
Now Approaches to Parsing Conjunctions Using Prolog

Sandiway Kong
Robert C. Berwick

Artificial Intelligence Laboratory
M.I.T.

545 Technology Square
Cambridge MA 02I39, U.S.A.

A b s t r a c t John and Mary went to the pictures
Simple constituent coordination

The fox and the hound lived in the fox hole and
kennel respectively

Constituent coordination with the 'respectively'
reading

John and I like to program in Prolog and Hope
Simple constituent coordination but can have a col­
lective or respectively reading

John likes but I hate bananas
Non-constituent coordination

Bill designs cars and Jack aeroplanes
Gapping with 'respectively' reading

The fox, the hound and the horse all went to market
Multiple conjuncts

Conjunctions are particularly difficult to parse in tra­
ditional, phrase-based grammars. This paper shows how
a different representation, not based on tree structures,
markedly improves the parsing problem for conjunctions.
It modifies the union of phrase marker model proposed by
Goodall [1984], where conjunction is considered as the lin­
earization of a three-dimensional union of a non-tree based
phrase marker representation. A PROLOG grammar for con­
junctions using this new approach is given. It is far simpler
and more transparent than a recent phrase-based extra-
position parser conjunctions by Dahl and Mc.Cord [1984].
Unlike the Dahl and Mc.Cord or ATN SYSCONJ approach,
no special trail machinery is needed for conjunction, be­
yond that required for analyzing simple sentences. While
of comparable efficiency, the new approach unifies under a
single analysis a host of related constructions: respectively
sentences, right node raising, or gapping. Another advan­
tage is that it is also completely reversible (without cuts),
and therefore can be used to generate sentences.

I n t r o d u c t i o n

The problem addressed in this paper is to construct
a grammatical device for handling coordination in natural
language that is well founded in linguistic theory and yet
computationally attractive. The linguistic theory should
be powerful enough to describe all of the phenomenon in
coordination, but also constrained enough to reject all un-
grammatical examples without undue complications. It is
difficult to achieve such a fine balance - especially since the
term grammatical itself is highly .subjective. Some exam­
ples of the kinds of phenomenon that must be handled are
shown in fig. 1

The theory should also be amenable to computer
implementation. For example, the representation of the
phrase marker should be conducive to both clean process
description and efficient implementation of the associated
operations as defined in the linguistic theory.

The goal of the computer implementation is to pro­
duce a device that can both generate surface sentences given

*John sang loudly and a carol
Violation of coordination of likes

*Who did Peter see and the car?
Violation of coordinate structure constraint

*l will catch Peter and John might the car
Gapping, but component sentences contain unlike
auxiliary verbs

?The president left before noon and at 2. Gorbachev

Fig 1: Example Sentences

a phrase marker representation and derive a phrase marker
representation given a surface sentences. The implementa­
tion should be as efficient as possible whilst preserving the
essential properties of the linguistic theory. We will present
an implementation which is transparent to the grammar
and perhaps cleaner & more modular than other systems
the execution time of both systems for some sample sen­
tences will be presented. Furthermore, the advantages and
disadvantages of our device will be discussed in relation to
the MSC implementation.

Finally we can show how the simplified device can
be extended to deal with the issues of extending the sys­
tem to handle multiple conjuncts and strengthening the
constraints of the system.

S. Fong and R. Berwick 871

T h e R P M R e p r e s e n t a t i o n

The phrase marker representation used by the theory
described in the next section is essentially that of the Re­
duced Phrase Marker (RPM) of Lasnik & Kupin [1977]. A
reduced phrase marker can be thought of as a set consist­
ing of monostrings and a terminal string satisfying certain
predicates. More formally, we have (fig. 2) :-

This representation of a phrase marker is equiva­
lent to a proper subset of the more common syntactic tree
representation. This means that some trees may not be
representable by an RPM and all RPMs may be re-cast as
trees. (For example, trees with shared nodes representing
overlapping constituents are not allowed.) An example of
a valid RPM is given in fig. 3 :-

Sentence: Alice saw Bill
RPM representation.

{S. Alice.saw.Bill. NP.saw.Bill. Alice.V.Bill.
Alice. VP.AIice. saw. IMP}

Fig 3: An example of RPM representation

This RPM representation forms the basis of the
linguistic theory described in the next section. The set
representation has some desirable advantages over a tree
representation in terms of both simplicity of description
and implementation of the operations.

