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ABSTRACT 
In this paper, we describe a logic programming and 

program verification system which is based on quantifier 
elimination techniques and axiomatization rather than on 
more common method of doing logic programming using the 
Herbrand-Prawitz-Robinson unification algorithm without 
occur-check. 

This system is shown to have interesting properties for 
logic programming and includes a number of advanced fea­
tures. Among these features are user-defined data objects, 
user-defined recursive relations and functions, either of which 
may involve quantifiers in the body of their definitions, and 
automatic termination and consistency checking for recursively 
defined concept. In addition, it has a correct implementation 
of negation in contrast to PROLOG implementation of nega­
tion as failure, a smooth interaction between LISP-like func­
tions and PROLOG-like relations, and a smooth interaction 
between specifications and programs. Finally, it provides a 
method of mathematical induction applicable to recursive 
definitions involving quantifiers. 

I. INTRODUCTION 
Quantified Computational Logic(QCL) is a programming 

and program verification language for programs written in 
recursive quantificational logic. The language can be used 
both for logic programming and program specification. 

A QCL program consists of sequences of recursively defined 
data objects declarations and recursive quantificational logic 
function definitions. Programs written in QCL are both ex­
ecuted and verified by a single automatic deduction system 
called the symbolic evaluator using a system of axioms and 
rules called the symmetric logic. The essence of the symmetric 
logic technique is to push quantifiers to the lowest scope pos­
sible in the hope of finding a way to eliminate them. The 
symbolic evaluator and the symmetric logic are described in 
detail [Brown 83]. 

A prototype system for QCL has been implemented in In-
terlisp. 

I I . QCL PROGRAMMING 

A. Recursively Defined Data Objects 

Although many logic programming languages provide 
system-defined data objects, they provide only a poor 
capability for user-defined data objects. QCL adopts the shell 
principle(Boyer&Moore 79] as a method to recursively define 
some useful user-defined data objects. Since the shell principle 
was invented, not much attention has been paid to it in logic 
programming. However, it is very valuable in modelling logic 
programs and verifying logic programs. Although many of the 
axioms produced by the shell principle of QCL are similar to 
those described in[Boyer&Moore 79], some are quite different 
in order to satisfy the fundamental deduction principle 
described in [Brown 83]. This principle requires that almost all 
steps in the automatic deduction should take place by a 
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method of replacing expressions by an equivalent but simpler 
expressions. 

The syntax of user-defined data object is: 
(SHELLCREATE constructor bottom recogniser selec­
tors types defaults). The constructor is a name of new 
function which constructs objects of the new types. The bot­
tom is the bottom object or T if there is no bottom object. 
The recognizer is a name of new function which recognizes ob­
jects of the new type. The selectors are a list of functions 
which are accessors of the data structure. The types are a list 
of type restrictions on each shell. Each restriction is an ar­
bitrary formula in QCL consisting of symbols defined at that 
time. The defaults are a list of the default values for each 
shell. Data objects are easily declared. For examples, Lists are 
produced by the declaration (SHELLCREATE 'CONS 'T 
'LLSTP '(CAR CDR) '(T T) '(NIL NIL)) and Trees are 
produced by the declaration (SHELLCREATE TREE 'BTM 
'TREEP '(LEFT ROOT RIGHT) '(T T T) '(0 0 0)). 

B. A Safe Definition Principle 

Most existing logic programming languages have syntax 
checking but few perform logic checking for properties such 
as termination and consistency. Suppose P is a logic 
program and R is a goal we wish to solve. Then, executing P 
to solve R is the same as deducing R from P in logic program 
execution. Therefore, any answer will be correct if the logic 
program P consists of inconsistent logic statements. But the 
user might get one of the answers because of deduction 
strategy. Thus user forces his program to produce some 
answer. QCL on the other hand has logic protection 
capability to detect inconsistent or non-terminating statements 
in logic programs. In addition, it stores vital verification in­
formation during the checking. 
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tern to make deduction from the relation in the case that r has 
no free variables. The command simply tries to prove r. 
Usually, the output form is true, false, its equivalent but 
simplified form or a conjunctive form of some equalities and 
inequalities about remaining arguments and their binding 
values. 

