
VOX—An Extensible Natural Language Processor 

Amn on Meyers 

Artificial Intelligence Project 
Computer Science Department 

University of California 
Irvine, California 

A B S T R A C T 

\ OX is a Natural Language Processor whose knowledge 
ran be extended by interaction with a user 

about these objects. The VOX analyzer uses information 
obtained in extensibility sessions to analyze novel text. 

1.1 EXAMPLES 

VOX consists of a text analyzer and an extensibility sys
tem that share a knowledge base The extensibility sys
tem lets the user add vocabulary, concepts, phrases, 
events, and scenarios to the knowledge base. The 
analyzer uses information obtained in this way to under
stand previously unhandled text 

The underlying knowledge representation of VOX. called 
Conceptual Grammar. has been developed to meet the 
severe requirements of extensibility, Conceptual Gram-
mar uniformly represents syntactic and semantic informa
tion, and permits modular addition of knowledge. 

1. I N T R O D U C T I O N 

The ability to learn is one of the most important charac 
teristics of intelligent systems. To approach such an abil
ity, we first must build systems that can accept new-
knowledge automatically. By continually enhancing the 
extensibility capability of such systems, we can begin to 
address the problems of general learning. 

Critical to extensibility is the underlying knowledge 
representation. The more powerful and flexible the 
knowledge representation, the more easily extensibility 
capabilities can be built and improved. 

VOX (Vocabulary Extension System) is a Natural 
Language Processing system that emphasizes automatic 
extensibility. In VOX, extensibility capabilities are 
developed hand-in-hand with the knowledge representa
tion The knowledge representation, called ('onceptual 
Grammar [5], supports a bottom-up study of language, by 
representing both very general and very specific 
knowledge. As generalizations about language are 
liscovered, they are incorporated into the representation. 

Currently, VOX allows automatic addition of vocabulary 
and action-oriented events and scenarios. The user may 
build knowledge hierarchies of scenarios, events, nouns, 
verbs, adjectives, and other parts of speech, as well as 
specifying a variety of semantic and syntactic information 

We will illustrate how VOX works by adding the se
quence of events for a simple Naval "attack" scenario: 

slop searches for ship, 
ship sights ship, 
ship approaches ship, 
ship attacks ship, 
ship damages ship 

We will add the words, the individual events, and the en
tire scenario to the system. Then, we will show a text 
analysis example that uses this knowledge [User inputs 
are in boldface, in the examples below,] 

M A C R O NOUN E X A M P L E : 

Enter singular form of noun: ship 
Pinter plural form of noun: ships 
Enter synonym or more general concept platform 

Macro noun is an extensibility capability for adding 
nouns. The words 'ship1, 'ships', as well as the more 
abstract concepts ship(noun) and ship(np) are added to 
the knowledge base by macro noun. A phrase like "the 3 
gre^n ships" will be found to be equivalent to ship(np), 
for example. By specifying 'platform1, the user plan's 
'ship1 into a conceptual hierarchy of nouns already con
taining 'platform'. (Platform1 is a Navy word for any
thing that a missile can be fired from. Thus, a base, a 
submarine, and an aircraft an-1 all platforms.) 
Macro verb is similar to macro noun. In addition to con
cepts for words, verb, and verb phrase levels, macro verb 
creates concepts for the event and frame level. For exam
ple, in adding the verb search, the concepts search (event) 
and search (frame) will be created. 

Assume that all the word-level items in the simple attack 
scenario have been added using macro noun, macro verb, 
and macros for other parts of speech Next, we add an 
event: 
This work is supported by the Naval Ocean Systems Center, under 
NO SO C ran I N 66001 - 83- C- 0255. 



Macro event lets the user add standard events to the 
knowledge base. These events are templates, and will 
match much more than the literal words "ship search lo-
cation for ship". Macro event uses the abstract concepts 
ship(np), search(vp), rather than the word-level concepts. 
The event added is treated not just as a semantic restric
tion, but as a full-fledged concept. The concept <ship-
sean h-location-for-ship> is stored in the knowledge base 
under the entry 'ship-search.'. We can use concepts such 
as this to add new scenarios, as will be shown below. 
This specific event-concept is added to a hierarchy of 
events by suggesting the generic 'search' event 

The user specifies the semantic case (actor, act, location, 
etc ) of each element in the event. The user specifies that 
the phrase starts with element 1 and ends with (dement f>. 
The syntactic component of VOX's grammar handles in
complete forms such as "ship searched the area'', so the 
user need not specify that element 3 is a possible end of 
the event phrase. The user specifies that (dement '3 can 
be skipped over; that is, "The ship searched for the sub
marine', omitting a location element, is correct Fnglish. 
The user specifies this because it varies on a case-by-case 
basis For example, in the sentence "Ship conducted at
tack on submarine'', "attack'' could not be omitted. 

