it is uncovered in
Xor Y. The following metarules, together with
the default rule, will do :

+METAX(P,L,NIL,FRZ (LF(X,S),S.NIL) NIL)
+METAX (P,L,NIL, FRZ (CONC(U,V,Z) ,U.Z.NIL) ,NIL)

The first metarule will prevent the theorem pro-
ver from choosing LF(X,S) as SElL. as long as S 1is
not instantiated ; the second one will do simi-
larly for CONC(U,V,Z) whenever both U and Z are
uninstantiated.

A different and even more interesting example 1s
the classical Sieve of Eratosthenes problem. The
following is the list of PROLOG clauses that
might be necessary to prove Primes(X) where X 1is
the list of prime numbers

+Primes(2.X) -Integers(2.Y) -Sieve(2.Y,X)
+Integers(P.(Q.R)) -Succ(P,Q) -Integers(Q.R)
+Sieve(P.IN,P.PR)-Filter (P, IN,NEW)-Sieve (NEW,PR)
+Filter (P,Q.IN,OUT)-Mult(P,Q)-Filter(P,IN,OUT)
+Filter(P,Q.IN,Q.OUT)-Filter (P, IN,OUT)

The Succ(P,Q) predicate is satisfied iff the va-
lue of Q is the value of P plus | ; the Mult(P,Q)
predicate is satisfied 1ff Q is a multiple of P
(definitions not given here for lack of space).
As argued in |[11] where it is presented, due to
PROLOG selection rule this neat example will
not work as it is. However it 1s quite easy to
fix with the following :

+METAX (X,L,NIL FRZ (Integers(S.T),T.NIL).NIL)
+METAX (X,L,NIL,FRZ(Sieve(U,V),U.NIL) ,NIL)
+METAX (X,L,NIL,FRZ(Filter(M,N,K) ,N.NIL) .NIL)

Snapshots will explain how the proof proceeds

3 b
Integers |Filter|

4.3 - Implementation principles

There is no major problem in such an implementa-
tion, although particular attention is to be
paid to allow correct backtracking, fair selec-
tion of frozen literals. The theorem prover has
been coded in PROLOG mainly for ease of modifica-
tion and for its unification algorithm. As we
piled up levels of interpretation the result is
rather inefficient, but our goal is attained. We
emphasize how useful both the non first-order
features of PROLOG and the possibility to exami-
ne its own data structures, i.e. terms and clau-
ses, are. Due to the very simple access to those
structures (UNIV, VAR, ...) it is possible to
build powerful mechanisms.

Of course this theorem prover is not a major in-
novation in the field ; one can argue that it
behaves with respect to PROLOG in a manner quite
similar to CONNIVER's behaviour with respect to
MICROPLANNER. This is basically true from the
viewpoint of the theorem prover ; what we gave
back to the wuser is some control over lists of
possibilities, over backtrack, over the context
mechanism [14]. This similarity is only superfi-
cial. We give more to the user because what he
can examine in our case is not just a list of
possibilities, but it is a list of methods in
the CONNIVER sense ; the method body can be scru-
tinized, modified, reordered whereas it cannot
happen with CONNIVER ; this is due to the con-
tent-directed invocation feature that we men-
tioned earlier and of which we saw some impor-
tant effects in 4.2. We recognize that out con-
text handling mechanisms, which are roughly the
SUPP and ADD predicates of PROLOG, are not as
powerful as CONNIVER*s. Our goal was different
and this remains a possible extension for this
work.

5. DISCUSSION

The points we want to stress are the following

a. User responsibility - Metarules give the
user much freedom ; a correct use of metarules
goes through an understanding of how the deriva-
tion process should go ; then the user will be
tempted to use this knowledge and modify his own

algorithm so as to take advantage of this under-
standing directly. This is the reason why we did
not give real examples for METAL metarules nor

for backtracking use of METAX metarules ; simple

examples can easily be fixed without metarules,

although this wusually introduces much redundancy
and awkwardness in the set of axioms. From our
studies in plan generation, we are aware of ca-
ses where a '/' could be dynamically introduced
with much benefit.

b. Extensions - Any time a language is defined,
one may propose extensions to it. Among all the
extensions we have been thinking of, one is to
allow user-defined FRZ predicates ; such a
need has been found in another plan generation

tests could be avoided
freezing conditions ; such
IS quite simple to incorporate to
theorem prover.

program where redundant
by properly defined
an extension
our

c. Related topics - Much of the interest of me-
tarules comes from the dynamic ordering of lite-
rals (4.2) ; clearly this is related to the many
producer-consumer discussions, to the call by op-
portunity or call by necessity choice ; the Pri-
mes problem is discussed in [11] and in a diffe-
rent framework in [4] ; we believe the simple
tools given here compare favorably with those
given there. We use a data flow mechanism (ins-
tantiation) ; more explicit control mechanisms
such as message passing have not been looked for.
Note that it is possible to define and implement
a theorem prover which could take advantage of
the connections between variables to select lite-
rals ; for instance, in the Prime example the
instantiation of a variable unfreezes just one
literal, and usually a theorem prover can watch
such instantiations. Expressing specific proper-
ties of predicates, e.g. that they are true func-
tions, is not covered here although it Is an im-
portant domain to be investigated. We believe
"Intelligent"” backtracking to be an important to-
pic deserving more attention ; we only note that
to be intelligent it must be prepared during the
derivation process ; the tools we give are but
one step in that direction. Finally interactive
control expression has not been covered at all.

ACKNOWLEDGMENTS

We would like to thank A. FAHMY for the many dis-
cussions we had with him on this topic and on
PROLOG use. P. HAYES comments on this paper are
gratefully acknowledged.

REFERENCES

Il Chang, C.L. and Lee, R.
Mechanical Theorem Proving"

"Symbolic Logic and
Academic Press, 1973

Davis, R.

[2]

"Generalized Procedure Calling and

Content Directed Invocation." In Proc. Symposium
on Al and Programming Lanquages, Rochester, Au-
gust 1977, p 45-54

[3] Davis, R. and Buchanan, B.G. "Metalevel know-
ledge Overview and Applications.” In Proc. |JCAI-

7j\ MIT, Mass., August 1977, pp 920-927.

[4] Friedman,
tional
rience.

D. and Wise, D.
Structures." Software,
Vol. 8, pp 407-416

"Unbounded Computa-
Practice and Expe-
(1978).

[5] Hayes,
|JCAI-77,

P. "In Defence of Logic." In Proc.

pp 559-565.

[6] Hill, R. "Lush Resolution and its Complete-
ness." DCL-Memo 78, University of Edinburgh, Aug.
1974.

[7] Kowalski,
Depart,

ge,

R. "Algorithm = Logic ¢ Control."
of Computing and Control. Imperial Colle-
London, 1976.

[8] Kowalski, R.
memo /75, University of Edinburgh,

"Logic for Problem Solving" DCL-
1974.

[9] Lasserre, C. "Apport de la logique mathemati-
que dans les systemes de decision en robotique.”
These Universite Paul Sabatier, Toulouse, 1978.

[10] Latombe, J.C. (Ed.)
and Pattern Recognition
North Holland, 1978.

"Artificial Intelligence
in Computer Aided Design.'

[11] Mc Cabe, F.G. "Programmer's Guide to IC-

PROLOG 0.7." Department of Computing and Control.
Imperial College, London, 1979.

[12] Nicolas, J.M. and Gallaire, H. "Data Base-
Theory vs Interpretation.” In Logic and Data
Bases, Plenum Pub. Co, 1978.

[13] Roussel, Ph. "PROLOG Manuel de Reference

Groupe d'Intelligence Artifi-
UER de Marseille-Luminy.

et d'utilisation.
cielle.

D.
1972, pp

"From Planner
1171-1179.

[14] Sussman,
to Conniver."”

G. and Mc Dermott,
In Proc. FJCC

[15] Winograd, T. "Frame Representations and the
declarative procedural controversy"” In Represen-
tation and Understanding. Academic Press, 1975.

[16] Colmerauer, A. Personal Communication.

