
P R O L O G C O N T R O L R U L E S 

Lee Naish 

Department of Computer Science 
University of Melbourne 

Parkville 3052 
Australia 

ABSTRACT 
We present an overview of the many control constructs and 

heuristics used by PROLOG systems with extra control facilities. 
Two features of computations rules are used to evaluate and classify 
them. They are detecting failure quickly (where it is unavoidable) 
and avoiding failures. By examining current systems in this light, we 
reach conclusions concerning deficiencies in performance, and how 
they may be overcome. We propose an idealized computation rule 
which uses a hierarchy of goals and a breadth first component. 

1. INTRODUCTION 
There are now many PROLOG systems with more control 

facilities than conventional implementations. The design of these 
systems has been justified by examples of how programmers can 
implement efficient algorithms using simple logic. [Naish 85b] went a 
step further and showed how some control can be generated 
automatically In this paper, a shortened version of [Naish 84a], we 
take a much broader view. We examine many proposed and 
implemented control primitives and heuristics to identify their 
strengths and weaknesses. We use the term control rule for these 
individual components of complete computation rules Our attention 
is restricted to control rules for S'LD resolution. We hope the 
discussion and conclusions here will contribute to the design of logic 
programming systems with better control components in the future. 

The main part of this paper introduces some general properties 
that we should like computation rules to exhibit. The extent to 
which each control rule contributes to these properties is discussed 
and used for a simple classification. Finally, an idealized 
combination of control rules is suggested. First, however, we give 
some programming examples which will be referred to in the 
discussion. 

2. PROGRAM EXAMPLES 
The following selection of programming examples from the 

literature illustrates the kinds of problems that can be solved 
efficiently by using a flexible control strategy. 

These procedures define the permutation relation on lists. 
[Block 83] shows how difficult it is to write a definition of perm 
which works with either argument bound using conventional 
PROLOG. If perm is called with the second argument a variable, 
the execution of delete should proceed ahead of perm but if the first 
argument is a variable, perm should proceed ahead of delete. 

Using perm, we can write a program to solve the eight queens 
problem. The desirable form of control discussed most is for perm 
and delete to generate the list of queen positions one at a time and 
for safe and nodiag to test if the new queen position is safe. If the 
arguments in the initial call to perm are swapped, it is more efficient 
to delay calls to delete and = \ = until the end, then do the calls to 
delete, resuming the instantiated calls to = \ = at each stage. 

This program can be used to check whether two trees have the 
same list of leaf tags The desired form of control is for the two calls 
to leaves to coroutine. Whenever one further instantiates the list of 
leaf tags, the other should check if the newly added tag is the next 
tag in the other tree. Either call can be the generator at each stage. 
This program can easily be extended to any number of trees. 

grandparent(G, C) : parent(P, C), parent(G, P). 
ancestor)!*, C) :- parent(P, C). 
ancestor)A, I)) :--• parent(P, I)), ancestor)A, P). 

Here we define the grandparent and ancestor procedures using 
parent, which we assume is defined with a collection of facts. 
Grandparent can be used to find the grandparents or grandchildren of 
a given person. However, it is most efficient to reverse the calls to 
parent when finding grandchildren. 

Ancestor poses some rather difficult optimization problems. For 
finding the ancestors of someone, parent should always be called first. 
Calling ancestor first causes an infinite loop. In fact, infinite loops 
can always occur if someone is their own ancestor. There are even 
more difficulties using the program for finding descendants. 
[Naish 84a] discusses this further, 

3. FEATURES OF COMPUTATION RULES 
(1) The one obvious overriding property that we wish computation 

rules to exhibit is to minimize the size of the search tree. 
Unfortunately, there are very few cases where we can even find 
heuristics directly related to the size of the tree. Therefore, in 
the next two paragraphs we introduce heuristics which are 
reasonably general, but are useful for the design and 
classification of implementable control rules. 

(2) For goals which can finitely fail, computation rules should select 
atoms which lead to detecting failure quickly. Several 
heuristics and some theoretical work have contributed to this 
area. 

(3) There is a slightly more subtle rule which applies more to goals 
which have solutions. Although the success branches of the SLD 
tree are fixed, the number and length of other branches is not. 



