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Abstract

In this paper we present a type inference method for
Prolog programs. The new idea is to describe a superset of
the suooess set by associating a type substitution (an assign-
ment of sefs of ground terms to variables) with each head of
definite clause. This approach not only conforms to the style
of definition inherent to Prolog but also gives some accuracy
to the types infered. We show the basic computation method
of the superset by sequential approximation as well as an
incremental method to utilize already obtained results. We
also show its application to verification of Prolog programs.

1. Introduction

It gives usefull information not only to programmers but
also to met aprocessing systems to infer characteristics of
execution-time behavior from program texts. Especially in
Prolog, it is usefull to know of what type a variable in a query

is when the query succeeds. We call such a task type inference

[8]. In this paper we present a type inference method for
Prolog programs. After summarising preliminary materials
in section 2, we describe type inference algorithms for Prolog
programs in section 3. An application to verification is shown
in section 4. See [7] for more details.

2. Preliminaries

In the fallowings, we assume familiarity with the basic
terminologies of first order logic such as term.atom,substitution
and most general unifier(mgu). We also assume knowledge

about semantics of Prolog such as Herbrand universe H, Her brand

interpretation /,minimum Herbrand Model Mo and transfor-
mation T of Herbrand interpretation associated with Prolog
programs (see [11,14]). We follow the syntax of DEC-10 Prolog
[10]. An atom p{X1,X,..., X;) is said to be in general form
when Xi,Xa,..., X, are distinct variables. A substitution
a is called substitution away from an atom A when a in-
stanciates each variable X in A to a term ¢ such that every
variable in t is a fresh variable not in A.

2.1. Definition of Data Types

We introduce type into Prolog to separate definite dauses
for data structures from others for procedures,e.g.,

type.

list([ ).

Nist([XJL]) - list{L).
vad.

typs defines a unery relation by deflnite clauses. The

head of the definite clause takes » term deflning s data strue-
ture an the argument, either a constant b called bottom ele-
ment or a term of the form eft;, La,.. ., ts) where ¢ iv called
constructor. The body shows a type condition sbout the
proper subterms of the argument.

Here note the set of ground terms prescribed by type
predicstes. The set of all ground terms ¢ such that !-p(f)
succeeds is called ¢ype of p and denoted by p.

Example 2.1. Let the definition of a data type number be

pe.
number(0}.
number{s(X)) ;- number{X).
end.
Then number is & aet {0, #{0), +{s(0}},.. .}

Suppose there are defined & data types py,pz,.... P, a0d
P1,Pa, .-, Px are disjoint. We denote the set of all grourd
termas contaited in no p, by others and consider it like one of
types. Then the Herbrand universe H in divided into k + 1
disjoint sets as follows.

H=p:psl)... o lt) others.

Procedures are deflned following the syntax of DEC-10
Prolog [10},e.5.,

append([ |,K K}
append{[X[L],M,[X|N]) :- append(L M N).

Throughout this paper, we use P an a finite get of deflnite
clauses defluing data types and procedures. We assume vari-
ables in esach definite clsuse are renamad at oach use no that
there occurs 0o variable names confiict.

1.2. A Fundamental Theorem for Type Loferente In Prolog

Let I and J be Herbrand interpretations. I in said to
cover success sel under a restriction J when it contains the
intersection of the minimum Herbrand model Ay and J.

An Herbrand interpretation J is said to be closed with
respeci to P when for any ground instance of deflnite clause
in P wuch that the bend is in J, any ground stom in the body
is also in J. This means My [V J Is computable within it.

Theorem If J is closed with respect to P, T(I) C T*(7) and
TN J C I, then I covers success et under J.