META-INTERPRETATION
OF RECURSIVE LI ST-PROCESSING PROGRAMS

Daniel GOOSSENS
Universite PARIS VIII

Route de

la Tourelle

75012 PARIS

Presented Is an

meta-interpretation which

process

meta-Interpretation of recursive programs:

implemented program understanding system called CAN.
brings
vicious circles and constructive

CAN
concepts

relies on a
concerning
induction.

to light +two new

These notions express CAN's ability to extract from program code classes of data for
which Interpretation of the code would not stop, and in general, to relate classes of
data with abstract values and environments.

keywords: Meta-interpretat lon, unification, conceptual representations, program

understanding, propagation,

1. INTRODUCTION

Works on program verification [10] C133 have
brought many wuseful techniques for proving
properties of programs, but all the Implemented

systems which derived from them were to be used

by expert mathematicians rather than expert
programmers. That iIs, those systems may do
nothing with a program on its own. They are
Intended to be interactively used by
programmers who are acquainted with formal
specifications manipulations and who understand
their programs.

Recent works on program understanding have
demonstrated the need of domain dependent

knowledge [7] [153 and other types of pragmatic

knowledge [19] [203. However, systems in these
areas are not equally efficient. More
precisely, the systems which support these
works may fall on simple tasks which are beyond
the scope of their effective specificity. That

application is far from
an expert programmer would
"visually

IS, their domain of
fitting with what
consider as "simple”, or
understandable”.

CAN is a powerful for such systems since:

tool

- It understands programs independently of
traditionnal applications for
understanding (verification, ~correction,

Improvement)

-1t |Is particularly well suited for
extracting on its own only what |Is
"visually understandable”™ In a program.
This prevents CAN from getting stuck on

vicious circle,

S-7

constructive

Induction.

necessity
tool for

intricate problems. This Is a
if CAN is expected to be a

problem solvers. A part of CAN has been
especially developed for the visual
understanding of programs which manipulate

flat lists.

CAN meta-interprets program bodies in abstract
environments [1] [2] [4] 5] [9] [14] [19]
[21]. We use conceptual representations [21]
In order to represent abstract values of
program variables and relations among them.
Our conceptual representations are either
patterns, or predicate-style assertions which
may not be translated into patterns. Our
patterns involve element-type and segment-type
variables. segment-type variables include
Index mathematical notations for flat |lists.
They also Involve auto-references.

Conceptual representation of meanings Is our
bypass of the tradltionnal "set of properties”.
Conceptual representations may be confronted
and compared more easily than assertions, most
often with unification procedures, which vyield
valuable and non-trivial information [6].

CAN involves a sophisticated unification
process of conceptual representations.

2. META-INTERPRETATION

with LISP code, the
faces the case
its arguments.

(F Al A2 ... An)

When confronted
meta-interpreter most often
where a function is applied on
The meta-Interpretation of

involves the following steps:

first, CAN meta-interprets each of the Ais
which should be @evaluated on a simple
interpretation. this yields a set of possible

abstract values and environments for each Al.
Second, CAN confronts each combination of
these values and environments with F's CAN

definittion. After this confrontation, CAN
knows:
- What conditions must hold on the Ais and
the ervironment so that F may apply
- which features of the abstract values and
the environment are relevant for the
contruction of F's abstract value and

3ide-effects.

Third, CAN propagates this information over the
current environment and on the "prototype"

abstract value which s part of F's CAN
definition.

LISP functions are conceptually defined [21)
within CAN. Here are the conceptual
definitions of the CAR, CDR and MEMBER

funct ions:

("!" denotes an element variable and "?" @

segment variable)

(CAR ()) = ()
(CAR (la ?b)) = !a

(COR O)) = ()
(COR ('a ?b)) = (?b)

(MEMBER !x (la ... !a
1 n

(MEMBER !x (!a1 ..o l@a)) = ()
n

L {1,n])

Ix ?b)) = (Ix ?b)

(where: 'a = Ix:
L

That is, the CAR function returns the first
element of a List, the COR function returns the
list without its first element. (MEMBER X Y)
tests wvether the element X is contained in the
list Y, at the top-level. If it is the case,
MEMBER returns the part of the List which
starts from the first occurence of X.

CAN also handles the cases wvhere F is a control
structure, a functional variable, an escape
\abel, or an unknown atom. The
mete-interpretation of a LISP program is
expected to yield a conceptual representation
of its meaning.

Examp le:

Suppose that F is MEMBER, and that the
meta-interpretation of its two ar?uments gave
the two abstract values: (on !'1 12) and
(?3 '1).The application of MEMBER on

“(on !1 !2)" and "(?3 !1)" amounts to checking
vhether the List (7?3 !1) contains the structure
(on !1 12). The confrontation of these values
with MEMBER’s prototype velues is performed by
e unificetion process of conceptual
representations [6].

The unification of

[Ix (la ... 'a !x 7b)]
1 n
with [(on !1 12) (?3 1)]
(where 'a = !x) gives only one case:

{
Ix = (on 11 12)

?73 = !a ... 'a (on !1 !2) ?bl
1 n
™ = ?bl1 !l
since '1 in (7?3 !'1) may not contain (on 1 12),
The propagation of this {nformation on the

prototype value (!x ?b) of MEMBER gives the
returned abstract value: ((on '1 12) ?b1 11).
This value is still functionally related to the

environment since 7?3 is also replaced in the
environment by what it is associated to.
The reader is invited to perform the same task

for the second rule of MEMBER's definition.

3. UNIFICATION OF CONCEPTUAL BEPBESENTATIONS

two conceptual
the complete set of
unifier [16]

The
representations,
its unifiers (it's most

(171 (181).

problem LS, gilven
to find

general

For theorem proving purposes, The task of
unification may be timited to checkln? wether
two structures can fit or not [11]. n that

case, it suffices to find one unifier or show
that there is none. Rather, CAN needs a
conceptual representation of the complete set

of unifiers of two conceptual representations,
gince it needs to know not only if they fit
together, but under what exact constraints [5].

In the case uhere segment variables are
restricted to ?-type variables (that is, when
index notations are excluded), the problem
amounts to solve an equation in a free monoid
with a neutral element (the empty sequence).
Our implemented unifier exhibits about the same
performances as [16] and [17] (the neutral
element makes very few differences). It
involves too the algorithm for A-C Unification
(12]) [18] and a splitting elgorithm ([17]
extended for index mathematical notations.

What is new within CAN’s unification procedure
concerns the unification of patterns which
include index notations, @eauto-references,
element-type variables with restricted domain,
and negat ion.

A detailed description of its
per formances is given in [6].

aectual

4. META-INTERPRETATION OF IIERATIVE AND
BECURSIVE

At some stage of the process, the following

program:

(DE MEMBER (X L)
(COND C((NULL L) NIL)
((EQUAL X (CAR L)) L)
(T (MEMBER X (CDR L)>))))

i8 transformed into:

1 (MEMBER !x) = (O

2 (MEMBER !x (Ix ?b)) = (!x ?b)

3 (MEMBER !x (ly ?b)) = (MEMBER !x (?b))
(vhere !x = ly)

This says among other things that if MEMBER's
first argument is different from the CAR of its
second argument, then the value (s the
recursive call: (MEMBER !» (?b)). 1If CAN wvere
to go on Llike previously, it would confront the
arguments !x and (?b) with each of the three
ceses. In fact, this is exactly what CAN will
do, but more carefully, so as to evoid looping
foruver,

Application of rule 3 on !x and (?b) needs
following preconditions:

tn which case the value is (MEMBER !x°’

the

I = Ix’
™ = ly ?b’

(?b%)).

But this is what CAN was meta-interpreting
(modulo a change of the variables’'name). UWe
cons ider eas & '"vicious circle". The
meta-interpretation process stops at each

and CAN "multiplies" it by a
fictive number n of recursions. From (), CAN

(s able to obtain abstract representations of
flat lists:

vicious circle,

Ix = Ix

b =ly ly ?b
1 n

(vhere 'y w !x and nw0)

L

This says that if the second argument of MEMBER
i a List whose n first elements are different

from its first argument, then they will be
deleted after the nth recursive call. The
meta-interpreter will then go on with the two
first rules of MEMBER, and obtain the final
conceptual representation of MEMBER which we
used in the second paragraph.

The concept of vicious circle is important
since |t does ngt coincide with the first
recursive call in a program.

For the following example:

(DE FOO (L)
(IF (CAR L) (FOD (CONS (CDR L))
(COR L)))

the meta-interpreter will never reach a vicious
circle, and yield the final conceptual
representation:

(FOO O) = ()
(FOO (OO ?b) = (?b)

(FOO (!g)) = O
(FOO (la 2b)) = O

(underlined variables may not be assigned the
NIL value)

S. YICIOUS CIRCLES

A vicious circle is encountered when the
meta-interpretation of some form in an

f
environment E1 leads to the meta-interpretation
of f in an environment E2 such that El and E2
"may be identified".