The deduction techniques of PV are based on the fun­
damental deduction principle, which makes it possible that 
QCL logic programming interpreter is the same as its verifica­
tion system interpreter. 

B. Explanation Capability 
It is worthwhile embedding an explanation capability inside 

an automated reasoning system. Currently, the system can 
produce all tracing information whenever a rule, axiom, or 
definition is applied. This information consists of three parts: 
an input expression I which is being evaluated, an intermediate 
expression M and a name of rule which produces M from 1, an 
output expression O obtained by recursively evaluating the M 
expressions. Thus a trace will generally be of the form: 

Il:exp 
by use of: a name of rule, axiom or definition. 

Ml :exp 
I2:exp 

by use of: ... 
M2:exp 

02:exp 
Ol:exp 

where the number immediately following 1, M, or O is the 
level at which the application of an rule, axiom, or definition 
takes place. At a given level number i, Oi and Mi are always 
associated with the preceding Ii. 

The debugging principle is this: if Ii does not equal to Mi, 
then the definition, axiom or rule used in that application is 
incorrect, if Mi does not equal Oi then one must recursively 
examine the i+l level(ie. 1 Mi+1 Oi+1) to find the error. 

C. Negation ls Not A Failure 

The negation-as-failure rule is an operational connection 
between negative and positive terms. The soundness and com­
pleteness of a restricted form has been shown in [Clark 
78j[Jaffar 83]. There are still some fundamental limitations on 
that rule if there is no logical connection between them. 

The following program uses negation-as-failure to define a 
term (NDIFFL X Y Z), which is supposed to be equivalent to 
(NOT(DlFFL X Y Z)). The cut symbol -/■ makes a commit­
ment for all subgoals since the parent goal. Hence any attempt 
to resatisfy any previous subgoal will fail. NIL is a predicate 
defined in such a way that as a goal it always fails and causes 
backtracking to take place. But when NIL is encountered after 
cut, the normal backtracking behavior will be altered by the 
cut and will cause the effect that whenever (DIFFL X Y Z) is 
successful, (NDIFFL X Y Z) is failed. 

(DIFFL XX NIL) <-
(DIFFL(CONS XI X)Z(CONS XI A))<-(DIFFL X Z A) 
(NDIFFL X Y Z)<-(DIFFL X Y Z)/NIL 
(NDIFFL XYZ)<-
A correct answer can be deduced by failing with NIL or rather 
false on the query (NDIFFL '(LARGE MANY) '(MANY) 
'(LARGE))). But it also returns a failure on the following 
question which is true for any Z not equal to MANY: (NDIFFL 

'(LARGE MANY) Z '(LARGE)). This relation involves a vari­
able Z in the NDIFFL. In general, the rule is not complete 
and has to restrict its queries and either deduction strategy or 
program statements in order to work[Clark 78]. The negative 
query is often restricted to the ground term. Thus, much nega­
tive information simply can't be queried. 

Even worse, it should be noted that the above set of clauses 
are inconsistent if (NDIFFL X Y Z) really is (NOT(DIFFL X Y 
Z)). QCL takes a logically correct approach towards handling 
negative information. Any negative term (NOT tm) is defined 
as the term (IF tm NIL T) by system. If DIFFL is defined as 
before, (PV (NOT(I)IFFL'(LARGE MANY) Z '(LARGE))) will 
result (IF (EQUAL Z '(MANY)) NIL T). This means that 
answer is any Z which is not equal to '(MANY). The details of 
computing this relation are given as follows: 
Example A: 
(PV (NOT(DIFFL '(LARGE MANY) Z '(LARGE)))) 
The expression to be recursively simplified is: 
(NOT (DIFFL (QUOTE (LARGE MANY)) 

Z 
(QUOTE (LARGE)))) 