Macro frame is similar in many ways to macro event. In 
particular, this specific scenario is given full concept 
status, and is placed under the entry 'ship-attack' (Note: 
the entry 'ship-attack' holds both events and scenarios.) 
We entered it into a hierarchy of scenarios by having it 
suggest the generic attack(frame) concept. 

Optionality information: The user specifies that the 
description of the scenario could start with any of the 
events in it and skip over any events. For example, a 
complete text might read "damaged sub". On the other 
hand, we require that an attack scenario end with an at
tack or damage event (event 4 or 5). 

Having entered this scenario into the system, we can 
make use of it to understand texts that deal with a 'ship 
attacking ship' scenario. Here is an example of the kind 
of text VOX analyzes using the scenario just entered. 



V O X T E X T ANALYSIS E X A M P L E 

(Constellation is message sender.) 

Type message: 

at 1235T had searched area, damaged sub. 

I N T E R P R E T A T I O N 1 OF 1. 
MESSAGE FEATURES 

When analyzing text, VOX builds a frame-based 
representation of the underlying meaning, which is used 
for cheeking and correcting syntactic and semantic prob
lems. VOX reports errors found and produces a reworded 
version of the input text. VOX's use of extensibility ses
sion information in the above example is fairly straight-
forward. 

2 . C O N C E P T U A L G R A M M A R 

We describe the Conceptual Grammar knowledge 
representation, which forms the foundation of the extensi
bility and analysis capabilities of VOX. 

2.1 I N T R O D U C T I O N 

Conceptual Grammar (CG) is a framework for the 
representation of conceptual information. The unit of 
knowledge in CG is the concept. A concept is an atomic 
representation of anything that can be verbalized. In our 
notation, a concept is depicted by a description of the 
concept enclosed in angle brackets. For example, 

<aircraft carrier (noun)> 

is an atomic representation of the concept "aircraft car
rier". We often omit the angle brackets and hyphenate 
the description, for simplicity: 

aircraft-carrier or <aircraft-carrier> 

Concepts can be combined to form phrases. Most phrases 
have associated concepts to represent their meaning. 
Concepts and phrases suggest, or reduce to, other con-

F IGURE 1 

In rule (A), a phrase suggests its atomic representation. 
The phrase "aircraft carrier'1 has no corresponding single 
English word, yet it is a well-defined object, so we 
represent, it with an atomic concept. 

Rule (B) is an example of a hierarchical rule. The hierar
chy is an important organizing principle of CG. CG has 
semantic hierarchies of nouns, adjectives, and some other 
parts of speech, as well as events and scenarios For ex
ample., a scenario where a ship attacks a submarine is a 
more specific instance of one where a platform attacks a 
platform, which is a more specific version of the generic 
attack seenario, and so on (platform is a Navy word for 
anything that missiles can be fired from.) 

Rule (C) illustrates a second organizing principle of CG --
conceptual levels When we speak of 'attack', we may be 
talking about the word itself, the verb, the action, the 
event, or an entire scenario. CG treats all of these facets 
as explicit concepts. The lower-level semantic concepts 
correspond to the syntactic concepts word, verb, verb 
phrase, and so on. The higher semantic levels of event 
and frame (or scenario) have no precise syntactic 
equivalent. A frame could correspond to a sentence, a 
paragraph, or even a novel 

The different levels of semantic concepts allow semantic 
phrases to be represented unambiguously in CC. Note 
how the concept of 'ship' is used in 

(1) <ship(np)> <attaek(vp)> <submarine(np)> 
(2) <ship(noun)> <ahoy(word)> < T > 
(3) <ship(word)> <hyphen> <shape(word)> 
Phrase (1) would match a text like "The 3 US destroyers 
will attack the enemy sub". Phrase (2) matches only 
'ship ahoy' ,'' "destroyers ahoy!", etc. Phrase (3) 
matches only ''ship-shape". Conceptual levels allow se
mantic phrases to be represented with a high degree of 
precision. 

An important class of rules in CG is concerned with the 
transitions between semantic and syntactic phrases. In 
Figure 1 above, rule (I)) shows a semantic concept sug
gesting a syntactic concept, while rule (E) shows the re
verse. Rule (E) is an example of a restriction rule, It 
suggests a specific noun-phrase concept corresponding to 
the noun on the left-hand-side of the rule We will dis
cuss this kind of rule in more detail in the next section. 



This rule finds the most specific possible semantic in
stance of the verb, and suggests its corresponding vp-
level. 

"2 missiles'' is analyzed similarly to "green ship". 