Formally, the two environments will be
tdentifiable Lf theiur unification gives a
unifier which contains no "transmitter". A
transmitter s a couple of variables bindings
of the form:

vl = f(v2)
v2 = H

With the restriction that if f{(v2) contains vl

and H contains v2, the couple is considered as
@ vicious circle.

Here are some examples of LISP programs where

the first recursive call does not coincide with
@ vicious circle:

(OE FOO (X Y) (FOD Y X))

(DE FOO (L M
(IF (NULL L) NIL
(FOO (COR M) (CONS (CAR M) L))))

(DE FOO (LM P @
(COND ((NULL LY T)
((EQUAL (CAR L) M)
(FOO (CODR L) P @ (CADR L)))))

6. CONOSTRUCTIVE

lln")

INDUCTION (multiplication by

The notion of vicious circle s motivated by
the fact that if a substitution (unifler) is a
vicious circle, it may be "multiplied by n" by
a simple algorithm (i.e its general form after
"n" recursive calls may be constructed).

From a variable binding of the form: v = f{v)
the algorithm will obtain: (x v n f(v)) which

may be seen as a complex variable whose name (s

v and f(v) (s e conceptual representation with
auto-references (everywhere v is). In other
words, f(v) restricts v's domain. "n" names
the fictive number of successive recursive

calls. It relates different complex variables
to each other.

In some cases, the
generate mathematical

induction algorithm may
index notations such as

those involved in MEMBER’'s CAN definition,
instead of conceptual representations with
auto-references. i.e in the case:

ve -A-v -B-

the algorithm witll obtain:

vV = -A- oo -A” v -B-

1 n n] . 1
(vhere n=0)
(vhere -A- and -B- are any sequence of
conceptual representations. They may involve

indexed elements and even sequences whose

length depend on the index)

The advantage is that the unification process
of conceptual representations is pasrticularly
vell suited for the unification of such forms.

7. BECURSIVITY

From the program:

(DE VECMAT (L M)
(IF (NULL L) M
(DCONS (CAR L) (VECMAT (CDR L)
(CONS NIL M)))))

(DCONS Ix ((?a)...(?a)))
1 n

= ((Ix 72)...Ux ?a))
1 n

vhere

The meta-interpreter will get:

1 (VECMAT O Im) = Im
2 (VECMAT (11 ?2) (?23)) = ((!'1 ?a)...(!1 ?a))

1 k
and ((?al)...(?a)) = (VECMAT (?22) (O ?3))
Kk
Recursivity will be bhandled by the same
processes, |
as the unification of ((7a)...(?a))
1 K
end ((!'1 ?a’)...(11 ?a"))
| k'’
yields a vicious circle, the tnduct ion
algorithm is applied. here, from:
7a = !1 ?a
L L
CAN gets:
e = !1 ,,, 11 ?a
L 1 n i

By propagation and with the initialisation:

((?a)...(?Pa)) =« () ...00) ?3)
1 K 1 n
(the right conceptual representation is the
abstract value of M wvhen case 1 is encoutered.
The initialisation is performed via the
unification of the two conceptual
representations and propagation of the
results.)
CAN finally obtains the concep tual
representation of vecmat:
(VECMAT (!'1 ... 11) ((?b)...(?b)))
1 n 1 m
e ((11 ... 11) ... (11 ... 11)
1 nl 1 nn
(11 ... 11)...01 ... 11 7))
1 n 1 1 n m

S-10

8. TERMINATION

The meta-interpretation of a program yields a
set of rules which contain recursive calls, as
a first approximation. As uas shown, the same
meta-interpretation process may be pursued.
So, CAN may find which rules data can "go" to,
when "coming out" of a recursive rule. That
s, find which rules refer to which rules.

If a recursive rule refers only to itself, or
if a group of rules which refer to one another

refers to no rule "outside", then a class of
data IS determined for which simple
Interpretation of the program never ends. Here

are some simple examples:

example 1:

(DE FOO (X Y)
(IF (ATOM X) (FOO Y X) X))

CAN yields:

(FOO !list !b) = !list
(FOO l!atom !list) = !list
(FOO ‘!atoml 'atom2) = infinite-loop

example 2:

(OE FQO (L M
(IF (NULL L) M
(FOO (COR M) (CONS (CAR M) L))

CAN yields:
(FOO O

Im) = Im
(FOO (21) O) = (O 2D
(FOO (?21) ('2)) = (12 2?1

(FOO (21) (12 ?3)) = infinite-loop
éxample 3:

(DE FOO (X L)
(IF EEQUAL X (CAR L))
(FOO X (CDR L)>>))

CAN yields:

(FOO OO (la ... la)) = ()
1 n
with 'a =()
L
(FOO !b (!a1 ... 'a)) = infinite-loop
n
with 'a »lb
L
(foo !c (!a1 oo 'a g ?2d)) = (lc ?2d)
n

with la =lc
L
(under Lined variables may not be replaced by

the NIL value)

Here is an example of a different kind:

(DE FOO (L ™M
(IF (EQUAL L M) T
(FOO (CDR L) (CONS (CAR L) M))))

CAN yields:

(FOO !1 1) = T
(FOO () (?2)) = infinite-computation
(FOO ('1 ... '1 11 ... 11 ?22) (?2)) =T

1 n n 1
and

(11 ... 11 11 .. 11 ?22) = (11 ... '1 2?22
t+1 n n 1 1 1
t[1,n]

For this last example, CAN s not able to
explicitly describe the class of data for which
there LS infinite computation. It LS
implicitly defined by the set of cases which do

not fit the rules above, plus those which fit
the second rule.

9. USING CAN: THE INTERACTIVE PROGRAMMER
ASSIOTANT,

CAN is an interactive program understending
s{stem. When CAN (s run, the user may type in
LISP functions, or LISP expressions. When an

expression is typed in, CAN gives its abstract

value. There may be several ceases. If the
exprassion is (ATOM X) for instance, CAN will
respond:

CASE 1: X=!atoml VALUE: t

CASE 2: X=!,atoml VALUE: nil

The user can focus on any of the cases or keep
them all,

A practical use of the CAN system, then, is the

following: the user first types wn a program
he has just written. Once the program is
understood by CAN, the user may type in any

LISP expression involving calls to the program.
He will get the corresponding abstract values.
Note that CAN is a simplifier. That s, if it
is not able to understand an expression E, E’s
abstract value is E itself (with an implicit
meta-evaluation request). In other words, E
may not be simplified further.

If the expression is an assertion about the
program, it may meta-evaluate to T or NIL, but
CAN’s performances in this domain still raise
the need for a theorem prover.

One common use is to type a call to the program
on restricted classes of data. l.e Lf the
program has name FOO and argument X, the user
may define a unary LISP predicate P which is
true for a restricted class of X's, then focus
on the ceses where (P X) may evaluate to T, and
call (FOO X).

For instance, if FO0O is in fact a
pattern-matching function MATCH with
back-referencing (two occurences of the same
variable must be essigned the same value) and
the user vants to test vether

back-referencing works fine, he may first
build several kinds of abstract values for
MATCH'S arguments by the "focus on" technique

described above, and then call MATCH on them

One future work will be to develop a system for
proving theorems about list structures by
structural Induction, which uses CAN as a
simplification sub-system.

We expect that CAN will greatly help the task
of proving theorems by structural induction
since, for instance, many of the LISP theorems

proved in [22] already meta-evaluate to the
LISP truth-value T when given to CAN.

10. CONCLUSION

We have designed a system whose job is to

understand what an expert programmer could
consider as "visually wunderstandable”. CAN
does no problem solving. CAN's

meta-interpretation process
end simple interpretation
meta-interpretation [5]. Ue
CAN should be put in
programmers, oOr program
which would be
since conceptual

s straightforward,
IS a simple case of
then- think that
the service of expert
understanding systems
specialised in narrow areas,
representations are much more
easily manipulated than LISP code, for
instance. It may effectively be expected that
the size of program understanding systems is
directly related to the number of ways of

representing a relation within a programming
language.
The CAN system is written in VLISP-10 [3] CB1

and occupies about 20K words.