G o o d a l P s T h e o r y o f C o o r d i n a t i o n

Goodall's idea in his draft thesis [Goodall??] was to
extend the definition of Lasnik and Kupin's RPM to cover
coordination. The main idea behind this theory is to ap­
ply the notion that coordination results from the union of
phrase markers to the reduced phrase marker. Since RPMs
are sets, this has the desirable property that the union of
RPMs would just be the familiar set union operation. For
a computer implementation, the set union operation can be
realized inexpensively. In contrast, the corresponding op­
eration for trees would necessitate a much less simple and
efficient union operation than set union.

However, the original definition of the RPM did
not envisage the union operation necessary for coordina­
tion. The RPM was used to represent 2-dimensional struc-
tuie only. But under set union the RPM becomes a rep­
resentation of 3-dimensional structure. The admissibility
predicates deminates and precedes defined on a. set of
monostrings with a single non-terminal string were inade­
quate to describe 3-dimensional structure.

Basically, GoodalPs original idea was to extend the
dominates and precedes predicates to handle RPMs un­
der the set union operation. This resulted in the relations
e-dominates and e-precedes as shown in fig. 4 :-

Figure 4: Extruded definitions

This extended definition, in particular - the notion
of equivalence forms the basis of the computational device
described in the next section. However since the size of the
RPM may be large, a direct implementation of the above
definition of equivalence is not computationally feasible. In
the actual system, an optimized but equivalent alternative
definition is used.

Although these definitions suffice for most examples
of coordination, it is not sufficiently constrained enough to
reject some ungrammatical examples. For example, fig. 5
gives the RPM representation of "*John sang loudly and
a carol" in terms of the union of the RPMs for the two
constituent sentences :-

872 S. Fong and R. Berwick

John sang loudly

John sang a carol

{John. sang, loudly, S,
John.VloudlyJohn.VP,
John.sang.AP,
IMP.sang, loudly}

{John.sang.a.carol,S,
John.V.a.catol,John.VP,
John. sang. NP,
NP.sang.a.t.irol}

(When these two RPMs are merged some of the elements
of the set do not satisfy Lasnik & Kupin's original defi­
nition - these pairs are :-)

{John.sang.loudly. John sang a.carol}
{John.V loudly. John V a carol}
{IMP sang loudly. IMP sang a carol}

(None of the above pairs satisfy the e-dominates predi­
cate - but they all satisfy e-prccedes nnd hence the sen-
tence is accepted as an RPM.)

Fig.5: An example of union of RPMs

The above example indicates that the extended RPM
definition of Goodall allows some ungrammatical sentences
to slip through. Although the device presented in the next
section doesn't make direct use of the extended definitions,
the notion of equivalence is central to the implementation.
The basic system described in the next section does have
this deficiency but a less simplistic version described later
is more constrained - at the cost of some computational
efficiency.

Given a set of sentences and a set of candidates
which represent the set of conjoinable pairs for
those sentences, linearization will output one or
more surface strings according to a fixed proce
dure
Given a set of sentences, finding equivalences
will produce a set of conjoinable pairs according
to the definition of equivalence of the linguistic
theory.

For generation the second process (finding equiva-
lences) is called first to generate a set of candidates which
is then used in the first process (linearization) to generate
the surface strings. For parsing, the definitions still hold -
but the processes are applied in reverse order.

To illustrate the procedure for linearization, con­
sider the following example of a set of simple sentences
(fig. 6) :-

{ John liked ice-cream. Mary liked chocolate}
set of simple sentences

{{John. Mary}, {ice-cream, chocolate}}
set of conjoinable pairs

Fig 6: Example of a set of simple sentences

Consider the plan view of the 3-dimensional repre­
sentation of the union of the two simple sentences shown in
fig- 7 :-

L i n e a r i z a t i o n a n d E q u i v a l e n c e

Although a theory of coordination has been described
in the previous sections - in order for the theory to be put
into practice, there remain two important questions to be
answered

• How to produce surface strings from a set of sentences
to be conjoined?

• How to produce a set of simple sentences (i.e. sen­
tences without conjunctions) from a conjoined surface
string?

This section will show that the processes of lin­
earization and finding equivalences provide an answer to
both questions. For simplicity in the following discussion,
we assume that the number of simple sentences to be con­
joined is two only.

The processes of linearization and finding equiva­
lences for generation can be defined as :-

Fig 7: Example of 3-dimensional structure

The procedure of linearization would take the fol­
lowing path shown by the arrows in fig. 8 :-

Fig 8: Example of linearization

S. Fong and R. Berwick 873

Following the path shown we obtain the surface
string "John and Mary liked ice-cream and chocolate".

