
CONCURRENCY IN PROOF NORMALIZATION
AND LOGIC PROGRAMMING

Shigeki Goto
Computer Science Department, Stanford University

Stanford, California 94305 USA
and

NTT Musashino Electrical Communication Laboratory
3-9-11 Midori-cho, Musashino-shi, Tokyo 180 Japan [from Sept. 85]

A B S T R A C T
Proof normalization manipulates formal proofs. It also pro­
vides a computation mechanism which belongs to the logic
programming family.

Although proof normalization can treat full predicate
calculus, it is less practical than the well-known program­
ming language, Prolog.

In this paper, we propose a new technique of attaching
proofs to Skolem functions. This technique enables one to
nomalize a proof eagerly; that is, one can get a partial an­
swer before the proof is totally normalized. This improves
the usability of proof normalization. Partial answers are
also useful in normalizing proofs concurrently. We com­
pare our method with computation in Concurrent Prolog.

1 . In t roduct ion
Proof normalization has a long history in mathematical
logic [Prawitz 1965]. The significant result for computer
science is as follows: // there is a proof of the formula
3z(A(z)), one can get an answer t, which satisfies A(t),
after normalizing the proof.

This realizes a computation, which is appropriately called
logic programming. However, it is less efficient than Prolog.

[Goad 1980] proposes an extended A-calculus, named p-
calculus, to represent proofs. P-calcuius terms are executed
efficiently. [Hagiya 1982] noticed that most part of a proof is
irrelevant for the computation. He introduces new notions
to eliminate the unnecessary normalization steps.

This paper describes a new approach to improve the use­
fulness of the proof normalization. Our method is to attach
proofs to Skolem functions, which enables us to normalize
eagerly. Eager normalization produces a partial answer in
advance. Using this capability, proof normalization can be
performed concurrently rather than one proof at a time.
Concurrency here means the same as in Concurrent Pro-
log [Shapiro 1983]. We apply our method to an example
from Concurrent Prolog [Takeuchi 1984] and compare this
to computation in Concurrent Prolog.

2. Logical Framework

Proof normalization is elegantly explained using a natural
deduction system. Figure 1 summarizes the inference rules
for natural deduction, which are used in this paper.

A typical proof in natural deduction is illustrated in

S. Goto 727

Defini t ion 3 A proof II is said to be normal, if no reduc­
tion rule is applicable to I I .

Before stating the key property of a normal proof, the con­
cept of the Harrop formula should be introduced.

Def ini t ion 4 The class of Harrop formulas is defined in­
ductively as follows:

1. Every atomic formula is a Harrop formula.
2. If A and B are Harrop formulas, then A A B and

VxA(x) are Harrop formulas.
$. If B is a Harrop formula, then A D B is a Harrop

formula, regardless of the form of A.

The Harrop formula has no positive V nor 3, except in the
left hand side of the implications (D) .

Proposit ion 1 A normal proof oEzA(z), where assump­
tions are only Harrop formulas, contains a subproof of A(t)
for a suitable term t.

We can normalize the proof in Figure 2 to calculate the
sum of two numbers because the two assumptions are both
Harrop formulas, and the proof satisfies the condition of
Proposition 1.

4. At taching proofs

Although proof normalization provides a theoretically justi­
fied computation, it does not always produce a satisfactory
answer. Consider the example in Figure 3, in which A(x,z)
stands for (x+y=z). The uppermost applications of VE and
DE are abridged to pie (a). We want to add two terms s(a)
and y, where a is some term. Normalization cannot give the
answer because the term a does not take the form of s(t)
nor 0. The IND-reduction rule cannot be applied further.

Figure 2: Proof using a rule of induction
in natural deduction proofs ([Prawitz 1965] and [Troelstra
1973]). Here, we explain only two reduction rules which are
relevant to this paper.

Reduction rules

1. E-reduction rule: If a proof has an 3I-rule imme­
diately followed by an 3E-rule, the proof is simpli­
fied by cancelling both applications of rules. Here, II
and II'(a) stand for subproofs. a in II'(a) indicates a
proper parameter.

728 S. Goto

In the example, is converted into A (α, f (α)
where f is a Skolem function.

2. Attach the proof of the conclusion to the Skolem func­
tion. It means that one can use proof normalization
in the future to get the value of the Skolem function.
In the example, the proof of is attached
to f.

Now we can continue the normalization and get the answer
z — s(f (α)) in figure 4. The answer is called partial because
it contains a Skolem function.