BEFERENCES

[1] BALZER, GOLDMAN & WILE (1977)
"Meta-evaluation as a tool for
program understanding” Sth 1JCAI, MIT
Cambr idge, August 1977

[2) BOYER, ELSPASS & LEVITT (1975)
format system for testing and
debugging programs by symbol ic
execution” Int. Conf. on Reliable
Software, April 1975, pp. 234-245.

[3] CHAILLOUX (1976) "VLISP-10 manuel de
réféerence" Dept. d’ informat ique,
Univ. PARIS 8, RT 17-76.

[4] GOOSSENS (1978) "A system for visual-like
understanding of - LISP programs”
A.1.5.B. Conf. Hamburg, July 1978.

[S] GOOSSENS (1978) "Compréhension visuelle de
programmes controlée par
méta-filtrage" Groplan: Bulletin de
\'AFCET, roupe Programmation et
langages, 1978

"SELECT--A

[6] GOOSSENS (1978) "L'unlflcetlon au service
de le comprehension” RT-14. Dept.
d'Informatlique, University de
YIncennes.

[7] GREEN & BARSTOU (1975) "A hypothetlcel
dialogue exhibiting e knowledge bese
for e progrem understanding system"
Stanford A.l. Lab. MA 258, Cpt
Science Dept. Report n.
Stancs-75-476.

[8] GREUSSAY (1977)
definition
L'implementstion des
These, University PARIS 8.

"Contribution a la
interpretative et a
X-tengages”

"Towerds e
IEEE Trans,
Vol. SE-1.

9] HEUITT & SMITH (1975)
programming apprentice”
on soft. engineering,
pp. 26-45.

[10] HOARE & LAUER (1973)
complementary
sementics of

Ibid 3, pp.

"Consistent and
formal theories of the
programming languages”
145-182.

[11] HUET (19795)
typed
computer science 1.

"A unification algorithm for

lambda-calculus” Theorltlcel
pp 27-57

[12] HULLOT J.M. (1979)
"Assoc i1atlve-commutative

pattern-matching” ©6th
1979. Tokyo.

IJCAL. Aug

[13] IGARASHI, LONDON, LUCKHAM (1975)
"Automatic program verification |. A
logical basis and Its Implementation”

Acta Informatlea, Vol. 4, pp.
145-182.

[14] KING (1975) "A new approach to program
tasting” Int. Conf. on reliable
software, April 1975, pp. 228-233.

[15] RICH & SCHROBE (1975) "Understanding LISP

programs: Towards a programming
apprentice" Master's Thesis, EECS
M.I.T.

[16] SIEKMANN (1975) "String unification" Essex

university, Memo CSM-7.

[17] SIEKMANN LIVESEY (1975) "Termination and

decidabilit1y results for string
unif lcatlon™ Essex university,
CSM-12.

[18] STICKEL (1975) "A complete unlflcetlon
algorithm for assoclatlve-commutetlve
functions" 4th Iljcal, Tbilisi Georgia
USSR. sept. 1975.

[19] UERTZ (1978)
de programmes
colloque sur

B. Roblnst ed.

"Un system© da comprehension,

incorrects" Proc. 3eme
la programmetlon, Paris
pp 31-49.

$-12

[20] WERTZ (1978)
d'amelioration, et

"Un systeme de comprehension,
de correction de

programmes incorrects”" These de 3eme
cycle, Univ. P. et M. CURIE.

[21] YONEZAUA & HEWITT (1976) "Symbolic
evaluation using conceptual
representetions for progrems with
side-effects” M.I.T., A.Il. Leb.,
Al-Memo 399.

[22] BOYER & MOORE (1973) "Proving theorems
about LISP functions”, Stanford
University, Stanford CA. 486-493.

HUGE PROCESSING BY EXPERIMENTAL ARRAYED PROCESSOR

Hitoshi Matsushima

Takeshi

Uno Hasakazu EJiri

Central Research Laboratory

Hitachi

Higaahi-koigakubo

Ltd.,

1-280,

Kokubunji, Tokyo |85, Japan

An image processor based on an arrayed structure was implemented..
(1) memory unit separation into a picture memory for

five design features:

Images and a control data memory for programs,

into a parallel processing part and a serial processing part,
(if) use of a special micro-processor for

processing by an arrayed structure,
an array's processing element,
by programming.

processes them by sixteen processing elements.
The processed images are outputted to CRT display equipments.

by a TV camera®

The basic operations in the array are data conversions,
sequential processings, manipulations between two images and so on.
many kinds of image processing can be done in this

using those operations,
processor.

1. INTRODUCTION

Many proposals for pattern processing
have been made to date, and soma have
been practically implemented, especially
for certain industrial and medical
applications, in which special processors
such as Iimage analyzers are in practical
use®* However, most image processors cam
only deal with binary images..[l]

On the other hand, recently large-scale
pattern processors have been studies
In some research laboratories.[2] However
there are still problems in developing
Image processors for multi-leveled Images
Tor example, processors tend to become
too big and expensive..
However, recent developments iIn

This work was contracted with the
Agency of Industrial Science and
Technology, Ministry of International
trade and Industry, as a part of the
National Research and Development Program
"Pattern Information Processing System?

and (5) direct control
It deals with images consisting of 256 x 256 pixels and

S-13

It has

(2) processing unit separation
(3) parallel

of parallel processing

The original images are given

local operations,
By

commercially available IC's have had a
profound effect on the size*™ speedy and
cost of hardware- In addition™ the need
for general purpose image processors Is
getting stronger. Thus, the image
processor presented here was experimental-
ly developed®*. The outstanding feature

in our Image processor IP is parallel
processing ability.
*PM * nanor riAftcrlhfid the ttfincinles and

Z. DESIQM PLINCIPLSS

The main points considered in establish-
ing our |IP are discussed below.

Information included in Images depesds
on the two-dimensional arrangement of
pixel16 values.. So two-dimensional
memory access is employed for data
utilization. Therefore, the memory was
separated into two distinct parts, one
for images and the other for control
data. The former has useful functions for
parallel processing of images.

In image processing, the same operations
are repeated many times* In these cases,
Increasing processing speed by ordinary
computer architectures is not efficient.
Therefore, the execution unit in our I|IP
was separated into a conrentional mini-
computer's central processing unit and

a parallel processing part. The former
mainly deals with control data and
sometimes processes pixels one by one,
while the latter usually processes pixels
by the parallel processing.

In the parallel processing part,
arrayed structure was adopted, mainly
to increase processing speed* In pre-
processing of feature-extraction of images
the same operator is executed at every
sampling point* For such position-
invariant processes. an arrayed structure
iIs very useful. Many sampling data are
inputted to many processing elements at

a time. Then all processing elements
execute the same operation simultaniously.
Increasing the mumber of processing
elements by a certain factor should cause
the processing time to decrease by the
same factor.

an

One cause reducing the etrfect of an
arrayed structure is the occurrance of
irregular flow such as conditiomnal Jjump.

In such cases, all processing elements can

not be controlled by one sequence, Some
PEs will have to be in a halt state, TO
avoid this problem and

increase efficiency of

parallel processing,

a special micro-
processor was developed
which can absorb
irregularities and do
such special calculations
as summing products, |
table look up and getting N B
nanming-distance at high '
speed,

1t is difficult to l
control the array. '
Therefore a usage of
micro-instructions was
planned to control
executions in a processing

| Macro

Central
Processoing
Unit

| Instruction

I
o ~—-- - ™ Micro o - l I
_;"%9’0 Inn(ruction Instruction Lochl Komist
S RN e == 0 er
1/0 Inntrﬂction Control 68
B e ey ---i---\ .

Lnatructioﬁ

L]

element and data's flows 'gg:‘l':g::;gﬂt:rl

between the array and 3 g

a picture memory, e e
Figure]

Image Procemaor Block Diagram

S-14

. *,{\ \ 1/0
o Control

3. SYSTEM OUTLINE

A Dblock diagram of our IP is shown in Fig*
1. It consists of a parallel processing
part and the other part. The former
comprises a processing element array(PE
Array), a picture memory(PM), local
registers (LR) a micro-instruction
control(MC) and input/output control(lOC).

Image data are inputted through the [0C
and stored in the PM. They are originally
obtained 6 bits in the 10C. The image
data are then transmitted to the PE Array
through the LR. The LR can store a 4 x4
local-image or an 8 x 8 one. The PE Array
processes it parallelly, and the results
are stored again in the PM.