FProof. T(HN\J C I trom T{I) C T(I}). Let Ts be s
monotone tramformetion of Herbrand intsrpretations such
that T,(I} in T(I}NJ for any [. T ks » least fixpoint
Nr,¢ncr by the Knaster-Tarski Axpoint theorem ([1] p.843,



Theorem 2.1). Because J is ciosed, My [ 7 is & fixpoint of T
Moreover it is the least fixpoint, since Mo N J = JT, T(®)
(1] p.843,Theorem 2.2). Therefor Mg\ J C 1 for any 7
satiafying T,(I) C 1.

Our goal of type inference is to describe an Herbrand
interpretation 7 covering success set under w restriction J
in termn of the types. This is performed by defining an
appropriate transformation T¥ satisfying the theorem sbove.

3. Type Inference in Prolog

In this section, we show how to describe a class of
Herbrand interpreiations in terms of the types firat. Then
we deflne an appropriate transformation aatisfying the con-
dition in the theorem in 2.2. The basic computation method
and the incremeptsl version are presented in 3.4 and 3.5.

3.1. Interpretation by Type
{1) Type Set

A set of ground termp represented by a union of types ia
coiled type set. Type seta are denoted by L, ¢1,43, ... etc.

Example 3.1.1. number | | fist is n type set. B is a type net too.

prlUpz ). LUpslothera is o type set We denote it by any.
{any is not a type but an abbreviation of # type set.)

(2) Type Substitution

Apn ansignment of type sets to variables

E=« Xﬁ:t_,,xgc-_—t_g, i .,X..&:t_,. >
13 called type substitution. A type assigned to a variable X
by L ia denoted by E{X). We assume E(X) = any for any
variable X notl appearng explicitly in the domain of E. A
type substitution £ =< X &8, Xty Na=ty, > s
considered the zame as a 1et of subatitutions

{<Xaet, Xttty > |81 €41, .- tn € Ly}

Example 3.1.2. < Li=list > is a type substitution. This ia
considered the same as @ set of substitution {< Lt >| ¢ is
any ground term in {is¢ }. The empty substitution < > iz &
type substitution assigning any to sny variable.

The ugion of two type substituicns £, and I is a type
substitution E such that E{X) = E,{X}|JE:(X) for any
X and denoted by E,|jE;. The intersection of twe type
gubsatituions £, and E; s a type subatitution I such that
E(X] = E;{X)n Ez(x} for any X and denoted by Iy n E;.

(3) Interpretation by Type

Let By be » bead of a definite clause “Hp - By, Ba, .. ., Bw"
in P and X be a type substitution. Then E{By) is considered
a set, of ground atoms {o(Bp) | ¢ € L}. An Herbrand inter-
pretation I represented by s wnion of all such forma,i.e.

U E(B)

“Bgl-B, By,... Bu''CP

is called interpretation by type.

Example 3.1.3. Let I be an Herbrand interpretation

< > {append([ ], K, K))

< L@, M0, N &b > {append(| X |L}, M, [X|N])).
Then 7 iz an interpretation by type.This is sn Herbrand
interpretation { nppend(] },t,t) | ¢ is any ground term }.

3.1, Restrietion by Type
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An Herbrand interpretation J of the form |J, Ed{A,) in
called restriction by type, where each A; is not necessarily &
head of definite clauses in P,

Example 3.2. J = <> (append(N,[A], M)) U <> (reverse
(L, M)) is & restriction by type.

3.3. A Transformation for Type Inference
(1) Computation of Type Set of Superterm and Subterm

When each variable X in a term ¢ is instanciated to »
ground term in L(X), we compute a type set containing all
ground instances of £ as follows apd denote it by t/E.

8, IL{X)=01for some X in &;
E(X), whentisa variable X;
.3 when t ia & bottom element b of p or

when ¢ is of the form c{ty, 23, .. ., t,),
¢ is a constructor of p and
L/E, 13/E,. . ., 1,/T satisly
the type conditions,
any, otherwise.

tjE =

Example 3.3.1. Let t be [X|L] and & be < L +=liat >. Then
t/L is liat. Let ¢ be [X|L] and L be < >. Then ¢/E ia any.