L Naish 721 

The rule, therefore, is to avoid creation of failure branches 
(and infinite branches) as much as possible. 

4. CONTROL RULES 
We now discuss many of control rules mentioned in the 

literature. They are put into three groups, according to the features 
mentioned above. 

4.1. MINIMIZING THE SEARCH TREE SIZE 
Unsurprisingly, this section is fairly small, though with more 

special case analysis, it could probably be expanded in the future. 

4.1.1. Select Calls Which FaU 
Sub-goals which match with no clauses should clearly be selected 

immediately. This rule was implemented in METALOG 
[Dincbas 80], which continually tested whether any atoms had no 
matching clauses. No method has yet been found for implementing 
this rule without significant overheads. 

4.1.2. Select Deterministic Calls 
By deterministic calls, we mean those which match with only 

one clause. Selecting deterministic calls is optimal for goals with 
some solution(s). [Naish 85b) shows how control information can 
increase determinism which can be detected at compile time. We 
discuss this further in the section on wait declarations. 

4.1.3. Database Queries 
Given a goal consisting of calls to database procedures (which 

only contain facts), [Naish 85b] gives a formula for the number of 
calls needed to find all solutions. It is a heuristic, based on some 
assumptions about probabilities of various matches being 
independent, etc. This formula can be generalized to take account of 
the number of unifications performed, which depends on the form of 
indexing used [Naish 85a] It can be minimized to find the best 
computation rule Calls to large database procedures should 
generally be delayed until less expensive calls have been done. This 
generalizes the methods of [Warren 81] and [Stabler 83] and produces 
the best form of control for grandparent. 

4.2. DETECTING FAILURE 

4.2.1. Call Tests as Soon as Possible 
Tests fail more often than other calls. Thus, to detect failure 

quickly, they should be called as soon as possible. Programmers 
generally have a good idea of what calls are tests and [Naish 85b) 
and [Naish 85a] suggest ways of recognising tests automatically. The 
proposed definition is that a test is a) deterministic and does not 
construct any variables when it is sufficiently instantiated and b) has 
an infinite number of solutions otherwise. One problem is that if 
tests are called too soon, they usually create failure branches. This 
is normally solved by delaying the call if certain variables are 
uninstantiated When they become bound, the test should be 
resumed quickly. 

4.2.2. Eager Consumers 
IC-PROLOG's eager consumer annotations [Clark 79] can be 

used to call tests quickly without creating extra failure branches. 
Placing an eager consumer annotation on some variable in a sub-goal 
prevents that sub-goal constructing the variable. The whole 
computation of the subgoal is delayed if an attempt is made to 
further instantiate the annotated variable. This has the unfortunate 
consequence of delaying instantiated tests in cases where the 
annotated sub-goal calls several tests. For example, if safe is made 
an eager consumer in the eight queens program, only one call to 
nodiag is called when a new queen is added. A similar problem is 
caused by the restriction that only one sub-goal can be a designated 
consumer of a particular variable. One advantage of eager 

consumers is the "inheritance" of the annotation to sub-terms. This 
is useful for the sameleaves program. 

4.2.3. Fairness 
[Lassez 84] shows that SLD resolution is complete with respect 

to finite failure, assuming a fairness condition. Depth first rules and 
rules for most primitives which delay calls are unfair. There are two 
aspects of fairness which could affect practical systems. The first 
concerns avoiding infinite loops and detecting failure where possible. 
A fair computation rule could be used when no better heuristics can 
be found. The second aspect concerns completeness. Several control 
primitives can delay calls indefinitely, causing incompleteness. With 
a fair computation rule, all calls would be done eventually. 

4.2.4. Breadth First 
The simplest way to ensure fairness is to use a breadth first 

computation rule Usually, generators and tests produce and 
consume (respectively) data structures at similar rates. Typically, 
one level of recursion corresponds to one level of functor nesting. 
This implies that a breadth first rule would have a fairly small delay 
between generating and testing, so failures are found relatively 
quickly Unfortunately, a strict breadth first rule is very poor at 
avoiding failure, especially when tests are called before generators. 

