RETREDSPECTIVE ZOOMING:
A INOVLEDGE BASED TRACIEC AND DEBUCCIEG METEODOLOGCY FOR LOCIC PROCRAMMING

Marc Eisenstadt
Humen Cognition Research Laboratory
The Open University
Milton Keynes, England

ABSTRACT

This paper describes new tracing and debugging
facilities for logic prograramming (Prolog in
particular), based on a selective retrospective
analysis of an exhaustive run-time trace. The
tracer uses an enriched repertoire of program
success/failure 'symptoms' to improve the clarity
of the trace, and identifies characteristic
'symptom clusters' in order to work out the true
cause of a bug.

NTRODUCTION

In the course of debugging Prolog programs,
the user can easily be overwhelmed by a plethora of
tracing information. An overview of the behaviour
of the user's program is sorely needed before
engaging in any kind of single-stepping activity,
even when a 'skip/retry' facility is provided. In
addition, users can benefit from some intelligent
tracing and debugging assistance, as amply
demonstrated by the work of Shapiro (1982). The
progression towards intelligent tracing facilities
involves three main facets:

a) Symptomatic behaviour: A more detailed
analysis of the behaviour of Prolog programs needs
to be provided. This is because the four
behaviours ('call', 'exit', 'fail', 'redo')
provided by existing trace packages are
Insufficient to provide clear signposts indicating
the most likely cause of program failure.

b) Zooming: Once the behaviours are
elaborated, the user needs to be protected from
gory details on the one hand, yet allowed easy and
rapid access to the relevant details as needed.

c) Suspicious symptom clusters: Characteristic
'symptom clusters' In the program trace need to be
identified, so that particular kinds of behaviour
can be singled out as being highly suspect.

SYMPTOVATIC BEHAVOUR

The 'PTP' Prolog trace package (Eisenstadt,
1984) distinguishes among several different types
of Prolog program failure (e.g. subgoals failed,
no more backtrack solutions, backtrack encountered
cut, no definition, wrong arity, variable
unification failed, system primitive failed). In
addition, PTP displays resolving clause numbers
along with variables instantiated when the clause
is attempted (rather than just when it exits).

In general, of course, the user may not want
to observe program execution in such detail. The
point of PTP's original 'symptomatic trace'
facility was to develop a detailed analysis of
Prolog program behaviour so that it could then be
subjected to semi-automated inspection. The
following sections describe how the latest
implementation of PIP hides these details from the
user while still capitalizing on the information
contained therein.

ZOOMING

In the new PTP, the uker pees che end results
in advance, and can then “zoom’ in successlvely
greater detall oo subgoals of interest. Consider
the following (buggy) quicksort program:

qeore{[], []J.
quort{[X|¥Xs], Resulr) :-
aplic(Xs, X, Lo, Hi),
qeort(Lo, Sorted Le),
qeort{Hi, Sorted Hi),
append(Sorted Lo, {X|Sorted Hi], Result).

split{{X|Xs], Crit, [¥X|Lo], Hi) :-
X < Cric,
split(Xs, Crit, Lo, Hi).
splic{|X|Xs], Crit, Lo, [X[HL]} :~
Cric > X,
eplic(Xs, Criz, Lo, Hi).
eplic([], Crit, [], []}-

append ([X|Xs],Ys,[X{Za])}:~
append{Xe,¥n,28)},
append({],Ys,¥s).

Let's run the code through PTP. The symbol
'?' below means 'attempting subgoal'. Failure due
to inner subgoal failure is indicated by '-'+ The
symbol 'X' is a concatenation of the symbol '>'
('"Entering the body of resolving clause whose head
is shown') and the symbol '<' ('This clause didn't
work, looking for next resolvent'). The notation
'S1/S2' refers to an invocation starting at trace
step number S1 and finishing at trace step number
S2. A number enclosed in braces, e.g. {2},
indicates which specific clause has been
considered. User input to the 'PTP:" tracer prompt
is shown underlined. Output from PIP is as shown,
with '%' comments added retrospectively.

718 M. Eisenstadt

PTP: gsort{[2,1,3],R).
1: 7 qumort{[2,1,3],_275)
38: - geort(f2,1,3],_275) {2}
X Bombed our, 38 steps. Only clause 7 ased.