The set of conjoinable pairs is produced by the pro­
cess of finding equivalences. The definition of equivalence
as given in the description of the extended RPM requires
the generation of the combined RPM of the constituent sen­
tences. However it can be shown [Fong??] by considering
the constraints imposed by the definitions of equivalence
and linearization, that the same set of equivalent terminal
strings can be produced just by using the terminal strings of
the RPM alone. There are considerable savings of compu­
tational resources in not having to compare every element
of the set with every other element to generate all possible
equivalent strings - which would take 0(n2) time - where
n is the cardinality of the set. The corresponding term for
the modified definition (given in the next section) is 0(1).

Parse a n d G e n e r a t e

In the previous section the processes of linearization
and finding equivalences are described as the two compo­

nents necessary for parsing and generating conjoined sen­
tences. We will show how these processes can be combined
to produce a parser and a generator. The device used for
comparison with Dahl & McCord scheme is a simplified
version of the device presented in this section.

First, difference lists are used to represent strings
in the following sections. We can now introduce two predi­
cates linearize and equivalentpairs which correspond to
the processes of linearization and finding equivalences re­
spectively (fig. 9) :-

linearize(pairs SI El and S2 E2 candidates Set
gives Sentence)

Linearize holds when a pair of difference lists
({SI. El} & (S2. E2}) and a set of candidates
(Set) are consistent with the string (Sentence)
as defined by the procedure given in the previ­
ous section.

equivalentpairs(X Y from S1 S2)

Equivalent paris holds when a substring X of
S1 is equivalent to a substring Y o/'82 according
to the definition of equivalence in the linguistic
theory..

Fig 9: Predicates linearize & equivalontpairs

Additionally, Jet the meta-logical predicate setofas in ''setof(Element Goal Set)'' hold when Set is composed
of elements of the form Element and that Set contains all
instances of Element that satisfy the goal Goal. The pred­
icates generate can now be defined in terms of these two
processes as follows (fig. 10) :-

Fig 10: Prolog definition for generate & parse

The definitions for parsing and generating arc al­
most logically equivalent. However the sub-goals for pars­
ing are in reverse order to the sub-goals for generating -
since the Prolog interpreter would attempt to solve the

874 S. Fong and R. Berwick

sub-goals in a left to right manner. Furthermore, the sub­
set relation rather than set equality is used in the definition
for parsing. We can interpret the two definitions as follows
(fig. 11) :-

Generate holds when Sentence is the con­
joined sentence resulting from the linearization
of the pair of difference lists (SI. nil) and (S2.
nil) using as candidate pairs for conjoiningf the
set of non-redundant pairs of equivalent termi­
nal strings (Set).

Parse holds when Sentence is the conjoined
sentence resulting from the linearization of the
pair of difference lists (SI. El) and (S2. E2)
provided that the set of candidate pairs for con­
joining (Subset) is a subset of the set of pairs
of equivalent terminal strings (Set).

Fig 11: Logical reading for generate & parse

The subset relation is needed for the above defini­
tion of parsing because it can be shown [Fong??] that the
process of linearization is more constrained (in terms of the
permissible conjoinable pairs) than the process of finding
equivalences.

L i n e a r i z e

We can also fashion a logic specification for the process
of linearization in the same manner. In this section we
will describe the cases corresponding to each Prolog clause
necessary in the specification of linearization. However, for
simplicity the actual Prolog code is not shown here.

In the following discussion we assume that the tem­
plate for predicate linearize has the form "linearize(pairs
SI El and S2 E2 candidates Set gives Sentence)" shown
previously in fig. 9. There are three independent cases to
consider during linearization :-

1. The Base Case.
If the two difference lists ({SI. El} & {S2. E2}) are
both empty then the conjoined string (Sentence) is
also empty. This simply states that if two empty
strings are conjoined then the result is also an empty
string.

2. Identical Leading Substrings.
The second case occurs when the two (non-empty)
difference lists have identical leading non-empty sub­
strings. Then the conjoined string is identical to the
concatenation of that leading substring with the lin­
earization of the. rest of the two difference lists. For
example, consider the linearization of the two frag­
ments "likes Mary" and ''likes Jill" as shown in fig. 12

{likes Mary, likes Jill}

which can be linearized as :-

{likes X}
where X is the linearization
of strings {Mary. Jill}

Fig. 12: Example of identical leading substrings

3. Conjoining.
The last case occurs when the two pairs of (non­
empty) difference lists have no common leading sub­
string. Here, the conjoined string will be the con­
catenation of the conjunction of one of the pairs from
the candidate set, with the conjoined string resulting
from the linearization of the two strings with their re­
spective candidate substrings deleted. For example,
consider the linearization of the two sentences "John
likes Mary" and "Bill likes Jill" as shown in fig. 13 :-

{John likes Mary. Bill likes Jill}
Given that the selected candidate pair is {John. Bill},
the conjoined sentence would be :-
{John and Bill X}
where X

is the linearization of strings {likes Mary, likes Jill}

Fig. 13: Example of conjoining substrings

There are some implementation details that are dif­
ferent for parsing to generating. However the three cases
arc the same for both.

