
A Logic P r o g r a m m i n g and V e r i f i c a t i o n Sys tem
fo r Recurs ive Quan t i f i ca t i ona l Log ic

Frank M. Brown

Dept. of Computer Science
The University of Kansas
Lawrence, Kansas 00045

ABSTRACT
In this paper, we describe a logic programming and

program verification system which is based on quantifier
elimination techniques and axiomatization rather than on
more common method of doing logic programming using the
Herbrand-Prawitz-Robinson unification algorithm without
occur-check.

This system is shown to have interesting properties for
logic programming and includes a number of advanced fea­
tures. Among these features are user-defined data objects,
user-defined recursive relations and functions, either of which
may involve quantifiers in the body of their definitions, and
automatic termination and consistency checking for recursively
defined concept. In addition, it has a correct implementation
of negation in contrast to PROLOG implementation of nega­
tion as failure, a smooth interaction between LISP-like func­
tions and PROLOG-like relations, and a smooth interaction
between specifications and programs. Finally, it provides a
method of mathematical induction applicable to recursive
definitions involving quantifiers.

I. INTRODUCTION
Quantified Computational Logic(QCL) is a programming

and program verification language for programs written in
recursive quantificational logic. The language can be used
both for logic programming and program specification.

A QCL program consists of sequences of recursively defined
data objects declarations and recursive quantificational logic
function definitions. Programs written in QCL are both ex­
ecuted and verified by a single automatic deduction system
called the symbolic evaluator using a system of axioms and
rules called the symmetric logic. The essence of the symmetric
logic technique is to push quantifiers to the lowest scope pos­
sible in the hope of finding a way to eliminate them. The
symbolic evaluator and the symmetric logic are described in
detail [Brown 83].

A prototype system for QCL has been implemented in In-
terlisp.

I I . QCL PROGRAMMING

A. Recursively Defined Data Objects

Although many logic programming languages provide
system-defined data objects, they provide only a poor
capability for user-defined data objects. QCL adopts the shell
principle(Boyer&Moore 79] as a method to recursively define
some useful user-defined data objects. Since the shell principle
was invented, not much attention has been paid to it in logic
programming. However, it is very valuable in modelling logic
programs and verifying logic programs. Although many of the
axioms produced by the shell principle of QCL are similar to
those described in[Boyer&Moore 79], some are quite different
in order to satisfy the fundamental deduction principle
described in [Brown 83]. This principle requires that almost all
steps in the automatic deduction should take place by a

Peiya L iu
Dept. of Computer Sciences

The University of Texas
Austin, Tx 78713

method of replacing expressions by an equivalent but simpler
expressions.

The syntax of user-defined data object is:
(SHELLCREATE constructor bottom recogniser selec­
tors types defaults). The constructor is a name of new
function which constructs objects of the new types. The bot­
tom is the bottom object or T if there is no bottom object.
The recognizer is a name of new function which recognizes ob­
jects of the new type. The selectors are a list of functions
which are accessors of the data structure. The types are a list
of type restrictions on each shell. Each restriction is an ar­
bitrary formula in QCL consisting of symbols defined at that
time. The defaults are a list of the default values for each
shell. Data objects are easily declared. For examples, Lists are
produced by the declaration (SHELLCREATE 'CONS 'T
'LLSTP '(CAR CDR) '(T T) '(NIL NIL)) and Trees are
produced by the declaration (SHELLCREATE TREE 'BTM
'TREEP '(LEFT ROOT RIGHT) '(T T T) '(0 0 0)).

B. A Safe Definition Principle

Most existing logic programming languages have syntax
checking but few perform logic checking for properties such
as termination and consistency. Suppose P is a logic
program and R is a goal we wish to solve. Then, executing P
to solve R is the same as deducing R from P in logic program
execution. Therefore, any answer will be correct if the logic
program P consists of inconsistent logic statements. But the
user might get one of the answers because of deduction
strategy. Thus user forces his program to produce some
answer. QCL on the other hand has logic protection
capability to detect inconsistent or non-terminating statements
in logic programs. In addition, it stores vital verification in­
formation during the checking.

F. Brown and P. Liu 743

744 F. Brown and P. Liu

tern to make deduction from the relation in the case that r has
no free variables. The command simply tries to prove r.
Usually, the output form is true, false, its equivalent but
simplified form or a conjunctive form of some equalities and
inequalities about remaining arguments and their binding
values.