SUBGOAL FAILURES:

7/16: eplit{[3],2, 184, 1B5)

3/36: epiir(l},3],Z,_18%,_185)

1/38: qeore([2,1,3],_275)
I Why should “eplit’, invoked at step 7,
X bomb out? Let’s invoke the zoomer:

PTP: 5229(?)' ¥ home in on trace step 7
7 ? splic{{3),2, 127, _128)

8/11: ><eplic{[3],2,{3|_127],_128) {1}

12/15: ><mplit([3],2, 127,{3]| 128]) {2}

16: - splic([3],2, 127, 128)

% Claume | is tried at step 8, and loses (OK).
% Notice the partly-instantiated third arg ashowm
X at step 8. But why did clause 2 of "mplit” fall?

PTP: zoom{l2). X cleuse 2 of split is at step 12
12: > splice([3],2,_127,(3}_128)) {2}
13: @ 23 % ‘@’ means syetem prim
la: —--2>3 % '——" means prim loses
15: < split([3],2,_127,13{_128)) {2}

%Zwhy did 1 test 2 > 3 at step 137 Aha...
X that wase my nistake... 8o 1t losen

% and of couree baile out of clause 2

Notice that the user has had to direct the
process only twice to get to the culprit, by
invoking ‘zoom{7) &nd ‘zoom(12)’. This would have
been true regardless of recursion depth, 1.e,
independent of the length of the list imput to
qeort at the top level. This ‘constant 2oom time’
depends upon (a) the user belng informed of
‘suspect’ subgoal failures from the innermost one
outwards, and (b) the user declding which of these
fallures 1s worthy of further perusal.

The retrospective zoom facility aliows che
user to catch a glimpee of overall prograa
beheviour, and to make an informed decision on the
basls of this selective view. The next section
describes how PTP takes some of the debugping
burden away from the programmer.

SUSPICIOUS SYMPTOMS

Two classes of suspicious code are pinpointed
automatically by PTP for the user’s bepefir: (a)
‘singleton Buspects’, which can be derived directly
from symptoms exhibited in gingle lines of the
trace, and {b) "cluster suspects’, which are
suggested by the occurrence of characteristic
clueters of symptome distributed appropriately
through the trace.

Singleton Suspacte

The ’singleton suspect” analyser is automatically
invoked when top-level goals are presented to the
‘PTP:’ prompt. The analyser walks over the full
(internally stored) trace, and looks for missing
definitions, wreng arity, unresolved goals, subgoal
failurea, and false (or wrong) successes. There ia

a one-to-one mepplug from tracer syabols to
singleton suapects, 80 theae are emsy (o collect
and point out to the user. False or wrong successes
are pointed out 1f PIP 1s given prior assertions
such ap ‘expect{georct((2,1,3],[1,2,3]))'. The
analysis becomes more interesting for “cluster
suspects’, since the interaction of failure and
success patterns needs to be considered.

Ciuster Suspects

The complete trace sequence, with ite symptom
symbole and indenting pattern, forme a
characteristic “trace footprint’, which can be
analysed empirically to identify particular causas
underlying observed program behaviour. The
empirical analysis is done by using the PTP
‘syaptomn’ and ‘zoom’ facilitles described above,
and noting which patterns are indicative of deeper
caused of fallure. This analysis uses a repertoire
of ‘bug=cliches’ ctepresenting PTF'e best guess
about particular program failures. These cliches
are used to ilnvoke a message frame instantiated
with the aspecifics of the goal sequence to help the
user ldentify the source of the problea.

To illustrate cluater symptoms, and PTP'm
explanation thereof, let’s fix the offending line
of code discovered earlier in clause 2 of "aplit’,
8o that it reads ‘X > Crit’ instead of “Crit > X,
and tTy another test Tun:

PTP: qaort(f2,1,3,2]1,R}.
1: ? qaort([Z.l.B.Z],_}Bl)
38: - geore({2,1,3,2],_331) {2}

SUBGOAL FALLURES:

15/24: split((2],2, 224, 225)
7/28: split(|3,2},2, 224, 225)
3/36: eplit([1,3,2},2, 224, 225)
1/38: qsort{[2,1,3,2], 33L)

PTP: why(24).
I.E. WHY DID THE INMVOCATION OF “wplic’

AT STEP 15 FAIL AT STEP 247

A SHARED FAILURE PATTERN HAS BEEN OBSERVED IN:
(A) CLAUSE 1 OF eplit/4 (STEPS 16/19},
(B) CLAUSE 2 OF aplit/4 (STEPS 20/23)

THE FAILURE PATTERN 1S: '"FAILED PRIMITIVE".

