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A B S T R A C T 
Proof normalization manipulates formal proofs. It also pro­
vides a computation mechanism which belongs to the logic 
programming family. 

Although proof normalization can treat full predicate 
calculus, it is less practical than the well-known program­
ming language, Prolog. 

In this paper, we propose a new technique of attaching 
proofs to Skolem functions. This technique enables one to 
nomalize a proof eagerly; that is, one can get a partial an­
swer before the proof is totally normalized. This improves 
the usability of proof normalization. Partial answers are 
also useful in normalizing proofs concurrently. We com­
pare our method with computation in Concurrent Prolog. 

1 . In t roduct ion 
Proof normalization has a long history in mathematical 
logic [Prawitz 1965]. The significant result for computer 
science is as follows: // there is a proof of the formula 
3z(A(z)), one can get an answer t, which satisfies A(t), 
after normalizing the proof. 

This realizes a computation, which is appropriately called 
logic programming. However, it is less efficient than Prolog. 

[Goad 1980] proposes an extended A-calculus, named p-
calculus, to represent proofs. P-calcuius terms are executed 
efficiently. [Hagiya 1982] noticed that most part of a proof is 
irrelevant for the computation. He introduces new notions 
to eliminate the unnecessary normalization steps. 

This paper describes a new approach to improve the use­
fulness of the proof normalization. Our method is to attach 
proofs to Skolem functions, which enables us to normalize 
eagerly. Eager normalization produces a partial answer in 
advance. Using this capability, proof normalization can be 
performed concurrently rather than one proof at a time. 
Concurrency here means the same as in Concurrent Pro-
log [Shapiro 1983]. We apply our method to an example 
from Concurrent Prolog [Takeuchi 1984] and compare this 
to computation in Concurrent Prolog. 

2. Logical Framework 

Proof normalization is elegantly explained using a natural 
deduction system. Figure 1 summarizes the inference rules 
for natural deduction, which are used in this paper. 

A typical proof in natural deduction is illustrated in 



S. Goto 727 

Defini t ion 3 A proof II is said to be normal, if no reduc­
tion rule is applicable to I I . 

Before stating the key property of a normal proof, the con­
cept of the Harrop formula should be introduced. 

Def ini t ion 4 The class of Harrop formulas is defined in­
ductively as follows: 

1. Every atomic formula is a Harrop formula. 
2. If A and B are Harrop formulas, then A A B and 

VxA(x) are Harrop formulas. 
$. If B is a Harrop formula, then A D B is a Harrop 

formula, regardless of the form of A. 

The Harrop formula has no positive V nor 3, except in the 
left hand side of the implications ( D ) . 

Proposit ion 1 A normal proof oEzA(z), where assump­
tions are only Harrop formulas, contains a subproof of A(t) 
for a suitable term t. 

We can normalize the proof in Figure 2 to calculate the 
sum of two numbers because the two assumptions are both 
Harrop formulas, and the proof satisfies the condition of 
Proposition 1. 

4. At taching proofs 

Although proof normalization provides a theoretically justi­
fied computation, it does not always produce a satisfactory 
answer. Consider the example in Figure 3, in which A(x,z) 
stands for (x+y=z). The uppermost applications of VE and 
DE are abridged to pie (a). We want to add two terms s(a) 
and y, where a is some term. Normalization cannot give the 
answer because the term a does not take the form of s(t) 
nor 0. The IND-reduction rule cannot be applied further. 

Figure 2: Proof using a rule of induction 
in natural deduction proofs ([Prawitz 1965] and [Troelstra 
1973]). Here, we explain only two reduction rules which are 
relevant to this paper. 

Reduction rules 

1. E-reduction rule: If a proof has an 3I-rule imme­
diately followed by an 3E-rule, the proof is simpli­
fied by cancelling both applications of rules. Here, II 
and II'(a) stand for subproofs. a in II'(a) indicates a 
proper parameter. 
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In the example, is converted into A (α, f (α) 
where f is a Skolem function. 