The detailed analysis of the prepositional phrases "at 
1230pm" and "at submarine" is omitted for simplicity. 
Both will suggest the concept <adv>, which corresponds 
to prepositional and adverbial phrases. Also, we represent 

The task of rule V is to find specific events in the data
base; in this case, it found the event "ship attack subma
rine" Now, rule Y is highly sophisticated, and we will 
describe some of the actions that it took. First, note 
that "ship fired missile at submarine" is syntactically am
biguous. "At submarine" could be analyzed as a preposi
tional phrase, or "fire ... at" could be recognized as a 
prepositional verb with its associated particle. Rule Y 
knows about both of these possibilities. It checks the 
kind of verb, and uses one of the rules A or B according
ly: 

A 
x np x vp-prep npx prep rip x --> <specific event> 

x np x vp-regular np x 
B 
— > < specific event > 

If the verb can be prepositional, rule Y looks for rules 
such as 

<fire(vp)> <weapon(np)> <at> --> <attack(vp)> 

In our case, it will find and use this rule. Having found 
that "will fire 2 missiles at" corresponds to an 'attack' 
concept, rule Y looks for the most specific possible event 
of the type 

<ship> <attack> <submarine> 
or 

<platform> <attack> <platform> 



and so on. Once the most specific possible event is found, 
rule Y suggests it. Note that rule Y has to search through 
the adverbial-list to find possible prepositional particles 
for the prepositional verb, and that it rejected the time 
adverbial because the knowledge base has no information 
about attacks on 'time'. 

Rules like Y form a critical part of CG. They not only 
provide a mapping from surface text to underlying con
cepts, but also handle syntactic ambiguity in a unified 
and non-cornbinatorially explosive fashion. (Using rules 
A and R instead of Y would always result in two in
terpretations, whereas Y chooses the best one.) 

Another example of such a rule is 

x np x <vp (passive)> x --> <specific event> 

which handles forms like 

The ship was attacked by the submarine 
Missiles were fired at ship by submarine 
Missiles were fired by submarine at ship 

again, in non-combinatorially explosive fashion. Further
more, this rule is able to search for active-voice events, 
thus allowing most event knowledge to be stored in active 
voice. If desired, this rule can transform passive voice 
sentences to active voice. Another critical rule is 

<event-list> > < specific. frame> 

The task of this rule is to find a single frame (or scenario) 
which will unify a sequence of events, and to try to deter
mine the causal relationship of all the events. This rule 
embodies some of the analyzer's frame-selection mechan
isms. 

3. R E L A T E D W O R K 

VOX is a revised version of NOMAD [1]. 

CG developed from our attempt to reconcile the I'll RAN 
approach [6] with traditional syntax theories, and to sys
tem ize the representation of phrasal knowledge. 

We know of several efforts to build automatically extensi
ble NLP systems. The Teacher component of UC [7], 

A. Meyers 825 

LIFER [4], KLAUS [3], TEAM [2], and others. The suc
cess of these efforts depends, ultimately, on the underly
ing knowledge representation, including both conceptual 
and linguistic knowledge. We find that CG provides a 
framework for both productive and nonproductive linguis
tic knowledge, while the other systems mentioned tend to 
concentrate on one type or the other. Also, CG alone 
provides for automatic addition of scenarios. 

A C K N O W L E D G M E N T 

Thanks to Richard Granger for his support and for criti
quing this paper, Karin Klein for proofreading it, and 
Laura Yoklavich for formatting it. 

REFERENCES 

[1] Granger, R.H. (1984). The NOMAD System: 
Expectation-Based Detection and Correction of 
Errors during Understanding of Syntactically and 
Semantically Ill-Formed Text. American Journal of 
Computational Linguistics, v.9, no.3-4. 

[2] Grosz, Barbara J. (1983). TEAM: A Transportable 
Natural Language Interface System. Conference on 
Applied Natural Language Processing, Santa Monica. 

[3] Grosz, Barbara J. and Mark E. Stickel (1984). 
Research on Interactive Acquisition and Use of 
Knowledge. SRI Technical Report. 

[4] Hendrix, Gary G. (1977). The LIFER Manual: A 
Guide to Building Practical Natural Language Inter
faces. SRI Technical Note 138. 

[5] Meyers, Amnon (1983). Conceptual Grammar. AI 
Project, ICS Department, Irvine, California. UC 
Irvine Technical Report 215. 

[6] Wilensky, Robert and Yigal Arens (1980). PHRAN -
A Knowledge Based Approach to Natural Language 
Analysis. UC Berkeley. Electronic Research Labora
tory Memorandum No. UCB/ERL M80/34. 

[7] Wilensky, Robert, Yigal Arens, and David Chin 
(1984). Talking to UNIX in English: An Overview of 
UC. CA CM vol. 27, no. 6, pp.574-593. 