The PM is a memory for images consisting
of three banks of 256 x 256 pixels. The
access to the PM is controlled by micro-
instructions in a program® The accessing
unit iIs a 4 x 4 square with the upper-
left corner address (4n,4m), or one pixel.
The letters n and m stand for integer

from O to 63.

The PE Array consists of sixteen process-
ing element(PE). Each PE is a special
micro-processor comprising a controller,
which interprets commands and controls
calculations in synchronization with an
external clock. The commands comprise
addition, subtraction, multiplication,
summing products, logical operation,

I

Picturo Memory

-

Bigh Speed
Data Trancfer

— S

A r

Read/White

Plilxel s
Addrosh ,

:; PE Coniind u

Y l l l l
1/0 Devices N\ PE A
(TV Camera, ax e
CRT Display,
. ote,) D

table look up and so on. Each PE has a 256
words 16 bits scratch pad memory. The
scratch pad memory can store a sequence of
PE commands. Therefore each PE can execute
its own program. The depth of calculations
Is twelve bits long. The execution time

is 0.35#% and the cycle time of the PM
is 0.7 >uS.

The LR has shift functions in an 8 x 8
local 1Image. The PE Array can obtain
the free 4 x 4 square pixels from the PM
by these functions. Also, PEs can
comunicate each other through the LR.

4, BASIC OPERATIOMS

In order to describe functions in the PE

Array, several notatiomal defimitions are
given as follows;

D(x,y); & value of pixel(x,y) in the
original image, \
D(x,¥), ... ,D(x+4,y)
D(x,y)= . . :
D(I,y+4), ** ,D(I*h,y*hl
R(x,y); a result by a certaim operation
in a PE of the PE Array.
F(),G(); functions exécuted by a
combination of PE's commands,

In the PE Array, sixteen PEs process local
images in the Lﬁ simul taneously., Therefore
sixteen results R(x,y);

R(x,y), ...
R(x,y)= . .o :
R(x,y+3), --° ,R(X+3,y+3)
are obtained simultameously. ’

JR(x+3,y)]

The representative basic operations im the
PE Array are as follows.

(a) Data conversion.

R(x,y)=F(D(x,y))

This 1s used for thresholding, contrast
stretching and so on, Im a thresholding

og a 256 x 256 image, it takes about 11.5
no,

(b) Local operation.
R(x,y)=F(D(x,y))
For example, in a case of two-dimentional
filterings the results are as follows.
4 4
R(x+m,y+n)= X% 23X £(1,3)xD(x+i+m,y+j+m)
1=0 j=0
OL£ms3 0<Sn<3?
where f(3,]J)s are weight
coefficients,

S-15

In all PEs, twenty-five times!

of the PE command "SuM OF P;gbug¥sc:ﬁiona
done, It takes 34,4 mS in a 256 x 256
ipage. By this local operation, spacial
differentiation, noise elimination.
template matching, and so on are available.

(c) Sequential processing.
x(x,y)=FM(x,y) ,Q(x-58,y-t))
Q(x,y)=GM(x,y) Q(x~s5,v-1))
Where @ is PE's internal states
specificd by scveral flags and contents
of the scratch pad memory. ‘The point
(x-5,y-t) shows a preceding processing
point to point (x,y). Values of letter
s and t depend on a scanning in the PM,
This calculation is used for histogram's
calculation, area counting and so on, For
example, the processing speed of obtaining
pixel value's distributions is 28 mS,

(d) Manipulation between two images,
R(x.y)--F(Dl(x,y),Dz(x.y))

where 1. (x,y) and D_(x,y) sbow values
of difftrent images® pixels.
For example, it takes about 18 mS to get

an add-image or exclusive OR-image from
two images,

5. CONCLUSTON

An image processor based on an arrayed
structure was implemented. It deal6 with
Images consisting of 256 x 256 pixels and
processes them by a 4 x 4 processing
elements' array. It was constructed

in 1977 and used to study processor's
architecture for the object recognition,
ny these studies, it has been established
that the array of our IP is useful for
high ©Opeed processing.

The basic operations in the array are data
conversions, local operations, sequential
processings, manipulations between two
images.and so on. By them, many kinds of
Image processing can be done in this array

REFERENCES

[1] M. J. E. Golay, "Hexagonal Parallel
Pattern Transformations", |[EEE Trans.
Comput., Vol. C-18, pp., 733-740, Aug.

1969

[2] K. S. Fu, "Special Computer
Architectures for Pattern Recognition
and Image Processing An Overview", Proc

AFIPS, Vol. 57,pp.1003-1013, June 1978.

Note:

AUTHOR/CO-AUTHOR

Volume ||

begins with page 610.
Papers are arranged alphabetically by first author - A-M, Vol. I;

INDEX

N-Z,

Vol. 11.

A supplement containing papers received late is found at the back of Vol. I1.

Aggarwal, J.K. ceceeces
Aiello, N.
Aikins, J.
Aksma, K.

Akita, K.

Amano, S.

Amari,S.

e @& & & & 00 b oo

Anderson, J«.Re coesecee
Anzai, YO e 60600 00DV GS
AOki’ Kl ® 00000 OSSO SIS
Babu, K.RI . 0 0 6 0 & 0 0 0 o9
Barl', AO ®® 0 00 8O0 C PO PO

Barstow, D.R.
Barthes, J.P.A.
Bathor, M.
Bennett, JeS. coceccess
Benson, D.B.
Berg, C.H. ccecvcceceee
Berliner, H.
Berwick, R.C.
Bibel, W.
Bidoit, M.
Bien, J.
Binford, T.O.
Birnbaum\ L.
Bischoff, M.
Bledsoce, W.W.
Boggess, L c.ccecccccee
Bolles, R.C.
Bonnet, A.
Bonzon, P.
Brady, M. ...
Bramer, M.A.
Bratko,
Brooks, M.J.
Brooks, Ruven
Brooks, Rod
Brown, D.J.H.
Bruel, P.

® 9 % ¢ 00 O e
® 59 09 00 9o

* 08 0 & 08 8o
o & & & O
e & 0O & 008 0P S
. ¢ & 9" " O e U e
5 85 55 0 580 se P
o 2 080 8 0o
® & ¢ & ¢ &8s s
* e &0 & o s 0P

. o & 0 e

o ® & ¢ 8o P o s
® 5 9 ¢ 8 0o s o S
8 ¢ e e s
o 0 8 0 & o 4 0o
* & 0008000 09 82y
® & & 0 0 9 e
e o & 0 08

. & & & & 680 &
¢ & & OO O 0

Bullers, W.I.
Bundy, A.

Buranova, E.
Burstein, M.H.
Byrd, L.

e " & 009 0 &2

e P % &6 &8

425

645

1

4

7

466

13
16, 708

22

25

639
3]
34, 37
44
920
47
50
247
53
56
59
63
968
105
772
24,7
66
926
70, 73
79
82
85, 88
92
95
98
102, 266
105
114
66

117

L B B B OB BN BN NN BN N AN 1017

120
522

[I BN BN BN K BN BN K BN A BN 1017

Index- |

Cammarata, S. cecaceee
Carbonell, J.G.
Cayrol, M. ceceocncens
Chandrasekaran,B. ...
Chang, C.L.
Chatila, R.
Church, K.

Clancey, WeJs ecovecoos
Cohen, H.
Cohn, A.

Colman, R.
Corkill, D.D.
Covvey, H.D.
Creary, L.G.

S 0 & & 086 a0

& & 60 s s 8 b e e
® & 5008 00 0 00 0
* " S P® &S0 D

> e 8 3 & 88
* b & 0 a8 b

Dahl, V.
Dankel’ D.D. ® & ¢ 0 &0 0 0
Davis, R.K.

588 9950 v 00

de Champeaux, D.
de Kleer, Je¢ ceeeceee
De Mori, R: .ccecccee .
Degano, Pe covccccses
DeJong, Ge¢ .ccecocsnse

Dietterich, T.G:. sssee

Doshita, S.
Doyle, Je coeccscosvne

Eisenstadt, M. cccceee
Ejird, Me cococcevocens
Elliot, G.
Elschlager, B.
Elshout, JeJ: soccccoe
Endo, T.
Engelman, C.
Engelmore, R.S.
Enomoto,He cccoscoceece

* & & 0 b a0 0O

® & &0 a9

v o o9 0 000

375

121, 124
131

134

143

335

149

155
1028

162

165

168, 537
890

176

182
188
1101
191
197
204
208
217
223
662
232, 562

238
552
356
241
244
469
247
47, 250
257

Fade, B.
Fagan, L.M.
Farreny, He ceccccsnces
Faught, W.S.
Feigenbaum, E.A.
Fickas, S.
Filman, R.E.
Finin, T.
Fischler, M.A.
Fox, M.S.
Freeman, M.W.
Friedland, P. ccvcvcoee
Fuchi, K. cccccocenssoe
Fujisaki, H.
Fujita, Y.
Fukami, S.
Fukumura, T.
Fukushima, K.
Furukawva, K.