We can illustrate the above definition by showing
what linearizations the system would produce for an ex­
ample sentence. Consider the sentence "John and Bill liked
Mary" (fig. 1.1) :-

{John and Bill liked Mary}

would produce the strings:-

{John and Bill liked Mary.
John and Bill liked Mary}

with candidate set {}

{ John liked Mary, Bi l l liked Mary}
with candidate set {(John, Bi l l) }

{John Mary. Bill liked Mary}
with candidate set {(John. Bill liked)}

{John. Bill liked Mary}
with candidate set {(John. Bill liked Mary)}

Fig. 14: Example of linearizations

All of the strings are then passed to the predicate

S. Fong and R. Berwick 875

876 S. Fong and R. Berwick

C o m p a r i s o n w i t h M S G s

The following table (fig. 18) gives the execution times
in milliseconds for the parsing of some sample sentences
mostly taken from Dahl & McCord [1983]. Both systems
were executed using Dec-20 Prolog. The times shown for
the MSG interpreter is based on the time taken to parse and
build the syntactic tree only - the time for the subsequent
transformations was not included.

Fig.18: Timmings for some sample sentences

From the timings we can conclude that the pro­
posed device is comparable to the MSG system in terms
of computational efficiency. However, there are some other
•idvantages such as :-

• Transparency of the grammar - There is no need for
phrasal rules such as "S —► S and S". The device also
allows non-phrasal conjunction.

• Since no special grammar or particular phrase marker
representation is required, any parser can be used -
the device only requires an accept/reject answer.

• The specification is not biased with respect to pars­
ing or generation. The implementation is reversible
allowing it to generate any sentence it can parse and
vice versa.

• Modularity of the device. The grammatically of sen­
tences with conjunction is determined by the defini­
tion of equivalence. For instance, if needed we can
filter the equivalent terminals using semantics.

E x t e n s i o n s t o t h e B a s i c D e v i c e

The device described in the previous section is a sim­
plified version for rough comparison with the MSG inter­
preter. However, the system can easily be generalized to
handle multiple conjuncts. The only additional phase re­
quired is to generate templates for multiple readings. Also,
gapping can be handled just by adding clauses to the defi­
nition of linearize - which allows a different path from that
of fig. 8 to be taken.

The simplified device permits some examples of un-
grammatical sentences to be parsed as if correct (fig. 5).
The modularity of the system allows us to constrain the
definition of equivalence still further. The extended defini­
tions in Goodall's draft theory were not included in his the­
sis [Goodall84] presumably because it was not constrained
enough. However in his thesis he proposes another defi­
nition of grammatically using RPMs. This definition can
be used to constrain equivalence still further in our system
at a loss of some efficiency and generality. For example,
the required additional predicate will need to make explicit
use of the combined RPM. Therefore, a parser will need to
produce a RPM representation as its phrase marker.

A c k n o w l e d g e m e n t s

This work describes research done at the Artificial Intel­
ligence Laboratory of the Massachusetts Institute of Tech­
nology. Support for the Laboratory's artificial intelligence
research has been provided in part by the Advanced Re­
search Projects Agency of the Department of Defense un­
der Office of Naval Research contract N00014-80-C-0505.
The first author is also funded by a scholarship from the
Kennedy Memorial Trust.

R e f e r e n c e s

Bowen v.t al: D.L. Bowen (ed.), L. Byrd, F.C.N. Percira, L.M.
Pereira, D.H.I). Warren. Decsystem-10 Prolog User's Man­
ual. University of Edinburgh. 1982.

Dahl & MeCord: V. Dahl and M.C. McCord. Treating Coordi­
nation in Logie Grammars. American .Journal of Compu­
tational Linguistics. Vol. 9, No. 2 (1983).

Font/??: Sandiway Fong. To appear in S.M. thesis - "Specifying
Coordination in Logic" • 1085

Goodall??: Grant Todd Goodall. Draft - Chapter 2 (sections 2.1.
to 2.7)- Coordination.

Goodull 84: Grant Todd Goodall. Parallel Structures in Syntax.
Ph.D thesis. University of California, San Diego (1984).

Lasnik & Kupin: II. Lasnik and J. Kupin. A restrictive theory
of transformational grammar. Theoretical Linguistics 4
(1977).