When a term ¢ containing an occurrence of a wvariable
X ia instanciated to a ground term in ¢, we compute a type
set containing all ground instances of the occurrence of X as
follows and denote it by X/ < 22 >

t, when t i1 & variable X;
Xj < ti=t; >, whentisof the form
cfty, iz, .., ta) L iz p,
¢ is & constructor of p,
X isin t; and
¢ is a Lype set assigned
to the é-th argument ¢,;
, otberwise.

X/ < st >=

Example 3.3.2. Let t ba [X|L] and ¢ be list. Then
X/ < [X|Lj=list >= any,
L} < [X|Ll=tat > = hst.
Let ¢ be [X|L] wad t be number. Then
X/ < [X|Ll¢=number >= 8,
L} < [X|L|e=number > = 8.

(2) Computation of Covering Type Substitution

Let B, By,. .., By, be a sequence of atoms and [ be an
intarpretation by type. A type substituiion is called cover-
ing type substitution with respect to By, Bz, ..., By, and 7
when it contains every substitution ¢ suck that all ground
instances o(B,),o(By),.. ., 0(B,.) are in I. A transformation
T' is defined uaing the covering type substitutions.

Let [ be an interpretation by type | J; £i(A,) and By, By,
....Bm be a sequence of atoms. When By, 5B;,..., B, are
unifiable with A. , A,,... . A;, by an mgu r, we defipe a
type substitution £ on wariabiea in B, B;3,..., Bm #s fol-
lows. Note that we can sssume without Jose of generality
that t contains no varigble in By, By, .. , B,, when a variable
X in By, B;,..., By iv instanciated to ¢ by r, because Lhe
unifisbility shows there i» no cycle.

Whenm =0then E =« >,
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When m > O then

{a) Let t be & term contaiping varisbles in A;, and X be s
variable in By. H r substitutes ¢ for X, then we sasigns
tf E.‘, to X.

(b) Let t be a term containing an occurrencs of X in By and
Y be a variable in A;,. If r substitutes ¢ for Y, then we
assignz X/ < t&=E,(¥) > to tha occurrenca of X.

Then L nasigns the intersection (), t; to X when ¢,2;, ...
are computed a1 type sets st different occurrences of X
in By,B3,...,Bm. (When T amigns ¢ to soms variable in
By, B3, ..., By, we sasume I asnigne § to any variables.)

By [#:184-2n) we denote the union of L for every
pontible combination of A¢,, A, ..., A;, and its mgu r.

Example 3.3.3. Let I be u type interpratation

<> (append(]}, K, K))U

< L9, M=0, N0 > (append([X (L], M, [X|N])
and B, be a vegence of atoms (though it is only one stom)

append(A, B, C).

Then There are two possibitity of unification. Oneis ry =<
A=|)], B=K,C&=K > and the corresponding type substitu-
tion is < A¢=jist >. Anpother is s =< A=[X|L], Be=M,
C+=[X|N] > and < A=9, B0, C=0 > is the correspond-
ing type subatitution. Hence by taking their union,we have

[azpendlABC) | = & Aefist >
{(3) A Transformation T
We define T as folows.
. BBy B
I = U [——F—"1(Bd)

"Bq-B;,8,....Bn"EP

It is obvious that T(J) C T'(I) and T* is monotone for
interpretations by type.

3.4. Computation of Type Inferente

An interpretation by type covering muccess aet under a
restriction J ia called type inference under J. The theorem in
2.2 holds for interpretations by type as well. Wa already have
an appropriate transformation 7¥ so that we can compute
a type inference under a closed restriction J. The outlook
of the basic algorithm for type inference is similar to the
bottom-up computation of minimum Herbrand models.

V=1, 0 =0
repest § =i+ 1; oy == TEIN S antlt Ly © 1
return [;;

Figure 1. Computation of Type Inference

In order to compute type inference under o closed
restriction J, we need T'{7) [ J,which is obtained by using
[21Ba-Ba] (Be)[521(Ba). [521(Bo) is common to alt
repetitions of the typs inference process and can be computed
once and for all before the repetitions.