LR B BN BN B BN N BN BN N BN

e &8 4 650 60
o 0 & 89
® 090080 00

L BN BN BN BN BN BN
* ¢ OO0 S " e e e
¢ o080 00
9 &0 &0 e s s e 0

® > v 0o 0
% 00800000
¢ & & o890 e 0d

s >0 00 0 s 0 b
e ® o &

Gabriel, R.P.
Gallaire, H.
Gaschnig, J.G.
Genesereth, M.R.
Gennery, D.B: cccceocose

Georgeff, M.P. .

Giralt, C.
Gomez, F.
Goodman, B.

¢ 5 9 50000 00

Goossens, D. .ccccevee
Goto, E¢ ccevveccnccss
GOtO, s. LB B BN BN BN B BN BN BN BN BN N

Green, C.C.
Greiner, R.
Gresse, C.

L I BN BN BN BN B A R

Grosz, B.J. seseceerv o
Gu1da, G. sevevcscoctrecn
GUihO’ G. ® e & 5> 3000 88 0

Hansson, A.
Haralick, R.M.
Harris, L.R.

Harrison, M.C.
Hasegawa, T.

* & &8 ¢ " H s o

> > o & b s o 00

131

260
131
263
260,
266
269
275

73
282
525
285
998
288
659
589
416
291
294

342

AUTHOR/CO-AUTHOR

1103

300, Sunplement

301,
311
320
328

335
134
275

308

338ySunplement

1058
339
342
105

63

1067

345
63,

348
356
365

853
169

785

Index-2

INDEX (Cont'd.)

Hayes, Phil
Hayes-Roth, B: sc0ese
Hayes~Roth, F.
Heiser, J.

* & o 90

S 40 8 04 00

372
375
375, 531, 601
102

Hilditch,BeRe cecocssne 50
Hiraki, K. cssescess 1058
Hirata, M: .cccceeee 384
Hirose, T:. cccceeee. 893
Hobbs, JeRe ceeeevees 390
Hollander, C.R. 397
Honda, Me: cceeeeeees 400
Horn, B.K.P. ceceeees 413
Hoshino, Y. ¢ecceees 403
Hullot, J.M. 406
Ichikawa, A cevveee 4
Ida, T- ceeevececcesse 1058
Thara, He ceeeeccacnos 995
I1de, He ceeeeeeceecss 803
Tkeda, Me ceescsccee 978, 984, 992

Tkeuchi, K.

9 60 0 ® B0

413

Imai, Me coccccescoes 416
Tmaoka, He ceceesseses 419
Inada, N. cessesese 1058
Inokuchi, S. .c...e. 633
Inoue, He ceescsssee 369
Ishibashi, N. ¢.cce. 22
Ishizaki, S¢ coceees 422

1to, He cceeccessces 625
Jain, Re eeseesccecss 425
Janas, JeMe soccccses 429
Joshi, A.K. ..eceeees 435, 463
Jouannaud, J.P. &40
Kahn, K.M. cesesvsas L4UB
Kakusho, O¢ ceccceeee 586
Kami, H. cocevcsccees 403
Kaminuma, Te ecceceess 451
Kanade, Te ceescesses 454, 684

AUTHOR/CO-AUTHOR INDEX (Cont'd.)

Kaneda, Y.
Kant, E.

Kaplan, S.J.
Katagiri, Y.
Kawvada, T.

Kawaguchi, E.
Kedzierski, B.I. .csso
Kender, J.R.
Kishimoto, Ge¢ ccsevveee
Kitahashi, T.
Kitazawa, K. cccccvcnes
Klahr, P. ccececscccee

Kline, P.J.
Kobayashi, Y.
Kodratoff, Y. cccecces
Kolodner, Je. ccecesces
Konolige, K¢ cevvveen

Kornfeld, W.A. .cc..e.
Koshikawa, K. cecececne
Kotani, Y.
Kuga, H.

Kuhn, S.

Kuipers, B. ccvevecces
Kulikowski, C.A.

o ® & 8 08B d 9o
> ®® 008 0 Do 0
* o8 H»o oo

e & & ¢ 80 s
2000 08 P00 20

L B BN BN BN BN BN

® 0 ¢ 000080 s

Kunz, J.C.
Kurokawa, T.
Kusaka, H.

Langley, P.
Lasserre, C.
Latombe, J.
Laubsch, J.H.
Laurtere, J.
Lebowitz M.
Leclerc, Y.G.
Lehnert, W.G.
Leitner, H.He ceeccee
Lenat, D.B.
Lesser, V.R.
Litvintseva, L.
Luger, G.

9 &« s w8 0O o0
” o8 9 00 00
*® & % ¢S 8BS
P &0 88 0

® 0 8 & P 0 2o

L B BN N BN N B N
& o b o O 00

Machova, S.
Maekawa, S.
Manna, Z.

Marcus, M.P. coveceess

. ¢ o0 0 0 0 P

¢*T 00 9o 8P

865

342, 457

463
288
466
469
342
475
656
665
583

481, 531

16
484
440
766
487
490
493
496

7
435
499

583, 942,

948
260
202
659

505
300
508
516
519
772

* & 9o & 0@ 101&
522, 769

525
531
537
541

1017

120
865
542
815

Marr, De ccecccncesese 1108

Martin, WeN. ccooccee
Maruyama, K.

Matsumoto, T.
Matsushima, H.
Matsuyama, T. ccccoces
Mays, E.
McCalla, G. b vecees
McCracken, DeLe sceecoe

% % % %0 H 80 00

425
583
893
552
610
463
553
556

Index-3

McCune, B.P.
McDermott, D.
McDermott, J.
Mellish, C.

Meltzer, B.

Mero, L.
Miaczynska, M.
Michalski, R.S.
Miniberger, B. ceene
Mitamura, K.

Mitchell, T.M.
Mitsuya, Y.

Mitsuzawa, M.
Mittal, S.

Mizoguchi, F¢ cceceeen
Mizoguchi, R. cecseese
Mizumoto, M.
Mohammed, J.L. cvceese
MOll, Re cececcncvecses
Montalvo, F.S.
Moravec, H.P.
Mori, He ceeevecaccase
Mostow, J.
Motoyoshi, Fe¢ ceccaces
Mylopoulos, Je ccevcee

® 8 5900 80

L N B BN B N NN

Nagao, Me cceececee
Nagata, Me ccocccccee
Nakagawa, S.
Nakajima, K.
Nakajima, R.
Nakamura, Y.
Nakanishi, M.
Nanba, H.
‘Nevatia, R.
Nii, H.P.
Niimi, Y.
Nishida, F.
Nishida, T.
Nishimura, T.
Nitta, K.
Nof, S.Y.
Nudel, B .cccecccssce

L BN BN BN B N
> a0 0
o & 80 0 00
* 09 9 0
* s a8 @
¢ 00000 B
& & &4 a0 80
® 5 % 9200 00 0
* 5% 0809 e 0D

Ogawa, H.