IN (A) THE SUSPECTED TROUBLESOME INVOCATION WAS:
17: 22

IN (B) THE SUSPECTED TROUBLESOME INVOCATION WAS:
21: 22

POSSIBLE UNDERLYING CAUSES ARE:

i) (SOME OF) THE TROUBLESOME INVOCATIONS ARE WRONG
11} ADDITIONAL CASES HAVEN'T BEEN CATERED ¥FOR

Zfnd of running example

Cause {11) above is the culpric: a ‘>=’ test is
needed to catch the missing case. Here is how the
‘cluster suspect’ ia {dentified:

a) The user’s request "why{24)’ is taken at
axpreasing displessure at the subgoal
invocation/failure between steps 15 and 24.

Therefore, it i assumed that the subgosl

'split([2],2,_139,_140)" should have succeeded.

b) The 'singleton suspect' subgoal failures
(aside from the top level goal) differ only in
terms of the list-lengths of their first arguments.
Therefore, it is assumed that the root cause of all
these failures is identical.

c) A 'zoom' of steps 1524 is performed
internally. The displayed version would have
looked like this:

15: 7 eplic([2],2, 139, 140)
16/19: ><aplit([21,2,02] 139], 140) {1}
20/23: ><eplit({2],2, 139,[2| Ts0}) {2}
24: - split(12),2, 139, 14D}

d) At this point, a characteristic symptom
cluster is detected. The kernel of this cluster is
the following four element collection:

br2r, > {1}, > {2}, -1

This kernel matches a known cluster pattern named
'subgoal fails after all resolving clauses tried
and failed'.

e) The detection of the cluster invokes a set
of rules which try to see whether there is a shared
pattern underlying the failure of each clause.
Intuitively, the analyser is looking for why a
Prolog rule, viewed abstractly as a 'cases
statement', has 'fallen off the end'. A further
internally-performed zoom reveals the following
kernel pattern:

(Line 3 of the above pattern corresponds to trace
steps 20-23, which are analogous to steps 12-15 of
the trace presented earlier in the Z00VING
section.) This pattern provides sufficient grounds
for the remainder of the messages displayed in the
example. The declarative nature of this analysis
enables it to work on more perverse definitions of
'split', such as ones where the greaterthan and
lessthan tests come after the recursive invocation!
The analysis can be performed even in the latter
case because the internal zoomer inspects behaviour
in terms of the program's declarative reading
(which looks very similar in both the nomal and
perverse cases) before delving into sequence
details.

Other cluster symptoms currently recognized
are shown below:

* uncatered-for-case-with-bad-ordering
(appropriate rule exists, but is not encountered
due to miisordering)

* uncatered-for-case-with-rule-missing (like
the 'uncovered goal' of Shapiro, 1982, but has
specialists to identify missing tests for (a) null
list, (b) atom, (c) last element)

M.Eisenstadt 719

* under-specified-unification (occurs for
example when a variable accidentally can unify with
either a list or an atom)

* infinite-loop-caused-by-loop-in-db
(asserting 'tallerthan(joe,Joe)' will cause
problems for naive transitivity code)

* infinite-loop-caused-by-left-recursive-rule,
e.g. foo(X,Y):-foo(X,Z),foo(Z,Y).

OOSOLUSONS

'Retrospective zooming' enables a trace to
remain faithful to the purely declarative reading
of a logic program, yet allows appropriate probing
of the procedural aspects as well. Suspect code
can be identified by an empirical investigation of
both single-line and, more importantly,
clusters of co-occurring symptoms.

Our earlier work on automated program
debugging (Laubsch & Eisenstadt, 1982) relied on
the notion of a 'canonical effect description’
which could be used to compare actual program
behaviour with desired behaviour. In contrast to
this, PTP, (like the system of Shapiro, 1982)
leaves the notion of 'desirabilility’ of program
behaviour up to the programmer during debugging.
PTP differs from Shapiro's work in maintaining an a
priori repertoire of 'suspect' program behaviour,
which itself is based upon a 'bug taxonomy'
developed in the course of pilot studies of
experienced Prolog programmers. The 'cluster
suspects' detectable by PTP, while still in their
earliest incarnation, have enabled the rapid
development of a practical and
empirically-motivated tracing and debugging
facility for Prolog.

AGNONEDGEVENTS

This work is supported by the UK Science and
Engineering Research Council, Grant number
GR/C/69344.

REFERENCES

[1] Eisenstadt, M. A powerful Prolog trace
package. In T. OShea (Ed.), Advances in
Artificial Intelligence (ECA1-84). Amsterdam:
Elsevier/North-Holland, 1984.

[2] Laubsch, J., & Eisenstadt, M. Using temporal
abstraction to understand recursive programs
involving side effects. Proceedings of the
National Conference on Artificial Intelligence
(AAAI-82"), Pittsurgh, PA. 1982.

[3] Shapiro, E.Y. Algorithmic program debugging.
Cambridge, MA MIT Press, 1982.