3.5. incremental Typa Inference

Az atom A is enid to be closed with respect to P when
for any ground instance of the deflnite clause in P such
that the head is & ground instance of A, any recursive call
in the body iz also a ground instance of A. (Hencea sny

non-recursive definite clsuaze and any definite clause with a
head nonunifisble with A are negligible) This means the
set of ground atoms in My of the form of instance of A s
computable by some instances of definite clauses. Note that
p(Xy, Xa,...,X,) in general form is always closed.

Example 5.5.1. An atom append(N, [X|, M) is clovesd. This
menns {append(ty, [t3], ty)[¢;, ty nnd ¢y are ground termu} () Mg
ia tomputable by

sppend([ 1.IY),[Y]).

.Ppend([lelr[Y]v[xlND - lppend(L,[Y],N).

The closednesa of wn atom A cap be checked as follows.

() Check whether the hesd Bp is unifiable with A by a
substitution for A away from A {see section 2). If it i,
decompose the mgu to o o 5 where o is the restriction
to variables in By und 1y is the restriction to variables in
A. If it is not,neglect the definite clause.

{b) Check whether each instance of the recursive call in the
body o{B;) i1 an instance of A and if it is,compute the
instanciation r;. If it ia pot,A is not closed.

The 3ot of all instances of deflnite clauses by o is called
instanciated program for A.

Exampie 3.5.2. Let the atom A be append(A, [UV],C). Thken
the Orst head append{[], L, L) is unifiable with append(A, [L7],
Ciby < L&Y > o < AE|), V&Y, C&[Y] >, The second
head append([X|L)], M, [X|¥]} is unifiable with append(A, [/,
Cl by < MY > o < Ae=[X|L], U&Y,C={X|N] snd
the instance append(L, [Y], N} in the body is also an instance
of append(A, [/}, C) by < Ae=L, U&Y,CeN >,

append({ ],[Y},[Y]).

apmnd([le}r[Y]!ixlND - ﬂPPend(L:[Y],N)
in the instancated program for append(A, U], C).

An stom asatisfying the following condition is called
closure of A with respect to P and deroted by A.

{n) A is closed with respect tc P,
{b) A is an instance of A and
{c) A is an instance of any 'y watiafying (a) and (b).

Example 3.5.3. reverse{A, B') is & closure of reverse(A, [V|B]).

The closure is uniqus up to renaming and A is closed iff
A = A modulo renaming. [See [7] for the proof of uniqueness
and the algorithm to compute the closure)

Now suppose we would like to computis type inference
about p under a restriction bz type <> pitl.ta,...,t"j
and denote it by T{p{ts,ta,...,tn)). Let Ay Ay, .. A be
nop-recursive calls in the bodies of instanciated program for
plts, tz, -, ta). (if some B; = g(#:,42, . ..4mm) s0d B; =
qley, o5, ..., 2},), we distinguish the predicate symbals by ¢
and ¢z and assume both of them hava the same definite
¢lnuse program as 4.} Then we compute T{p{f,, %3, . ., £ )) by
initialiting Lo to T(A )b} T{Az)W--- W T(A), whete each
T(A;) is computed recursively.

= =1 o = T{AD W T (A} Y- W T (A
repeat i =1+ 1; Ly =T(J)umll Iy C L
return I‘—Ig;

Figure 2. Incremental Type Inference



If there is no mutual recursion,this process stops. The
baxe case is the type inference for predicaies which call no
other predicate,e.g. append.