The deduction techniques of PV are based on the fun­
damental deduction principle, which makes it possible that
QCL logic programming interpreter is the same as its verifica­
tion system interpreter.

B. Explanation Capability
It is worthwhile embedding an explanation capability inside

an automated reasoning system. Currently, the system can
produce all tracing information whenever a rule, axiom, or
definition is applied. This information consists of three parts:
an input expression I which is being evaluated, an intermediate
expression M and a name of rule which produces M from 1, an
output expression O obtained by recursively evaluating the M
expressions. Thus a trace will generally be of the form:

Il:exp
by use of: a name of rule, axiom or definition.

Ml :exp
I2:exp

by use of: ...
M2:exp

02:exp
Ol:exp

where the number immediately following 1, M, or O is the
level at which the application of an rule, axiom, or definition
takes place. At a given level number i, Oi and Mi are always
associated with the preceding Ii.

The debugging principle is this: if Ii does not equal to Mi,
then the definition, axiom or rule used in that application is
incorrect, if Mi does not equal Oi then one must recursively
examine the i+l level(ie. 1 Mi+1 Oi+1) to find the error.

C. Negation ls Not A Failure

The negation-as-failure rule is an operational connection
between negative and positive terms. The soundness and com­
pleteness of a restricted form has been shown in [Clark
78j[Jaffar 83]. There are still some fundamental limitations on
that rule if there is no logical connection between them.

The following program uses negation-as-failure to define a
term (NDIFFL X Y Z), which is supposed to be equivalent to
(NOT(DlFFL X Y Z)). The cut symbol -/■ makes a commit­
ment for all subgoals since the parent goal. Hence any attempt
to resatisfy any previous subgoal will fail. NIL is a predicate
defined in such a way that as a goal it always fails and causes
backtracking to take place. But when NIL is encountered after
cut, the normal backtracking behavior will be altered by the
cut and will cause the effect that whenever (DIFFL X Y Z) is
successful, (NDIFFL X Y Z) is failed.

(DIFFL XX NIL) <-
(DIFFL(CONS XI X)Z(CONS XI A))<-(DIFFL X Z A)
(NDIFFL X Y Z)<-(DIFFL X Y Z)/NIL
(NDIFFL XYZ)<-
A correct answer can be deduced by failing with NIL or rather
false on the query (NDIFFL '(LARGE MANY) '(MANY)
'(LARGE))). But it also returns a failure on the following
question which is true for any Z not equal to MANY: (NDIFFL

'(LARGE MANY) Z '(LARGE)). This relation involves a vari­
able Z in the NDIFFL. In general, the rule is not complete
and has to restrict its queries and either deduction strategy or
program statements in order to work[Clark 78]. The negative
query is often restricted to the ground term. Thus, much nega­
tive information simply can't be queried.

Even worse, it should be noted that the above set of clauses
are inconsistent if (NDIFFL X Y Z) really is (NOT(DIFFL X Y
Z)). QCL takes a logically correct approach towards handling
negative information. Any negative term (NOT tm) is defined
as the term (IF tm NIL T) by system. If DIFFL is defined as
before, (PV (NOT(I)IFFL'(LARGE MANY) Z '(LARGE))) will
result (IF (EQUAL Z '(MANY)) NIL T). This means that
answer is any Z which is not equal to '(MANY). The details of
computing this relation are given as follows:
Example A:
(PV (NOT(DIFFL '(LARGE MANY) Z '(LARGE))))
The expression to be recursively simplified is:
(NOT (DIFFL (QUOTE (LARGE MANY))

Z
(QUOTE (LARGE))))

Il:(DIFFL (QUOTE (LARGE MANY))
Z
(QUOTE (LARGE)))

by use of: DIFFL
Ml:(IF (EQUAL (QUOTE (LARGE MANY))

Z)
(EQUAL (QUOTE (LARGE))

NIL)
(IF (LISTP (QUOTE (LARGE MANY)))

(EX *1 (IF (EQUAL (QUOTE (LARGE))
(CONS (CAR (QUOTE (LARGE MANY)))

*1))
(DIFFL (CDR (QUOTE (LARGE MANY)))

Z*l)
NIL))

NIL))
I2:(DIFFL (QUOTE (MANY))

