
Marc Eisenstadt
Human Cognition Research Laboratory

The Open University
Milton Keynes, England

ABSTRACT

This paper describes new tracing and debugging
fac i l i t ies for logic prograramming (Prolog in
particular), based on a selective retrospective
analysis of an exhaustive run-time trace. The
tracer uses an enriched repertoire of program
success/failure 'symptoms' to improve the clarity
of the trace, and identifies characteristic
'symptom clusters' in order to work out the true
cause of a bug.

INTRODUCTION

In general, of course, the user may not want
to observe program execution in such detai l . The
point of PTP's original 'symptomatic trace'
fac i l i t y was to develop a detailed analysis of
Prolog program behaviour so that it could then be
subjected to semi-automated inspection. The
following sections describe how the latest
implementation of PTP hides these details from the
user while s t i l l capitalizing on the information
contained therein.

In the course of debugging Prolog programs,
the user can easily be overwhelmed by a plethora of
tracing information. An overview of the behaviour
of the user's program is sorely needed before
engaging in any kind of single-stepping act iv i ty,
even when a 'skip/retry' fac i l i ty is provided. In
addition, users can benefit from some intell igent
tracing and debugging assistance, as amply
demonstrated by the work of Shapiro (1982). The
progression towards intell igent tracing fac i l i t ies
involves three main facets:

a) Symptomatic behaviour: A more detailed
analysis of the behaviour of Prolog programs needs
to be provided. This is because the four
behaviours (' c a l l ' , ' e x i t ' , ' f a i l ' , 'redo')
provided by existing trace packages are
Insufficient to provide clear signposts indicating
the most l ikely cause of program fai lure.

b) Zooming: Once the behaviours are
elaborated, the user needs to be protected from
gory details on the one hand, yet allowed easy and
rapid access to the relevant details as needed.

c) Suspicious symptom clusters: Characteristic
'symptom clusters' In the program trace need to be
identif ied, so that particular kinds of behaviour
can be singled out as being highly suspect.

SYMPTOMATIC BEHAVIOUR

The 'PTP' Prolog trace package (Eisenstadt,
1984) distinguishes among several different types
of Prolog program failure (e.g. subgoals fai led,
no more backtrack solutions, backtrack encountered
cut, no definit ion, wrong ar i ty , variable
unification fai led, system primitive fai led). In
addition, PTP displays resolving clause numbers
along with variables instantiated when the clause
is attempted (rather than just when it exits).

Let's run the code through PTP. The symbol
'? ' below means 'attempting subgoal'. Failure due
to inner subgoal failure is indicated by ' - ' • The
symbol ' X ' is a concatenation of the symbol '> '
('Entering the body of resolving clause whose head
is shown') and the symbol '< ' ('This clause didn't
work, looking for next resolvent'). The notation
'S1/S2' refers to an invocation starting at trace
step number S1 and finishing at trace step number
S2. A number enclosed in braces, e.g. {2},
indicates which specific clause has been
considered. User input to the 'PTP:' tracer prompt
is shown underlined. Output from PTP is as shown,
with '%' comments added retrospectively.

718 M. Eisenstadt

M.Eisenstadt 719

'sp l i t ([2],2,_139,_140)' should have succeeded.

b) The 'singleton suspect' subgoal failures
(aside from the top level goal) differ only in
terms of the list-lengths of their f i r s t arguments.
Therefore, it is assumed that the root cause of a l l
these failures is identical.

c) A 'zoom' of steps 15-24 is performed
internally. The displayed version would have
looked l ike this:

d) At this point, a characteristic symptom
cluster is detected. The kernel of this cluster is
the following four element collection:

This kernel matches a known cluster pattern named
'subgoal fa i ls after a l l resolving clauses tried
and fa i led ' .

e) The detection of the cluster invokes a set
of rules which try to see whether there is a shared
pattern underlying the failure of each clause.
Intui t ively, the analyser is looking for why a
Prolog rule, viewed abstractly as a 'cases
statement', has ' fa l len off the end'. A further
internally-performed zoom reveals the following
kernel pattern:

(Line 3 of the above pattern corresponds to trace
steps 20-23, which are analogous to steps 12-15 of
the trace presented earlier in the ZOOMING
section.) This pattern provides sufficient grounds
for the remainder of the messages displayed in the
example. The declarative nature of this analysis
enables it to work on more perverse definitions of
' s p l i t ' , such as ones where the greaterthan and
lessthan tests come after the recursive invocation!
The analysis can be performed even in the latter
case because the internal zoomer inspects behaviour
in terms of the program's declarative reading
(which looks very similar in both the normal and
perverse cases) before delving into sequence
details.

Other cluster symptoms currently recognized
are shown below:

* under-specified-unification (occurs for
example when a variable accidentally can unify with
either a l i s t or an atom)

* infinite-loop-caused-by-loop-in-db
(asserting 'tallerthan(joe,Joe)' w i l l cause
problems for naive transi t iv i ty code)

* infinite-loop-caused-by-left-recursive-rule,
e.g. foo(X,Y):-foo(X,Z),foo(Z,Y).

COSCLUSIONS

'Retrospective zooming' enables a trace to
remain fai thful to the purely declarative reading
of a logic program, yet allows appropriate probing
of the procedural aspects as well. Suspect code
can be identified by an empirical investigation of
both single-line symptoms and, more importantly,
clusters of co-occurring symptoms.

Our earlier work on automated program
debugging (Laubsch & Eisenstadt, 1982) relied on
the notion of a 'canonical effect description'
which could be used to compare actual program
behaviour with desired behaviour. In contrast to
th is, PTP, (l ike the system of Shapiro, 1982)
leaves the notion of 'des i rab i l i l i t y ' of program
behaviour up to the programmer during debugging.
PTP differs from Shapiro's work in maintaining an a
priori repertoire of 'suspect' program behaviour,
which i tse l f is based upon a 'bug taxonomy'
developed in the course of pi lot studies of
experienced Prolog programmers. The 'cluster
suspects' detectable by PTP, while s t i l l in their
earliest incarnation, have enabled the rapid
development of a practical and
empirically-motivated tracing and debugging
fac i l i ty for Prolog.

ACKNOWLEDGEMENTS

This work is supported by the UK Science and
Engineering Research Council, Grant number
GR/C/69344.

REFERENCES

[1] Eisenstadt, M. A powerful Prolog trace
package. In T. O'Shea (Ed.), Advances in
Ar t i f i c ia l Intelligence (ECA1-84). Amsterdam:
Elsevier/North-Holland, 1984.

[2] Laubsch, J . , & Eisenstadt, M. Using temporal
abstraction to understand recursive programs
involving side effects. Proceedings of the
National Conference on Ar t i f i c ia l Intelligence
(AAAI-82"), Pittsurgh, PA. 1982.

[3] Shapiro, E.Y. Algorithmic program debugging.
Cambridge, MA: MIT Press, 1982. * uncatered-for-case-with-bad-ordering

(appropriate rule exists, but is not encountered
due to miisordering)

* uncatered-for-case-with-rule-missing (l ike
the 'uncovered goal' of Shapiro, 1982, but has
specialists to identify missing tests for (a) null
l i s t , (b) atom, (c) last element)