4.2.5. Pseudo Parallelism 
IC-PROLOG's // connective has a declarative reading of "and", 

but the two (or more) sub-goals it connects are computed in pseudo-
parallel. The computation rule alternates between selecting atoms 
from each of the different sub-computations. The same control has 
also been used as an example of the power of the meta-interpreter 
approach to control used by Two-Level PROLOG [Porto 84], If // is 
used for all and-connectives, the result is a fair computation rule. 
However, if one sub-computation is a generator and the other 
contains several tests, the execution of the tests tends to lag behind 
the generator. 

4.2.0. Avoid Left Recursion 
This is a goal ordering heuristic, suggested for MU-PROLOG in 

[Naish 85b]. Actually, left recursion is desirable in some situations, 
such as perm in our alternative eight queens example. The problem 
is that left recursion is a pathological case for failure detection with a 
depth first rule, which most current systems use. With a breadth 
first control rule, failure detection is improved and left recursion is 
not a problem. 

4.3. AVOIDING FAILURE 

4.3.1. Freese 
The main reason for delaying sub-goals in PROLOG is to avoid 

creating failure branches and there are very many primitives which 
enable this. The simplest is geler (freeze) of PROLOG II 
[Colmerauer 82]. Freeze is used to delay a sub-goal until a particular 
variable is bound to a non-variable Because it only delays a single 
call, the eight queens can be made more efficient than with eager 
consumers, though freeze is needed for four different sub-goals. 
However, because the control is not inherited to sub-terms of the 
variable, the same leaves program cannot easily be made efficient. 
Also, because freeze only waits for one variable, it is less useful for 
multi-use procedures and cannot make perm work in both ways. 

4.3.2. Lasy Producers 
IC-PROLOG's lazy producers provide a powerful method of 

avoiding failure and, to a lesser extent, detecting failure. A lazy 
producer annotation on a variable in a sub-goal prevents all other 
calls from constructing the variable. When another call attempts to 
construct the annotated variable, that call is delayed. The producer 
is then executed until it binds the variable, then the delayed call is 
resumed. The choice of which call is resumed does not help avoid 



722 L. Naish 

failure but, if the call is a test, the choice helps detect failure. This 
overlaps with the control provided by eager consumers and means 
that coroutining between a generator and multiple tests is still 
difficult to implement 

4.3.3. Walt Declaration! 
Under this heading, we include the wait declarations of MU-

PROLOG [Naish 84b) and the algorithm used for generating them 
automatically [Naish 85b]. We believe it is a major contribution to 
avoiding failure. The effect of wait declarations is local, like freeze, 
but they can be used to delay a call until one of several argument 
sets is sufficiently instantiated. This added flexibility makes it 
possible for procedures such as perm to work in multiple ways. The 
heuristic also produces the best form of control in goals like the 
following. The failure producing subgoals (safe, nodiag and perm) are 
delayed by automatically generated wait declarations whereas delete 
is not. 
? safe(L), nodiag(N, 1, L), perm(Z, L), delete(N, [1,2,3,4,5,6,7,8], Z). 

Automatically generated wait declarations also interact very 
favourably with the rule for selecting deterministic calls first. With 
the eight queens program, calls to all procedures except delete are 
forced to be deterministic and this can easily be detected by a pre­
processor. Using this information, our alternative eight queens 
control can be automated. However, there are situations where 
generated wait declarations delay calls unnecessarily or where wait 
declaration cannot be generated at all (such as ancestor). Both 
these problems can be overcome by fairness The calls should just be 
given a very low priority, rather than being delayed indefinitely or 
not handled at all. With this control, parent would always be called 
before ancestor. 

4.3.4. Delaying System Predicates 
In IC-PROLOG, partially instantiated calls to system predicates 

such as < act as generators, often creating failure branches. In MU-
PROLOG, they delay instead, allowing our alternative eight queens 
control. For completeness, it would be preferable for the system 
tests to be called eventually, if possible. 

5. DISCUSSION 
With most systems, the methods available for avoiding failure 

are not flexible enough. To delay the calls which create failure 
branches, other calls must be delayed also. This is manifest is two 
ways. Firstly, IC-PROLOG delays whole sub-computations. 
Secondly, most primitives only allow sub-goals to wait for a single 
variable to be bound, even though many procedures can work 
efficiently consuming several different subsets of their arguments. 
Wait declarations are an exception. They only delay single calls and 
are flexible enough to enable multi-use procedures Partly because of 
this, they can also be generated automatically The deficiencies in 
the algorithm can be partially compensated for by having a fair 
computation rule, so calls delayed by wait declarations are still done 
eventually. 