Z NIL)
by use of: DIFFL

M2:(IF (EQUAL (QUOTE (MANY))
Z)

(EQUAL NIL NIL)
(IF (LISTP (QUOTE (MANY)))

(EX *2 (IF (EQUAL NIL
(CONS (CAR (QUOTE (MANY)))

*2))
(DIFFL (CDR (QUOTE (MANY)))

Z*2)
NIL))

NIL))
02:(EQUAL (QUOTE (MANY))

Z)
01:(EQUAL (QUOTE (MANY))

Z)

The result of recursive simplification is:
(IF (EQUAL (QUOTE (MANY))

Z)
NIL T)

end of deduction
Input 12 is due to variable *1 in Ml being replaced by NIL
under the if-condition (EQUAL '(LARGE)(CONS(CAK
'(LARGE MANY)) *1)).

F. Brown and P. Liu 745

Example B:
(PV (DIFFL '(LARGE MANY) Z '(LARGE)))
The expression to be recursively simplified is:
(DIFFL (QUOTE (LARGE MANY))

Z
(QUOTE (LARGE)))

11:(D1FFL (QUOTE (LARGE MANY))
Z
(QUOTE (LARGE)))

by use of: DIFFL
Ml:(IF (EQUAL (QUOTE (LARGE MANY))

Z)
(EQUAL (QUOTE (LARGE))

NIL)
(IF (LISTP (QUOTE (LARGE MANY)))

(EX *l (IF (EQUAL (QUOTE (LARGE))
(CONS (CAR (QUOTE (LARGE MANY')))

*!))
(DIFFL (CDR (QUOTE (LARGE MANY)))

Z *l)
NIL))

NIL))
I2:(DIFFL (QUOTE (MANY))

Z NIL)
by use of: DIFFL

M2:(IF (EQUAL (QUOTE (MANY))
Z)

(EQUAL NIL NIL)
(IF (LISTP (QUOTE (MANY)))

(EX *2 (IF (EQUAL NIL
(CONS (CAR (QUOTE (MANY)))

*2))
(DIFFL (CDR (QUOTE (MANY)))

Z *2)
NIL))

NIL))
02:(EQUAL (QUOTE (MANY))

Z)
Ol:(EQUAL (QUOTE (MANY))

Z)

The result of recursive simplification is:
(EQUAL (QUOTE (MANY))

Z)
end of deduction

D. Relational vs. Functional

There are currently two really good ways of programming
based on formal logic, namely: (l) programs based on recur­
sive functions, such as the LISP. (2) programs based on NON-
NEGATIVE recursive relations, such as HCPRVR and
PROLOG.

QCL takes a different approach from LOGLISP[Robinson
82], QUTE[Sato 83] and TABLOG[Malachi 84]towards com­
bining these two formalisms. Our concern focuses on the
unique formalism and a smooth interaction between relations
and functions.

Each type of programming system, of course, has many ad­
ditional features (eg. assignment statements, goto's etc.), but it
is the logical features: recursive functions or recursive
relations which make it so easy to express, understand, and
debug programs written in these systems. Some programs arc
more easily expressed, understood, and debugged as functions
than relations and vice-versa. In particular combinations of
deterministic programs returning unique outputs should be
written as functions. For example, to APPEND the

REVERSE of a list A onto the result of APPENDing the
REVERSE of a list B onto the REVERSE of a list C is written
as functions as: (APPEND (REVERSE A) (APPEND
(REVERSE B) (REVERSE C))) whereas it is rewritten as rela­
tions with many extra symbols as:

(EX Xl(EX X2(EX X3(EX X4(AND(REVERSE A XI)
(REVERSE B X2)
(REVERSE C X3)
(APPEND X2 X3 X4)

(APPEND XI X4 ANSW))))))

Xl,X2,and X3 are respectively the results of reversing A, B,
and C, X4 is the result of appending X2 to X3, and the
answer: ANSW is the result of appending XI to X4. In such n
case the lack of nesting in relational notation makes it
resemble assembler notation (where the variables are registers
and the assembler operations are REVERSE and APPEND)
rather than a high level language.