Il:(DIFFL (QUOTE (LARGE MANY)) 
Z 
(QUOTE (LARGE))) 

by use of: DIFFL 
Ml:(IF (EQUAL (QUOTE (LARGE MANY)) 

Z) 
(EQUAL (QUOTE (LARGE)) 

NIL) 
(IF (LISTP (QUOTE (LARGE MANY))) 

(EX *1 (IF (EQUAL (QUOTE (LARGE)) 
(CONS (CAR (QUOTE (LARGE MANY))) 

*1)) 
(DIFFL (CDR (QUOTE (LARGE MANY))) 

Z*l) 
NIL)) 

NIL)) 
I2:(DIFFL (QUOTE (MANY)) 

Z NIL) 
by use of: DIFFL 

M2:(IF (EQUAL (QUOTE (MANY)) 
Z) 

(EQUAL NIL NIL) 
(IF (LISTP (QUOTE (MANY))) 

(EX *2 (IF (EQUAL NIL 
(CONS (CAR (QUOTE (MANY))) 

*2)) 
(DIFFL (CDR (QUOTE (MANY))) 

Z*2) 
NIL)) 

NIL)) 
02:(EQUAL (QUOTE (MANY)) 

Z) 
01:(EQUAL (QUOTE (MANY)) 

Z) 

The result of recursive simplification is: 
(IF (EQUAL (QUOTE (MANY)) 

Z) 
NIL T) 

end of deduction 
Input 12 is due to variable *1 in Ml being replaced by NIL 
under the if-condition (EQUAL '(LARGE)(CONS(CAK 
'(LARGE MANY)) *1)). 
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Example B: 
(PV (DIFFL '(LARGE MANY) Z '(LARGE))) 
The expression to be recursively simplified is: 
(DIFFL (QUOTE (LARGE MANY)) 

Z 
(QUOTE (LARGE))) 

11:(D1FFL (QUOTE (LARGE MANY)) 
Z 
(QUOTE (LARGE))) 

by use of: DIFFL 
Ml:(IF (EQUAL (QUOTE (LARGE MANY)) 

Z) 
(EQUAL (QUOTE (LARGE)) 

NIL) 
(IF (LISTP (QUOTE (LARGE MANY))) 

(EX *l (IF (EQUAL (QUOTE (LARGE)) 
(CONS (CAR (QUOTE (LARGE MANY'))) 

*!)) 
(DIFFL (CDR (QUOTE (LARGE MANY))) 

Z *l) 
NIL)) 

NIL)) 
I2:(DIFFL (QUOTE (MANY)) 

Z NIL) 
by use of: DIFFL 

M2:(IF (EQUAL (QUOTE (MANY)) 
Z) 

(EQUAL NIL NIL) 
(IF (LISTP (QUOTE (MANY))) 

(EX *2 (IF (EQUAL NIL 
(CONS (CAR (QUOTE (MANY))) 

*2)) 
(DIFFL (CDR (QUOTE (MANY))) 

Z *2) 
NIL)) 

NIL)) 
02:(EQUAL (QUOTE (MANY)) 

Z) 
Ol:(EQUAL (QUOTE (MANY)) 

Z) 

The result of recursive simplification is: 
(EQUAL (QUOTE (MANY)) 

Z) 
end of deduction 

D. Relational vs. Functional 

There are currently two really good ways of programming 
based on formal logic, namely: (l) programs based on recur­
sive functions, such as the LISP. (2) programs based on NON-
NEGATIVE recursive relations, such as HCPRVR and 
PROLOG. 

QCL takes a different approach from LOGLISP[Robinson 
82], QUTE[Sato 83] and TABLOG[Malachi 84]towards com­
bining these two formalisms. Our concern focuses on the 
unique formalism and a smooth interaction between relations 
and functions. 