Ohmori, R.
Ohsuga, S.
Ohta, Y.
Oka, R.
Okada, N.
Okada, T.
Okamoto, M.B. <.c.eee
Osada, M.
Osborn, J.J.

o 000 8PP0

L 30 BN B B BN BE NN IR BN BN

e 0 0 &0 &% 8 p b s

> 080 008 8

342
562
568

oo econeoeo 1017
covsases 1127

920

44
223
120
625
577

22
403
134
583
586

589, 917

1014
592
595
598
610
601

868, 998

890

610, 617,
625, 1106

636
628
625
400
633
636
668

639, 642

645
484

656, 659

662
384
257
117
948

665, 668

403
676
684
687
690
693
696
896
260

AUTHOR/CO-AUTHOR INDEX

Palmer, M. ceseeeeee 1017
Perkins, W.A: cceve. 699
Phillips, J.V. .ecee 342
Pospelov, D. veves 4]
Prazdny, K¢ ceveeees 702
Price, K.E. ceceree 642
Quam, L.H. covens e 73
Quinlan, J.R. «¢ceses 705
Reddy, R. coevecces 372
Reder, L. M. ccceccee 708
Reinstein, H.C. 397
Reitman, We ccececee 711
Rich, C¢ cocevences B27
Rich, E. csceeeees 720
Rieger, C. cceeeee 723
Riha, A. ¢ceveeeess 120
Roberts, B. .sesee 729
Rosenberg, S. .+... 729, ,.735
Rosenschein, S. .. 375
Rychener, M.D. ... 738
Sacerdoti, E.D. ... 1077
Saito, M¢ .ceeeeee 583
Saitta, L. ceeeeees 204
Sakai, T. .ceces.. 628, 684
Sandewall, E. 744
Sangster, B.C. ... 748
Sato, Me cceeeseee 17157
Sato, Taisuke 868
Sato, Tomomasa ... 763
Satoo, Te ccoeeees 998
Schank, R.C. .«c... 766, 769,

172
Schneider, P.F. ... 553
Schubert, L.XK. 778
Schyn, Fe ¢seveeee 785
Sekiguchi, Y. 800
Sembugamoorthy, V.. 788
Shapiro, S.C. «oec 791, 797
Shigenaga, M. 800
Shimazu, A. .cc... 803
Shimura, M. 809
Shipman, D.W. ..,:. 815
Shirai, Y. 884, 908, 1107
Shnefer, M. 818
Shostak, R. cccecee 66
Shrobe, H.E. 827, 829
Simon, H.A. 1086
Sirovich, F. eese 208

Index-A

(Cont'd.)

Small, S.¢ cvcecees 723
Smith, J. ceeeveees 134
Smith, R.G. ..c... 836
Sobek, R. .ccceeee 335
Somalvico, M. ... 345
Starkey, J.D. S50, 842
Stefik, M. B4S
Stolfo, S.J. ceeee. 853
Suenaga, Y. 856
Sugeno, M. ..cceoee. 419
Sugihara,K. 859
Suzuki, M. ..cceee. 1058
Takamatsu, S. 656
Takase, K. +scocese. 1095
Taki, K. <ccceoeeees 865
Tamatl, Te ccccecees 469
Tanaka, H. ¢ccceeece.. 868
Tanaka, K. cceceese 25, 589,
cesssess 665, 668,
crsesses 917
Tanimoto, S.L. 87}
Tappel, SeTe ceveees 342
Tarnlund, S. eees 348
Tennant, H. .escee. 275, 874
Terano, Te ceceeceees 902
Terry, Ae seceesess 250
Thompson, AM: <eos 877
Thorndyke, P.W. ... 880
Tomita, F. ceensss 8BB4
Teotsos, J.K. .+.... 890
Teugawa, S. .ccec.. B893
Teuji, S. <eeesse.. 884, 896
cesssssss 978, 984
ceeessses 992
Teujii,Je oscecveceee 617, 625
Tsukamoto, Y. ecccese 902
Tsukiyama, T. ee¢... 908
Ueda, He ¢eeceeeee. 403
Ueda, K. cccveeeeee 636
Uhr, L. .eceececeeees 911
Ulrich, JeWe oceeees 592
Umano, M. csceceeece 917
Uno, T. ceessasess 952
Ura, Se cevecocscen 22
Vamos, T. eecceeees 920
van Melle, We <ce.. 923
Vayssade, M. cssee 44
Vilnrotter, F. 642

AUTHOR/ COAUTHOR INDEX (Cont' d.)

Waldinger, R: cceccen
waltZ’ D.L. ® 5 850 & a8 »

Waters, R.Ce coveceeo
WEiBB, S.HO . 5 00000

Weisstein, N. ceesse
Wertz, He ccevccccces
Westfold, S.J¢ ceceee
Whinston, A.B. «.c.ss
Wielinga, B.J. coves
Wilcox, Be cceacccces
Wilensky, R: ceoceces
Wilking, D: cvecvccss
Wilks, Yo ‘tccececcane
Wolf, H.Ce ceececccne
Woodham, R.J. cceecee

YBChidB, M. ¢ 4P o o0 0

Yamada, K¢ ccecccecses
Yamada, T: ccosvesssce
Yamazaki, M. ccocesee
Yatabe, Te ccecscnnses
Yokoi, Te cececccesrce
Yokota, M: cccsceccsne
Yokoyama, S¢ cecoccee
Yonezaki, N. cesssse
Yoshida, Se¢ occesccces
Yoshida, Y. cecocens

zadEh, L.A. L BN BN BN BN BN BN BN N
Zarri, GePe soevvense
ZUCker’ S.wl L 2N BN BN BN BN BN BN

542
926

827, 935
942, 948

595
951
342
117
244
711
954
960
968

73
971

896, 978,
984, 992
902
583
995
893
998
469
998
257
1001
416

1004
1011
890, 1014

Index-5

TOPIC INDEX FOR TECHNICAL PAPERS

NOTE: Papers are listed by first authors only.

Algebra & Geometry. . . . Anzal, Nishida-F

Analogy. Fox, Gascbnig, McDermott-J, Moll, Sembugamoortby

Animation Kabn

Approximate Reasoning - see also Reasoning Models * . . . de Mori, Imaoka,

Mizumoto, Okamoto, Umano, Zadeb
ATN's. Eisenstadt, Kobayasbi, Leitner, Laubschb
Architectures - see Languages & systems for Al
Automatic Programming - see also Program Synthesis. Barstov, Flckas,

Green, Hollander, Kant, Mostow

Backtracking. Latombe, Laurlere
Blackboard Model. Nil, Nagao, Qulnlan
CAlL Clancey

Cart - see Robots, Planning

Causal Reasoning deKleer

Character Recognition. Hoshino, Suenaga

Chess ¢ Bramer, Bratko, Church, Filman, Wilkins

Cognition - see Psychology

Concept Formation - see also Learning and Induction Akama, Amarl,
Bonzon, Dietterich, Langley, Mitchell, Tanimoto

Consultation Systems. Alklns, Barthes, Bennett, Fngelman, Gascbnlg,
Geneseretb, Hollander, Konollge, Mizoguchi-F, Obsuga, van Melle,
Weiss

Data Bases Barthes, Bolles, Cayrol, Dahl, Dankel, FInln, Furukava,

Harris, Janas, Kaplan, NlIshlda-T, Schank, Zarrl
Decision Analysis - see Reasoning Models
Debugging - see Program Understanding
Deduction. Barstov, Blbel, Bledsoe, Dahl, Filman, Furukava, Gallalre,

Hansson, Klahr, Latombe, Laurlere, Manna, Nishida-F, Obsuga, Thompson,
Ulrich

Index-6

TOPIC INDEX FOR TECHNICAL PAPERS

Discourse & Dialog Bonnet, Brooks-Ruven, Clancey, Hobbs, Hayes,
Hollander, Imaoka, Josbl, Scbank, WIIlks

Distributed Problem Solving Corklll, Glralt, Imal, Lesser, Montalvo,
Smith-RG

Edge Detection. Nevatla, Perkins, Suglbara, Yacblda

Electronic Circuits. deKleer

Expert Systems - see also Medicine, Physics. Barstow, Bennett, de Kleer,
Engelman, Engelmore, Fagan, Flckas, Frledland, Gaschnlg, Harris,
Konollge, Nakamura, Nil, Nishida-F, Qulnlan, Suenaga, van Melle,

Yamazakl, Zadeh

Feature Extraction - see Pattern Recognition, Vision

Formal Representations - see also Representation. Bullers, Creary, Dahl,
DoVle, Elschlager, Fllman, Fox, Goto-S, McDermott-D, Ogawa, Ohsuga,
Shapiro

Frames. Alklns, Bonnet, Engelman, FInln, Kamilnuma, Nishida-T, Ogawa,

Rosenberg, Steflk, Tsotsos, Waltz
Fuzzy Logic - see Approximate Reasoning
Games. Benson, Berliner, Bramer, Brown-DJH, Church, Qulnlan, Reltman,
Shapiro, Starkey, Tsukamoto
Geometry - see Algebra and Geometry
Go. Benson, Brown-DJH, Reltman
Grammatical Inference - see Learning & Induction
Graph Algorithms. Aokl, Barstow, Blbel
Hand - see Manipulation
Hardware - see LISP Machine
Human Cognition - see Psychology
Image Analysis - see Vision