On the other hand, combinations of non-deterministic
programs are more naturally expressed as relations. For ex­
ample, a program which parses English(and translates it into
another language) is naturally made up of a number of non-
deterministic programs. The definition of a declarative tran
sitive sentence is easily written in relational notation as:

(EX XI(EX X2(EX X3(AND(NP 11 12 Xl)
(VG 12 13 X2)
(NP 13 14 X3)
(COMBINE XI X2 X3 ANSW)))))

where It is the input text, 12 is the rest of the text after a
noun phrase is parsed, 13 is the rest of the text of 12 after a
verb group is parsed, 14 is any remaining unparsed text, Xl is
the translation of the first noun phrase, X2 is the translation
of the verb group, X3 is the translation of the second noun
phrase, and ANSW is the translation of the entire sentence.

Such a program can not be rewritten in functional notation
as: (COMBINE(NP 11 I2)(VG 12 I3)(NP 13 14)) because the
NP and VG relations are not deterministic on their third ar­
guments. For example, there may be many different parses of
the the first noun phrase each giving a different answer. Fur­
thermore, 12 is another non-deterministic output of (NP 11 12)
which must be passed an input to (VG 12 13). Likewise, if in-
sisting on functional notation, an assembly-like program can
not be avoided.

These considerations also apply to advanced database tech­
nology. Data can be represented relationally as in relational
databases [Codd 72] or functionally. For example, a request
for the salary of the president of the university of the largest
state in the united states could be written as:

(EX Xl(EX X2(EX X3
(AND(LARGEST STATE OF(UNITED STATES) Xl)

(UNIVERSITY OF Xl X2)
(PRESIDENT OF X2 X3)
(SALARY OF X3 ANSW)))))

However, it can be written in the simpler functional notation
as: (SALARY OF (PRESIDENT OF (UNIVERSITY OF
(LARGEST STATE OF (UNITED STATES))))) because each
of these predicates is deterministic on its last argument. On
the other hand, in an example with non-deterministic outputs,
the relational representation is better.

Two distinct programming systems have been developer!
based on formal logical notationfrecursive functions, recursive
relations) and each is especially useful for representing a par-

746 F. Brown and P. Liu

ticular type of programs(deterministic and non-deterministic).
Furthermore, the more facilities of formal logic that are
provided in a programming system, the less one needs to use
constructs such as GOTO and assignment which are harder to
use, understand and debug. Therefore, it follows that a sig­
nificantly better programming system could be achieved by
amalgamating these forma' notations into a single formal sys­
tem provided that effici .. interpreted and/or compiled in­
ference systems could be designed.

E. Specification VS. Program

In QCL, specifications and programs are considered as dif­
ferent styles to express logic expressions for their own purposes
within the same framework. Specifications are descriptively
useful logic forms and their computationally useful forms
are programs.

We believe that automatic derivation, verification and syn­
thesis of logic programs are made easier, provided that
specifications and programs have a smooth interaction. Two
important relationships between logic programs and their
specifications are correctness and completeness. Correctness
is a property that for any n-tuple x, if x is computed as a solu­
tion satisfying a relation R, then x belongs to the relation
specified by S. It can be formalized as Vx(S|— R(x)<=P|— R(x)).
Completeness is a property that for all members of the
specified relation R are computable from program P. It can be
represented as Vx(S|— R(x)=>P—-R(x)). One way to show these
relationships is to use meta-level deduction to prove those
formulas [Brown 78]. Another way is that, if finding a good
specification S such that S—P or P|— S, we get same correct­
ness proof or completeness proof by exploiting the transitivity
of logical implication |—.

The second approach is the cornerstone of logic program
derivation, verification and synthesis investigated in[Clark
77] [Hogger 81]. One advantage in this approach towards
verification is that the object-level deduction from S to P or
from P to S is sufficient to show their relationships without
meta-level deduction and concerning goal relation R(x).
Another advantage is that for proving any property of P, it-
may be much easier to show that S has that property and P is
complete with respect to S. In the Hogger study, specifications
expressed in "if-and-only-if" and "first-order recursive" styles
are crucial in this approach. Since QCL intend to bring
specifications and programs together, it provides a good op-
portunity to investigate good specifications and program styles
in order to automate the derivation, synthesis, and verification
of logic programs. For example,

(DEFLQ
(EQl)AL(PICK.S U V Z)

(IF(MEMBER.S U Z)
(IF(MEMBER.S V Z)

(PLESSP U V)
NIL)

NIL))
)

Informally stated, (P1CK.S U V Z)-(MEMBER.S U Z)A
(MEMBER.S V Z)A(PLESSP U V).