Each type of programming system, of course, has many ad­
ditional features (eg. assignment statements, goto's etc.), but it 
is the logical features: recursive functions or recursive 
relations which make it so easy to express, understand, and 
debug programs written in these systems. Some programs arc 
more easily expressed, understood, and debugged as functions 
than relations and vice-versa. In particular combinations of 
deterministic programs returning unique outputs should be 
written as functions. For example, to APPEND the 

REVERSE of a list A onto the result of APPENDing the 
REVERSE of a list B onto the REVERSE of a list C is written 
as functions as: (APPEND (REVERSE A) (APPEND 
(REVERSE B) (REVERSE C))) whereas it is rewritten as rela­
tions with many extra symbols as: 

(EX Xl(EX X2(EX X3(EX X4(AND(REVERSE A XI) 
(REVERSE B X2) 
(REVERSE C X3) 
(APPEND X2 X3 X4) 

(APPEND XI X4 ANSW)))))) 

Xl,X2,and X3 are respectively the results of reversing A, B, 
and C, X4 is the result of appending X2 to X3, and the 
answer: ANSW is the result of appending XI to X4. In such n 
case the lack of nesting in relational notation makes it 
resemble assembler notation (where the variables are registers 
and the assembler operations are REVERSE and APPEND) 
rather than a high level language. 

On the other hand, combinations of non-deterministic 
programs are more naturally expressed as relations. For ex­
ample, a program which parses English(and translates it into 
another language) is naturally made up of a number of non-
deterministic programs. The definition of a declarative tran 
sitive sentence is easily written in relational notation as: 

(EX XI(EX X2(EX X3(AND(NP 11 12 Xl) 
(VG 12 13 X2) 
(NP 13 14 X3) 
(COMBINE XI X2 X3 ANSW))))) 

where It is the input text, 12 is the rest of the text after a 
noun phrase is parsed, 13 is the rest of the text of 12 after a 
verb group is parsed, 14 is any remaining unparsed text, Xl is 
the translation of the first noun phrase, X2 is the translation 
of the verb group, X3 is the translation of the second noun 
phrase, and ANSW is the translation of the entire sentence. 

Such a program can not be rewritten in functional notation 
as: (COMBINE(NP 11 I2)(VG 12 I3)(NP 13 14)) because the 
NP and VG relations are not deterministic on their third ar­
guments. For example, there may be many different parses of 
the the first noun phrase each giving a different answer. Fur­
thermore, 12 is another non-deterministic output of (NP 11 12) 
which must be passed an input to (VG 12 13). Likewise, if in-
sisting on functional notation, an assembly-like program can 
not be avoided. 

These considerations also apply to advanced database tech­
nology. Data can be represented relationally as in relational 
databases [Codd 72] or functionally. For example, a request 
for the salary of the president of the university of the largest 
state in the united states could be written as: 

(EX Xl(EX X2(EX X3 
(AND(LARGEST STATE OF(UNITED STATES) Xl) 

(UNIVERSITY OF Xl X2) 
(PRESIDENT OF X2 X3) 
(SALARY OF X3 ANSW))))) 

However, it can be written in the simpler functional notation 
as: (SALARY OF (PRESIDENT OF (UNIVERSITY OF 
(LARGEST STATE OF (UNITED STATES))))) because each 
of these predicates is deterministic on its last argument. On 
the other hand, in an example with non-deterministic outputs, 
the relational representation is better. 

Two distinct programming systems have been developer! 
based on formal logical notationfrecursive functions, recursive 
relations) and each is especially useful for representing a par-
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ticular type of programs(deterministic and non-deterministic). 
Furthermore, the more facilities of formal logic that are 
provided in a programming system, the less one needs to use 
constructs such as GOTO and assignment which are harder to 
use, understand and debug. Therefore, it follows that a sig­
nificantly better programming system could be achieved by 
amalgamating these forma' notations into a single formal sys­
tem provided that effici .. interpreted and/or compiled in­
ference systems could be designed. 

E. Specification VS. Program 

In QCL, specifications and programs are considered as dif­
ferent styles to express logic expressions for their own purposes 
within the same framework. Specifications are descriptively 
useful logic forms and their computationally useful forms 
are programs. 