Induction - see Learning and Induction

ntentions. Creary, Faught, Wilensky, WIllks

Knowledge Engineering - see Expert Systems, Knowledge Acquisition

Knowledge Aquisition. Anzai, Bennett, Colman, Dietterich, Enomoto,
Elshout, McDermott-J, Mostow, Ohsuga, Rosenberg, Rich-E,

Sembugamoorthy, Thomdyke, Weiss

Index-7

TOPIC INDEX FOR TECHNICAL PAPERS

Languages and Systems for AL Kurokava, Kornfeld, Mizoguchi-R, Mostov,
Nagao, Nil, Rycbener, Sandevall, Stefik, van Melle, Weiss, Yokoi

Learning and Induction Akanta, Amarl, Anderson, Anzal, Berwick, Bonzon,
Bratko, Colman, Degano, Dietterlchb, Elshout, Fukusbima, Gascbnlg,
Jouannaud, Kotani, Kuipers, Langley, Latombe, McDermott-Jd, Mitchell,

Rich-E, Scbyn, Stolfo, Tanimoto, Tborndyke, Weiss

Line Following - see also Edge Detection Nevatia, Perkins, Yacblda

LISP Machine. Nagao, Takl

Manipulation - see also Robots Bullers, Colman, Okada-T

Medicine. AlklIns, Aklta, Bonnet, Brooks-Ruven, Chandrasekaran, Fagan,

Kaminuma, Mizoguchi-F, Tsotsos, Weiss

Memory. Reder, Ubr

Meta-Level Knowledge. Barr, Gallalre, Goossens, Smith-RG

Models. Brooks-RA, Bartbes, Chandrasekaran, Hasegawa, Waltz
Motion. Jain, Okada-N, Prazdny, Tsotsos, Tsuji, Tsukiyama, Yachida
Music. Nakamura.

Natural Language. Berwick, Bonnet, Brooks-Ruven, Buranova, Carbonell,

Dabl, de Jong, Elsenstadt, FInln, Fujlsakl, Gulda, Hobbs, Harris,
Hayes, Imaoka Josbl, Kaplan, Kawada, Kawaguchi-E, Kobayasbl, Kolodner,
_Laubsch, Lehnert, Leitner, Mostow, Nishida-F, Okada-N, Roberts,
Rosenberg, Rieger, Schank, Sembugamoortby, Sblmazu, Sbipman, Tanaka-H,
Tennant, Waltz, Wilensky, Wilks, Yosbida

Navigation - see Robots, Planning

Non-Monotonic Logic Doyle, McDermott-D, Sbrobe

Object Detection - see Scene Interpretation, Vision

Office Automation Kawada

Paradigms for Knowledge-Based Systems - see Languages & Systems for Al

Parallel Processes - see also Distributed AL Hirata, Imal, Kornfeld,

Matsushlma, Montalvo, Nakagawa, Ogawa, Tsukiyama, Ubr

Parsing Berwick, DedJong, Dedong, Elsenstadt, Leitner, Laubscb, Rieger,

Sblmazu, Scbank, Sbipman, Tanaka-HZ
Pattern Matching Bolles, Cobn, Enomoto, Hullot, Oka, Sangster

Pattern Recognition Bonzon, Dankel, Kawaguchi-E, Kotani, Moravec,
Nakamura® Nevatia, Tsugawa, Vamos, Yacblda

Index-8

TOPIC INDEX FOR TECHNICAL PAPERS

Physics. Barstow, Langley

Planning Brown-DJH, Chang, Carbonell, Cayrol, Corkill, Engelman,
Friedland, Cenesereth, Ciralt, Hayes-Roth-B, Hobbs, McCalla, Wilensky,
Wilkins, Yachida

Production Systems - see also Rule-Based Inference. Aikins, Anderson,
Anzai, Aoki, Bennett, Bonzon, Cayrol, Georgeff, Langley, McCracken,
McDermott-Jd, Mizoguchi-F, Ohta, Quinlan, Rychener, Ubr, van Melle

Program Synthesis. Barstow, Bibel, Bidoit, Colman, Degano, Goto-S, Green,
Hansson, Hollander, Jouannaud, Kant, Manna, Moll, Sato-M, Schyn

Program Understanding Fickas, Goossens, Shrobe, Waters, Wertz

Program Verification Lauriere, Nakanishi, Sato-M, Shrobe

Psychology - see also Memory. Anderson, Barr, Carbonell, Faught, Fickas,

Hayes-Roth-B, Kuipers, Montalvo, Reder, Schank, Thorndyke

Question Answering Brooks-Ruven, Buranova, Dahl, Furukawa, Harris,
Janas, Klahr, Nishida-F, Ogawa, Shimazu, Tennant, Zarri

Reasoning Models - see also Analogy, Approximate Reasoning, Deduction, Rule-
Based Inference Berliner, de Kleer, Doyle, Gallaire,
Rosenberg, Tsukamoto

Relaxation Techniques. Montalvo, Zucker

Representation - see also Formal Representation Aikins, Anzai, Aoki,
Barr, Barthes, Bratko, Bennett, Creary, Fagan, Filman, Fox, Fujisaki,
Kahn, Kuipers, Leitner, Lenat, McCracken, McDermott-D, Mizoguchi-R,
Mostow, Nagao, Nil, Nishida-T, Ogawa, Okada-N, Rieger, Rychener,
Sangster, Schank, Schubert, Shapiro, Shneier, Stefik, Tanimoto,
Tsotsos, van Melle, Waltz, Weiss, Yokoi

Resolution - see also Theorem Proving Bullers, Chang, de Champeaux,
Shimura

Robots Bullers, Colman, Gennery, Giralt, Hasegawa, Litvintseva, Moravec,

Okada-T, Tsugawa, Vamos, Yerazunis

Fule-Based Inference - see also Production Systems. Aikins, Anzalil,
Bennett, Berwick, Brooks-RA, Carbonell, Clancey, Engelmore, Green,

Konolige, Mizoguchi-F, Rosenberg, Rychener, Wilkins

Scene Interpretation Brady, Ishikawa, Kanade, Nagao
Search - see also Backtracing Barstow, Benson, Berliner, Church,
Cflscbnig, Harelick, Imai, Mitchell, Nakagawa, Nishida-F, Reitman,

Shapiro, Stnrkey, Wilkins

Segmentation. Hennery, Jain, Perkins, Yachida

Index-9

TOPIC INDEX FOR TECHNICAL PAPERS

Self-Organizing Systems - see Learning and Induction
Semantics Fujlsakl, Gulda, Lehnert, Schank, Shlmazu, WIllks, Yoshlda
Semantic Networks. Brown-DJH, Laubsch, Nagao, Reder, Rychener, Sangster,

Shapiro, Yoshlda
Shading & Shape. Brady, Brooks-MJ, lkeuchl, Koshlkawa, Woodham

Signal Understanding Engelmore, Ishlzakl, Oka, Okada-N, Shlgenaga,

Tsuklyama, Yamazakl, Yachlda

Spatial Knowledge. Kulpers, McCalla, Thorndyke

Speech Acts - see Intention

Speech Training Shlgenaga

Speech Understanding de Mori, Ishlzakl, Kobayashi, McCracken, Nakagawa,
Oka

Stereo Vision Gennery, |keuchl, Moravec, Sato-T, Tsugawa

Story Understanding Carbonell, Schank

Symmetry. Bolles, Brady

Temporal Knowledge. Fagan, Litvintseva

Texture Kender, Nevatia, Tomita, Yachlda

Theorem Proving - see also Resolution Bledsoe, Chang, de Champeaux,
Degano, Goto-S, Hlrata, Honda, Hullot, Klahr, Manna, Nakanlshl, Ogawa,
Shimura

Truth Maintenance. Doyle, McDermott-D, Thompson

Vision Akita, Bolles, Bolles, Brady, Brady, Brooks-MJ, Brooks-RA, Jain,
Enomoto, Gennery, Hoshlno, lkeuchl, Ishlkawa, Kanade, Kender,
Koshlkawa, Matsushlma, Montalvo, Moravec, Nagao, Nevatia, Nevatia,

Ohta, Perkins, Prazdny, Sato-T, Shneier, Suenaga, Suglhara, Tomita,
Tsotsos, Tsugawa, Tsujl, Tsuklyama, Vamos, Woodham, Yachlda, Zucker

Index- 10

R 026