(DEFLQ
(EQUAL(MEMBER.S U L)
(EX X(EX Y(IF(EQUAL L (CONS X Y)))

(IF(EQUAL U X)
T
(MEMBER.S U Y))

NIL))))

Informally, (MEMBER.S U L)-3x3y(L=(CONS x y)A
(U=xV(MEMBER.S U y))).

The specification S:{PICK.S MEMBER.S} is for the follow­
ing program P:{PICK.P MEMBER.P}. It said to pick any two
numbers U and V from a list Z of numbers, not necessarily
distinct, such that U is less than V. The relationships can be
shown by object-level deduction, that is, S\— P and P|-~S.

(DEFLQ
(EQUALfPICK.P U V Z)

(IF(LISTP Z))
(IFfEQUAL U(CAR Z))

(IF(MEMBER.P V (CDR Z))
(PLESSP U V)
NIL)

(IF(EQUAL V(CAR Z))
(IF(MEMBER.P U (CDR Z))

(PLESSP U V)
NIL)

(PICK U V(CDDR Z))))
NIL)

)
(DEFLQ
(EQUAL(MEMBER.P X L)

(IF(L1STP L)
(IFfEQUAL X (CAR L))

T
(MEMBER.P X (CDR L)))

NIL))
)

F. Brown and P. Liu 747

Theorem II. Soundness for Existential Quantifiers
Case
Proof: Theorem II is only a symmetric case of Theorem I. Its-
validity is obvious after proving Theorem I.

Q.E.D.
An application of this induction principle is illustrated

below. In the proof (PV (ALL X(ALL Z(EQUAL(AI)JI)L X
Z)(EX A(AND(DIFFL X Z A) (ADJ A))))))), an induction is
obtained by instantiation of the principle as follows: p is
(EQUAL(ADJDL X Z) (EX A(AND(DIFFL X Z A)(ADJL A))));
r is PLESSP; in is LENGTH; n is 2; k is 1; b1 is 1; Z1.1 is Y; h1

is 1; q1, is the term (AND (NC)T(EQUAL X Z))(AI)J X Y)); the
theorem required by (II) is: (ALL X(ALL Z(ALL
Y(IMPLIES(AND (NOT(EQUAL X Z))(APJ X
Y))(PLESSP(LENCTH1 Y Z)(LENGTIIl X Z)))))). The induc­
tion is:

Base case :
(ALL X(ALL Z(IMPLIES(OR(EQUAL X Z)

(NOT (EX Y(ADJ X Y))))
(PXZ))))

Induction step:
(ALL X(ALL Z(IMPLIES(AND(NOT(EQUAL X Z))

(EX Y(AND(ADJ X Y)
(P Y Z))))

(P X Z))))

B. Induction Schemes and A Proof Example
The recursive firsts-order function definition suggests

plausible induction schemes. Thus, the induction schemes for
each of these recursive functions can now be produced. Sup­
pose we try to prove two notions of adjective different list art-
equivalent, (PV (ALL X(ALL Z(EQUAL(ADJDL X
Z)(ADJDIFFL X Z)))).

The mechanical proof of this conjecture begins by unravel­
ing the non-recursive function ADJDIFFL and then examining
the induction schemes for each recursive function.

(ALL X(ALL Z(EQUAL(ADJDL X Z) (EX A(AND(DIFFL X
Z A)(ADJL A)))))) (by opening up the function ADJDIFFL)

The system examines the induction scheme for each recur­
sive function.

The scheme for (ADJL A) is:
(EQUALfALL A(p A))
(AND(ALL A(IMPLIES(NOT(LISTP A)(p A)))

(ALL A(IMPLIES(AND(LISTP A)(p (CDR A)))(p A)))))

748 F. Brown and P. Liu

The scheme for (DIFFL X Z A) is:
(EQUAL(ALL XfALL Z(ALL A(p X Z A))))
(ANI)(ALL X(ALL Z(ALL A(IMPLlES(OR(NOT(LISTP X))

(NOT(EX BfEQUAL A(CONS(CAR X) B)))))
(P X Z A)))))

(ALL X(ALL Z(ALL A(IMPLIES(AND(LISTP X)
(EX B(AND(EQUAL A(CONS(CAR X) B))