We believe that automatic derivation, verification and syn­
thesis of logic programs are made easier, provided that 
specifications and programs have a smooth interaction. Two 
important relationships between logic programs and their 
specifications are correctness and completeness. Correctness 
is a property that for any n-tuple x, if x is computed as a solu­
tion satisfying a relation R, then x belongs to the relation 
specified by S. It can be formalized as Vx(S|— R(x)<=P|— R(x)). 
Completeness is a property that for all members of the 
specified relation R are computable from program P. It can be 
represented as Vx(S|— R(x)=>P—-R(x)). One way to show these 
relationships is to use meta-level deduction to prove those 
formulas [Brown 78]. Another way is that, if finding a good 
specification S such that S—P or P|— S, we get same correct­
ness proof or completeness proof by exploiting the transitivity 
of logical implication |—. 

The second approach is the cornerstone of logic program 
derivation, verification and synthesis investigated in[Clark 
77] [Hogger 81]. One advantage in this approach towards 
verification is that the object-level deduction from S to P or 
from P to S is sufficient to show their relationships without 
meta-level deduction and concerning goal relation R(x). 
Another advantage is that for proving any property of P, it-
may be much easier to show that S has that property and P is 
complete with respect to S. In the Hogger study, specifications 
expressed in "if-and-only-if" and "first-order recursive" styles 
are crucial in this approach. Since QCL intend to bring 
specifications and programs together, it provides a good op-
portunity to investigate good specifications and program styles 
in order to automate the derivation, synthesis, and verification 
of logic programs. For example, 

(DEFLQ 
(EQl)AL(PICK.S U V Z) 

(IF(MEMBER.S U Z) 
(IF(MEMBER.S V Z) 

(PLESSP U V) 
NIL) 

NIL)) 
) 

Informally stated, (P1CK.S U V Z)-(MEMBER.S U Z)A 
(MEMBER.S V Z)A(PLESSP U V). 

(DEFLQ 
(EQUAL(MEMBER.S U L) 
(EX X(EX Y(IF(EQUAL L (CONS X Y))) 

(IF(EQUAL U X) 
T 
(MEMBER.S U Y)) 

NIL)))) 

Informally, (MEMBER.S U L)-3x3y(L=(CONS x y)A 
(U=xV(MEMBER.S U y))). 

The specification S:{PICK.S MEMBER.S} is for the follow­
ing program P:{PICK.P MEMBER.P}. It said to pick any two 
numbers U and V from a list Z of numbers, not necessarily 
distinct, such that U is less than V. The relationships can be 
shown by object-level deduction, that is, S\— P and P|-~S. 

(DEFLQ 
(EQUALfPICK.P U V Z) 

(IF(LISTP Z)) 
(IFfEQUAL U(CAR Z)) 

(IF(MEMBER.P V (CDR Z)) 
(PLESSP U V) 
NIL) 

(IF(EQUAL V(CAR Z)) 
(IF(MEMBER.P U (CDR Z)) 

(PLESSP U V) 
NIL) 

(PICK U V(CDDR Z)))) 
NIL) 

) 
(DEFLQ 
(EQUAL(MEMBER.P X L) 

(IF(L1STP L) 
(IFfEQUAL X (CAR L)) 

T 
(MEMBER.P X (CDR L))) 

NIL)) 
) 
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Theorem II. Soundness for Existential Quantifiers 
Case 
Proof: Theorem II is only a symmetric case of Theorem I. Its-
validity is obvious after proving Theorem I. 