The method of attaching proofs is similar to the se­
mantic attachment in FOL [Weyhrauch 1980]. In FOL, a
Lisp function can be attached to a predicate. Whereas, in
our method, a proof is attached instead of a Lisp function.
Our attachment is performed inside the logic programming
world.

Theoretical consideration

1. Syntactically, the elimination of the existential quan­
tifiers converts a non-Harrop formula into a Harrop
formula, which becomes an assumption of the proof.
This assures the condition of Proposition 1, and nor­
malization can proceed further.

2. The method is applicable to the formula of the form
This type of formula appears every­

where in computer science.
3. The reason for the special treatment of the conclusion

of IND is that it has the similar properties to the
assumptions in a proof. For further details, see the
definition of "spine" in |Troelstra 1973].

STEP 3: using Skolem function

Using the notion of partial answer, proof normalization can
be performed concurrently. In this section, the example
given in Concurrent Prolog [Takeuchi 1984] is computed,
using proof normalization.

Example 1 Concurrent Prolog

The upper left assumption, Vx(write (x)), always holds
because "write" can print any term. (For simplicity, we ig­
nore errors in printing.) The other assumption, outstream(\\),
is a termination condition for "outstream" and taken as an

S. Goto 729

axiom. It should be noted here that predicate "wri te(N)"
is a built-in predicate in Concurrent Prolog, and it has a
side effect to write the term N. How should it be handled
in normalization? Again, the attaching technique solves
the problem. This time a program is attached to a Skolem
function. We do not specify any programming language
here. To attach a program, there should be an existential
quantifier. Thus, wr i te (x) is modified to have an explicit
output variable: wri teQ(x.z). The new predicate is con­
sidered "built-in"; that means that) is
an axiom. Formally, wr i te (a) in Example 3 is replaced by
the subproof below:

In the subproof, a Skolem function p(a) is used. A cer­
tain program is attached to function p(a) to print the term
"a" when ''a" is substituted by some term. This requires
more explanation:

When a term is printed?

A term can be printed anytime unless it is bound.
That is, no bound variables in the scope of V or

or no proper parameters can be printed.

In the example, "a" is printed after it is substituted. If the
proof is normalized after giving will be
printed, because it is substituted for "a" in the proof.

At last, two proofs are combined to produce the same
effect as clause (3) in Concurrent Prolog. Figure 5 illus­
trates only a few steps of the normalization. However, it
is easy to see that computation is performed concurrently.
The IND subproof produces the list, and IND[J subproof
consumes the list. The condition on the print function pro­
tects the proper parameter from being printed before it is
substituted. This realizes a kind of synchronization, which
is attained by the read-only annotation in Concurrent Pro-
log [Shapiro 1983] [Takeuchi 1984].

6. Conclusion

In this paper we propose a new method of proof normaliza­
tion, which utilizes Skolem functions to normalize a proof
eagerly. Each Skolem function represents an existential
variable , and the relation is preserved by attaching
proofs to Skolem functions.

Our method facilitates concurrent normalization. Con­
current Prolog is formally well-explained by our method.

It is easy to see that Prolog itself is closely related to
proof normalization because: (1) Prolog always generates
normal proofs, and (2) A Horn clause is necessarily a Har-

Figure 5: The combined proof

rop formula. Thus, Prolog computation can be considered
as a special kind of proof normalization.

A C K N O W L E D G E M E N T

I would like to thank Dr. Carolyn Talcott at Stanford Uni­
versity for many valuable comments.

REFERENCES

[1] C.Goad, Computational Use of the Manipulation of For­
mal Proofs, PhD Thesis, Department of Computer
Science, Stanford University, 1980.

[2] M.Hagiya, A Proof Description Language and Its Re­
duction System, Department of Information Science,
Tech. Report 82-03, University of Tokyo, Feb. 1982.

[3] Z.Manna and R.J.Waldinger, Toward Automatic Pro­
gram Synthesis, Comm. ACM, 14, no.3, 151-165,
1971.

[4] D.Prawitz, Natural Deduction, Almquist and Wksell,
Stockholm, 1965.

[5] E.Shapiro, A subset of Concurrent Prolog and Its Im­
plementation, Technical Report TR-003, ICOT.

[6] A.Takeuchi, Concurrent Prolog, Computer Today, No.1,
pp.48-55, 1984. (in Japanese)

[7] A.S.Troelstra, Metamathematical Investigation of Intu­
it ionistic Arithmetic and Analysis, Lecture Notes in
Mathematics Vol.344, Springer-Verlag 1973.

[8] R.Weyhrauch, Prolegomena to a theory of mechanized
Formal Reasoning, Artificial Intelligence 13, North-
Holland, 1980.