2. Attach the proof of the conclusion to the Skolem func­
tion. It means that one can use proof normalization 
in the future to get the value of the Skolem function. 
In the example, the proof of is attached 
to f. 

Now we can continue the normalization and get the answer 
z — s(f (α)) in figure 4. The answer is called partial because 
it contains a Skolem function. 

The method of attaching proofs is similar to the se­
mantic attachment in FOL [Weyhrauch 1980]. In FOL, a 
Lisp function can be attached to a predicate. Whereas, in 
our method, a proof is attached instead of a Lisp function. 
Our attachment is performed inside the logic programming 
world. 

Theoretical consideration 

1. Syntactically, the elimination of the existential quan­
tifiers converts a non-Harrop formula into a Harrop 
formula, which becomes an assumption of the proof. 
This assures the condition of Proposition 1, and nor­
malization can proceed further. 

2. The method is applicable to the formula of the form 
This type of formula appears every­

where in computer science. 
3. The reason for the special treatment of the conclusion 

of IND is that it has the similar properties to the 
assumptions in a proof. For further details, see the 
definition of "spine" in |Troelstra 1973]. 

STEP 3: using Skolem function 

Using the notion of partial answer, proof normalization can 
be performed concurrently. In this section, the example 
given in Concurrent Prolog [Takeuchi 1984] is computed, 
using proof normalization. 

Example 1 Concurrent Prolog 

The upper left assumption, Vx(write (x)), always holds 
because "write" can print any term. (For simplicity, we ig­
nore errors in printing.) The other assumption, outstream(\\), 
is a termination condition for "outstream" and taken as an 
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axiom. It should be noted here that predicate "wri te(N)" 
is a built-in predicate in Concurrent Prolog, and it has a 
side effect to write the term N. How should it be handled 
in normalization? Again, the attaching technique solves 
the problem. This time a program is attached to a Skolem 
function. We do not specify any programming language 
here. To attach a program, there should be an existential 
quantifier. Thus, wr i te (x) is modified to have an explicit 
output variable: wri teQ(x.z). The new predicate is con­
sidered "built-in"; that means that ) is 
an axiom. Formally, wr i te (a) in Example 3 is replaced by 
the subproof below: 

In the subproof, a Skolem function p(a) is used. A cer­
tain program is attached to function p(a) to print the term 
"a" when ''a" is substituted by some term. This requires 
more explanation: 

When a term is printed? 

A term can be printed anytime unless it is bound. 
That is, no bound variables in the scope of V or 

or no proper parameters can be printed. 

In the example, "a" is printed after it is substituted. If the 
proof is normalized after giving will be 
printed, because it is substituted for "a" in the proof. 

At last, two proofs are combined to produce the same 
effect as clause (3) in Concurrent Prolog. Figure 5 illus­
trates only a few steps of the normalization. However, it 
is easy to see that computation is performed concurrently. 
The IND subproof produces the list, and IND[ J subproof 
consumes the list. The condition on the print function pro­
tects the proper parameter from being printed before it is 
substituted. This realizes a kind of synchronization, which 
is attained by the read-only annotation in Concurrent Pro-
log [Shapiro 1983] [Takeuchi 1984]. 

6. Conclusion 

In this paper we propose a new method of proof normaliza­
tion, which utilizes Skolem functions to normalize a proof 
eagerly. Each Skolem function represents an existential 
variable , and the relation is preserved by attaching 
proofs to Skolem functions. 

Our method facilitates concurrent normalization. Con­
current Prolog is formally well-explained by our method. 

It is easy to see that Prolog itself is closely related to 
proof normalization because: (1) Prolog always generates 
normal proofs, and (2) A Horn clause is necessarily a Har-

Figure 5: The combined proof 

rop formula. Thus, Prolog computation can be considered 
as a special kind of proof normalization. 
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