Q.E.D. 
An application of this induction principle is illustrated 

below. In the proof (PV (ALL X(ALL Z(EQUAL(AI)JI)L X 
Z)(EX A(AND(DIFFL X Z A) (ADJ A))))))), an induction is 
obtained by instantiation of the principle as follows: p is 
(EQUAL(ADJDL X Z) (EX A(AND(DIFFL X Z A)(ADJL A)))); 
r is PLESSP; in is LENGTH; n is 2; k is 1; b1 is 1; Z1.1 is Y; h1 

is 1; q1, is the term (AND (NC)T(EQUAL X Z))(AI)J X Y)); the 
theorem required by (II) is: (ALL X(ALL Z(ALL 
Y(IMPLIES(AND (NOT(EQUAL X Z))(APJ X 
Y))(PLESSP(LENCTH1 Y Z)(LENGTIIl X Z)))))). The induc­
tion is: 

Base case : 
(ALL X(ALL Z(IMPLIES(OR(EQUAL X Z) 

(NOT (EX Y(ADJ X Y)))) 
(PXZ)))) 

Induction step: 
(ALL X(ALL Z(IMPLIES(AND(NOT(EQUAL X Z)) 

(EX Y(AND(ADJ X Y) 
(P Y Z)))) 

(P X Z)))) 

B. Induction Schemes and A Proof Example 
The recursive firsts-order function definition suggests 

plausible induction schemes. Thus, the induction schemes for 
each of these recursive functions can now be produced. Sup­
pose we try to prove two notions of adjective different list art-
equivalent, (PV (ALL X(ALL Z(EQUAL(ADJDL X 
Z)(ADJDIFFL X Z)))). 

The mechanical proof of this conjecture begins by unravel­
ing the non-recursive function ADJDIFFL and then examining 
the induction schemes for each recursive function. 

(ALL X(ALL Z(EQUAL(ADJDL X Z) (EX A(AND(DIFFL X 
Z A)(ADJL A)))))) (by opening up the function ADJDIFFL) 

The system examines the induction scheme for each recur­
sive function. 

The scheme for (ADJL A) is: 
(EQUALfALL A(p A)) 
(AND(ALL A(IMPLIES(NOT(LISTP A)(p A))) 

(ALL A(IMPLIES(AND(LISTP A)(p (CDR A)))(p A))))) 
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The scheme for (DIFFL X Z A) is: 
(EQUAL(ALL XfALL Z(ALL A(p X Z A)))) 
(ANI)(ALL X(ALL Z(ALL A(IMPLlES(OR(NOT(LISTP X)) 

(NOT(EX BfEQUAL A(CONS(CAR X) B))))) 
(P X Z A))))) 

(ALL X(ALL Z(ALL A(IMPLIES(AND(LISTP X) 
(EX B(AND(EQUAL A(CONS(CAR X) B)) 

(p (CDR X) Z B)))) 
(P X Z A))))))) 

The scheme for (ADJDL X Z) is: 
(EQUAL(ALL X(ALL Z(p X Z))) 
(ANDfALL X(ALL Z(IMPLIES(OR(EQUAL X Z) 

(NOT(EX Y(ADJ X Y)))) 
(P X Z)))) 

(ALL X(ALL Z(IMPLlES(AND(NOT(EQUAL X Z)) 
(EX Y(AND(ADJ X Y)(p Y Z))) 

(P X Z))))))) 
The induction scheme for (ADJL A) is ignored since it has 

a measured argument which is a bound variable. The induc­
tion scheme for (DIFFL X Z A) is subsumed by the induction 
scheme for (ADJDL X Z); so the ADJDL induction scheme is 
used. The system uses heuristics and follows the induction 
principle to split the original conjecture into two cases as 
above. The details of the mechanical proof are generated in 
[Brown&Liu 84]. 

V, CONCLUSIONS 
A new logic programming language has been developed 

which is based on quantifier elimination techniques and 
axiomatization. Unlike other logic program systems, it does 
not involve any unification algorithm. This system handles a 
number of problems better than unification-based logic pro-
gramming system. For example, this system allows the proper 
axiomatization of negation, a smooth interaction between 
functions and relations, and an ability to write specifications 
and to verify the correctness of programs using a generalized 
Noetherian induction rule. Also, it extends previous work in 
program verification to the problem verifying recursively 
defined relations whose definition bodies contain quantifiers. 
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