
TYPE INFERENCE IN PROLOG AND ITS APPLICATION 

Tadashi KANAMORI, Kenji HORIUCHI 

Central Research Laboratory 
Mitsubishi Electric Corporation 

Tsukaguchi-Honmachi 8-l-l,Amagasaki,Hyogo,Japan 661 

Abstract 
In this paper we present a type inference method for 

Prolog programs. The new idea is to describe a superset of 
the success set by associating a type substitution (an assign
ment of sets of ground terms to variables) with each head of 
definite clause. This approach not only conforms to the style 
of definition inherent to Prolog but also gives some accuracy 
to the types infered. We show the basic computation method 
of the superset by sequential approximation as well as an 
incremental method to utilize already obtained results. We 
also show its application to verification of Prolog programs. 

1. Introduction 

It gives usefull information not only to programmers but 
also to met a-processing systems to infer characteristics of 
execution-time behavior from program texts. Especially in 
Prolog, it is usefull to know of what type a variable in a query 
is when the query succeeds. We call such a task type inference 
[8]. In this paper we present a type inference method for 
Prolog programs. After summarising preliminary materials 
in section 2, we describe type inference algorithms for Prolog 
programs in section 3. An application to verification is shown 
in section 4. See [7] for more details. 

2. Preliminaries 

In the fallowings, we assume familiarity with the basic 
terminologies of first order logic such as term.atom,substitution 
and most general unifier(mgu). We also assume knowledge 
about semantics of Prolog such as Herbrand universe H, Her brand 
interpretation /,minimum Herbrand Model Mo and transfor
mation T of Herbrand interpretation associated with Prolog 
programs (see [11,14]). We follow the syntax of DEC-10 Prolog 
[10]. An atom p{X1,X2,..., Xn) is said to be in general form 
when Xi,Xa,..., Xn are distinct variables. A substitution 
a is called substitution away from an atom A when a in-
stanciates each variable X in A to a term t such that every 
variable in t is a fresh variable not in A. 

2.1. Definition of Data Types 

We introduce type into Prolog to separate definite clauses 
for data structures from others for procedures,e.g., 



T. Kanamori and K. Horiuchi 705 



706 T. Kanamori and K. Horiuchi 



T. Kanamori and K. Horiuchi 707 

5. Discussions 

Several works are done for type inference in Prolog 
[3],|8),[9] from different point of views. In our approach, both 
syntactical and semantical concepts appear. It is semantical 
whether a type inference / covers a success set, while it is 
syntactical and closely related to the well-typedness in [3],[9] 
whether a restriction J is closed. Moreover they are related 
strongly through the crucial condition that J must be closed 
for / to be computed. Though our approach is still monomor-
hic, it is new in the following respects. 
(a) Our type inference describes a superset of the success 

set by associating a type substitutions with each definite 
clause, which gives some accuracy to the types infered. 

(b) Our approach solves the problem under a syntactical 
restriction, which is utilized to infer types more minutely. 

(c) Our type inference is not restricted to that for arguments. 
Type inference can be done for any variables in any 
procedure call which is not necessarily in general form. 

6. Conclusions 

We have shown a type inference method for Prolog pro
grams and its application to verification. This type inference 
method is an element of our verification system for Prolog 
programs developed in 1984. 
Acknowledgements 

Our verification system is a subproject of the Fifth 
Generation Computer System(FGCS) project. The authors 
would like to thank Dr.K.Fuchi (Director of ICOT) for 
the chance of this research and Dr.K.Furukawa(Chief of 
ICOT 2nd Laboratory) and Dr.T.Yokoi(Chief of ICOT 3rd 
Laboratory) for their advices and encouragements. 
References 

[1] Apt,K.R. and M.H.van Emden,"Contribution to the Theory 
of Logic Programming",J.ACM, Vol.29,No.3,pp 841-862,1982. 
[2] Boyer,R.S. and J.S.Moore,"A Computational Logic",Chap. 
6., Academic Press, 1979. 
[3] Bruynooghe,M.,"Adding Redundancy to Obtain More 
Reliable and More Readable Prolog Programs'', Proc.lst 
International Logic Programming Conference,pp.129-133,1982. 
[4] van Emden,M.H. and R.A.Kowalski,"The Semantics of 
Predicate Logic as Programing Language",J.ACM,V61.23,No.4, 
pp.733-742,1976. 
[5] Kanamori, T, "Verification of Prolog Programs Using An 
Extension of Execution",ICOT TR-096,1984. 
[6] Kanamori,T.and H.Fujita, "Formulation of Induction Formu
las in Verification of Prolog Programs",ICOT TR-094,1984. 
[7] Kanamori,T.and K.Horiuchi,"Type Inference in Prolog 
and Its Applications",ICOT TR-095,1984. 
[8] Mishra,P.,"Towards a Theory of Types in Prolog",Proc. 
1984 International Symposium on Logic Programming, pp. 289-
298,1984. 
(9] Mycroft,R.and R.A.O'Keefe,"A Polymorphic Type System 
for Prolog", Artificial Intelligence 23,pp.295-307,1984. 
[10] Pereira,L.M.,F.C.N.Pereira and D.H.D.Warren, "User's 
Guide to DECsystem-10 Prolog", Occational Paper 15,Dept.of 
Artificial Intelligence, Edinburgh, 1979. 