(p (CDR X) Z B))))
(P X Z A)))))))

The scheme for (ADJDL X Z) is:
(EQUAL(ALL X(ALL Z(p X Z)))
(ANDfALL X(ALL Z(IMPLIES(OR(EQUAL X Z)

(NOT(EX Y(ADJ X Y))))
(P X Z))))

(ALL X(ALL Z(IMPLlES(AND(NOT(EQUAL X Z))
(EX Y(AND(ADJ X Y)(p Y Z)))

(P X Z)))))))
The induction scheme for (ADJL A) is ignored since it has

a measured argument which is a bound variable. The induc­
tion scheme for (DIFFL X Z A) is subsumed by the induction
scheme for (ADJDL X Z); so the ADJDL induction scheme is
used. The system uses heuristics and follows the induction
principle to split the original conjecture into two cases as
above. The details of the mechanical proof are generated in
[Brown&Liu 84].

V, CONCLUSIONS
A new logic programming language has been developed

which is based on quantifier elimination techniques and
axiomatization. Unlike other logic program systems, it does
not involve any unification algorithm. This system handles a
number of problems better than unification-based logic pro-
gramming system. For example, this system allows the proper
axiomatization of negation, a smooth interaction between
functions and relations, and an ability to write specifications
and to verify the correctness of programs using a generalized
Noetherian induction rule. Also, it extends previous work in
program verification to the problem verifying recursively
defined relations whose definition bodies contain quantifiers.

ACKNOWLEDGEMENTS
The work described here has been supported in part by the
Army Research Office under Grant DAAG 29-83-K-0103 and
in part by the National Science Foundation under Grant
DCR-8320340.

The authors would like to thank Prof. Norman Martin and
Ruey-Juin Ghang for their helpful comments to earlier drafts
of this paper. Our thanks also go to the referees for their use­
ful suggestions. Finally, we thank Ching-Hua Ghow and Chin-
Laung Lei for their tips on using text editor.

REFERENCES
1. Boyer, R.S., and J S. Moore, A Computational

Logic, New York, Academic Press, 1979.
2. Brown, F.M., "Semantic theory for Logic

Programming", Coloquia Mathematica Society
Janos Rolyai, 26 Mathematical Logic in Com­
puter Science , Salgotarjan, Hungary, 1978.

3. Brown, F.M., "Experimental Logic and the
Automatic Analysis of Algorithms", Proceedings of
the Army Conference on Application of AI to Bat­
tlefield Information Management, Maryland,
1983, pp 217-281. (To appear AI Journal).

4. Brown, F.M., and P. Liu, "Foundations of QOL
Programming System" The University of Texas at

Austin, Computer Science Department, Technical
Report, May 1984.

5. Burstall, R. M., "Proving Properties of Programs
by Structural Induction", Computer Journal, vol.
12, no. 1, February 1969.

6. Clark, K.L., "Negation as Failure" in Logic and
Database*, eds. Gallarire, H.J. and J. Minker,
Plenum Press, 1978.

7. Clark, K.L. and S. Stickel "Predicate Logic: A Cal­
culus for Deriving Programs", UCA1-77.

8. Codd, E.F. "Relational Completeness of Data Base
Sublanguages", Data Base Systems ed. R. Rustin,
Prentice-Hall, 1972.

9. Hogger, C.J. "Derivation of Logic Programs",
J ACM Vol.28, No.2, April 1981.

10. Jaffar, J. Lassez, and J. Lloyd, "Completeness of
the Negation as Failure Rule", IJCA1-88, pp
500-506.

11. Malachi, Y., Manna, Z., and Waldinger, R.,
"TABLOG: The Deductive-Tableau Programming
Language", Proceedings of 1984 Lisp and Func­
tional programming Conference, Austin, Texas,
pp 323-330.

12. Reiter, R., "On Closed World Data Bases" in Logic
and Databases, eds. Gallarire, H.J. and J. Minker,
Plenum Press, 1978.

13. Robinson, J.A. and E.E. Sibert, "LOGLISP: An Al­
ternative to Prolog", Machine Intelligence 10,
1982.

14. Sato, M. and T. Sakurai, "QUTE: A Prolog/Lisp
Type Language for Logic Programming",
IJCAI-88, pp 508-513.