Example 3.5.4. Supposs we compute T{reverse(L, M)). The
computation procesde by initialiting Iy to T(append{N, [X],
M) us follows.
o =< > (append([}, [Y],[Y)U
< Lelist, Ne=list > (append(|X|L], Y], X |N]))
L=l <> (reverae({},| DU
< Xt=0,L&=, M0 > (reverse([X|L), M)},
L= IoU <> (reverae((], 1)U
< Leslist, Milist > (reverse{[X|L], M))
and Iy = f;. Hence the type inference of reverse in
<> (reverse((],( DU
< Litligt, Melist > (reverse([X|L), M)

Recursive computation of T{A;) is sometimes unneces-
sary. For example when A, is an atom g(X;, X3,..., X}
in general form and T{g(X,,X;,..., X)) is already com-
puted before, then recomputing it al! the way slows down
the whole computation. As another example, when soma
A; = qlay,83,...,8) and A; = g(s},a},..., ), we dis-
tinguish their predicate symbols by q;, and g;. But if
qlay, 8z, ., ) = q(s, 4%, .. ¥,) modulo renaming, it turns
out to compute the same result twice snd the distinetion is
uteless. In order to avoid the defficisncy and acceralate the
convergence, we store the results computed before for each
closed atom, or more precissly for esch instancisted program,
and utilize them immesdintely if possible.

4. Verifienilon of Frolog Programa Uslag Typs Information

Type infarence is used effectively in our verification ays-
tem [5],[6},[7). In verification we sometimes simplify the
theorem to be proved by asmuming that some atom is true
or falee. In such & cese some information sbout variables left
in the simplified theorem may be loat and we need to retain
it to prove the right theorem. This problem was first noticed
by Boyer and Moore [2] in their theorem prover(BMTP) for
pure LISP. The same problem arises in verifleation of Prolog
programs.

Example 4. Suppose wa prove s theorem

YU, V,C(3Breverse(C, [V|B]) D3 reverace([U|C], [V|B']))-
Because of the definition of reverase, it is transformed to

v U,A,Y,C (3B reverse{C,[V|B]) DO

3B",D {reverse(C,D) Aappend(D,[U],[V[E*]}})

Now let us decide D to be [V|B]. This decision is sound and
we have » new subgoal

v ULV,C B {reverse(C,[V[B]) >

3B (reverse(C,[V|B]) Asppend([V[BJ,[U],[VIB']).

Here we can utilize the antecedant. H reverse(C,[V|B]) s
false,the theorem is trivially true. Hence we can only need
to consider the case reverse(C,(V|B]) iz true. By replacing
reverse(C, [V |B]) with true,we have s new subgosl

¥ U,V,B 3B' appand([V|B),[V],[V|B'}}
which is further transformed to

¥ U,B 3B’ append(B,[U],B")
hecause append([V|B), [T}, [V{B']) iff append(B, U], B"). But
this transformation has generated a too strong theorem and it
is in fact not true. (For example, an instance VI7 35 append(0,
[t], B*) is wrong.) In order to keep the theorem right, we
need to add type information as antecedants,ie. when we
derive a subgosl sssuming reverse(C, [V|B]) true, we have
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information fis2(5). Our new subgoal should be

¥ U,V,B (list(B) D 3B append([V|B},{U}, [V{B']))
Thin in provable by induction and we complete the proof.

5. Discussions

Several works are done for type inference in Prolog
[3],8),[9] from different point of views. In our approach, both
syntactical and semantical concepts appear. It is semantical
whether a type inference / covers a suocess set, while it is
syntactical and closely related to the well-typedness in [3],[9]
whether a restriction J is closed. Moreover they are related
strongly through the crucial condition that J must be closed
for / to be computed. Though our approach is still monomor-
hic, it is new in the following respects.

(@) Our type inference describes a superset of the success
set by associating a type substitutions with each definite
clause, which gives some accuracy to the types infered.

(b) Our approach solves the problem under a syntactical
restriction, which is utilized to infer types more minutely.

(c) Our type inference is not restricted to that for arguments.
Type inference can be done for any variables in any
procedure call which is not necessarily in general form.

6. Conclusions

We have shown a type inference method for Prolog pro-
grams and its application to verification. This type inference
method is an element of our verification system for Prolog
programs developed in 1984.
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