There are also other deficiencies with failure detection, despite 
this being well understood. Because of delaying whole sub-
computations and the single eager consumer limitation in IC-
PROLOG, failure detection is impaired when multiple tests are 
needed. With other systems especially, multiple (potential) 
generators, such as the same leaves program, are not handled well. 
Left recursion also causes problems. Both these areas can be 
improved by using a breadth first rule. This performs slightly worse 
than a more controlled coroutine approach but requires DO 
programmer intervention. 

Our idealized system has three major features. Firstly, calls 
which are likely to create extra failure branches are delayed. 
Secondly, other calls which are likely to fail are called first. Thirdly, 
the computation rule is fair, so even calls likely to create failure 
branches are called eventually. We propose a hierarchy of calls as 
follows: 

(1) Tests. 
(2) Other deterministic calls. 
(3) Nondeterministic calls. 
(4) Calls to database procedures. 
(5) Calls to procedures for which wait declarations cannot be 

generated. 
(6) Calls delayed by wait declarations. 
(7) Delayed calls to system predicates. 
The optimal order in which to call the database procedures can 

be determined and other types of calls should be done in a breadth 
first manner, for failure finding and fairness. Furthermore, it is 
desirable that a lower priority call be done after some number of 
calls (say 1000) of the next higher priority, to ensure fairness. 

0. CONCLUSIONS 
Current PROLOG systems with extra control facilities have 

been designed in a fairly ad hoc manner, relying mostly on a few 
example programs. We have introduced some more general 
principles on which control rules can be judged. This shows the 
weaknesses and strengths of current control rules more clearly and 
should be of use in designing future systems which further exploit the 
advantages of flexible control strategies. 

7. REFERENCES 
[Clark 79] 

K. L. Clark and F. McCabe, The Control Facilities of IC-Prolog, 
in Expert Systems in the Microelectronic Age, D. Michie, (ed.), 
University of Edinburgh, Scotland, 1979, 153-167. 

[Colmerauer 82] 
A. Colmerauer, Prolog-II Manuel de Reference et Modele 
Theorique, Groupe Intelligence Artificelle, Univerisite d'Aix-
Marseille II, 1982. 

[Dincbas 80] 
M. Dincbas, The METALOG Problem-Solving System. An 
Informal Presentation, in Workshop on Logic Programming, S. 
A. Tarnlund, (ed.), Debrecen, Hungary, July 1980, 80-91. 

[Elcock 83] 
E. W Elcock, The Pragmatics of Prolog: Some Comments, 
Proceedings of Workshop on Logic Programming, Algarve, 
Portugal, 1983. 

[Lassez 84] 
.J. L. Lassez and M J. Maher, Closures and Fairness in the 
Semantics of Programming Logic, Theoretical Computer Science 
29, (1984), 167-184. 

[Naish 84a] 
L. Naish, Prolog Control Rules, Technical Report 84/13, 
Department of Computer Science, University of Melbourne, 
1984. 

[Naish 84b) 
L. Naish, MU-Prolog 3.1db Reference Manual, Internal 
Memorandum, Department of Computer Science, University of 
Melbourne, 1984. 

[Naish 85a] 
L Naish, Negation and Control in PROLOG, Ph.D. Thesis (in 
preparation), Department of Computer Science, University of 
Melbourne, 1985. 

(Naish 85b| 
L. Naish, Automating Control for Logic Programs, The Journal 
of Logic Programming (To appear), 1985. 

[Porto 84] 
A. Porto, Two-Level Prolog, International Conference On Fifth 
Generation Computer Systems, November 1984. 

[Stabler 83] 
E. Stabler and E. W. Elcock, Knowledge Representation in an 
Efficient Deductive Inference System, Proceedings of Workshop 
on Logic Programming, Algarve, Portugal. 1983. 

[Warren 81] 
D. H. D. Warren, Efficient Processing of Interactive Relational 
Database Queries Expressed in Logic, Proceedings Seventh 
International Conference on Very Large Data Bases, Cannes, 
France, 1981, 272-281. 


