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ABSTRACT 
Wo use some ideas from the theory of Lie groups and Lie algebras 

to study the problem of recovering rigid motion from a time varying 
picture. We are able to avoid the problem of finding corresponding 
points by considering only what can be determined from picture point 
values and their time derivative. We do not assume that we can track 
individual points in the image, nor that we are given any of their 
velocities (i.e., the optic (low). Among our results arc: 

The 6 point df/dt theorem, showing that generically*** the 
values of df/dt at 6 points of the monochrome image / are necessary 
and sufficient to specify the motion of a given object. 

The 2-color theorem for optic flow, which states that the optic 
flow vector is uniquely specified at a generic point of the image if there 
arc 2 or more color dimensions. 

Also, we get the color version of the 6 point theorem, the 2 colors, 
3 points corollary, which reduces the number of points required to 
3, if there are at least 2 color dimensions. 

I INT TION 
For the past several years, many researchers have been investigat

ing problems of moving objects and observers (see e.g., (Tsai and Huang 
1984], [IVa/dny 1083), [Nagel 1983], [Horn and Schnnck 1980], [Bruos 
and Horn 1983], [Ullmau 1979]). A conventional paradigm is to consider 
2 subproblems: finding the optic (low in the image, then computing 3-
dimensional motion. Finding the optic flow in monochrome images by 
point tracking is, however, degenerate except for special points, just as 
for the point matching problem [Blichcr 1983, Hlicher 1984]. 10.g. at a 
single point, the image function and its time derivative tell us nothing 
about motion perpendicular to the gradient of the image function. 

We consider a rigid object undergoing an arbitrary motion in 
space. Our data is a time-varying image, i.e. a map / : I X M3 —♦ 
Rn, where I is a time interval, AY2 is some 2-dimensional manifold, 
specifically the image plane, and u is the number of independent color 
dimensions; n — | for monochrome pictures. We concern ourselves 
here with the problem of finding the motion of the object, particularly, 
how much data is necessary and sufficient. Rather than make jissump-
tions about first finding point correspondences or optic How, we con
sider the full situation of a map from the rigid motion group to the 
time-varying image (but only for the interior of a single object), and 
we develof) the differential theory, based on the data of the picture and 
its time derivative. 

We regret that space limitations preclude defining mathematical 
terms. A fuller presentation, as well as more extensive references, can 
be found in [Hlicher 1984). 

II THE MATHEMATICAL STRUCTURE 
The situation is that of Fig. (*'), just ;is in [Hlicher 1983], except 

now the nature of the transformation g will be paramount. 
We are interested in rigid motions in R3, so f/ G E(3) the 

Euclidcan (rigid motion) group of R:3. The time evolution of the mo-
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Each such path in the picture has a velocity vector, and each 
point in the image has a path, so there is a vector field defined on the 
image. This is usually called the optic flow, but it is more consistent 
with mathematical terminology to call its integral, i.e. the paths in 
the image, the optic flow. We will reserve the term optic flow for 
this integral, i.e. the map Φ : U -► R2 which specifies the paths of 
corresponding points in the picture with initial points in the region U, 
while using optic velocity field or optic vector field for its instantaneous 
velocities, the vectors d<pt/dt. Similarly, the paths in R3 define a vector 
field on R3, and the path 7 in E'(3) defines a tangent vector at the 
identity in E(3). 

The available data, however, is not the optic flow or vector field, 
but the time-varying picture function ft which is just the projection of 
the intrinsic surface function 1F which we assume is carried along with 
the motion, i.e. we neglect changes in / due purely to photometric 
effects, such as specular rellection. Since we are considering only the 
differential theory, we regard our data as telling us only the instan
taneous value /o, and all the time derivatives at t -— 0. This ia the 
same as knowing the Taylor series for ft. We will only use the 1st 
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Actually, wc showed more than that. We showed that a generic 
set of 3 points cannot stay fixed in the image—we didn't even have to 
consider the whole vector field. The set of vectors at 3 such points in 
the image: make up a 6 dimensional vector space, so what we showed is 
that the map e(3) —► vectors at 3 given points in image has no kernel, 
i.e. is 1-1. 

That means that to specify a motion, i.e. an element of e(3), we 
only have to figure out the optic velocity vectors at 3 points. A generic 
function, via equation (*), tells us 1 component of each of the vectors 
(hy gencricity, the gradient is nonzero at all 3 points). If we had 2 
generic functions, then we could recover both components of each of 
the 3 vectors by using equation (*) for both functions (generically, the 
gradients will be: linearly independent, i.e. in different directions at the 
3 points). Parenthetically, we have just proved 

Corollary (2 colors, 3 points). For generic / taking values in 2 or 
more color dimensions, the values of Of /c)t (0, p) at 3 noncollinear points 
p E V art' necessary and sufficient to uniquely specify the instantaneous 
motion of the object. 

Now we must show that 1 component at each of 0 points is as good 
as 2 components at each of 3 points. We saw earlier that df defines 
an element of e*(3). Thus the geometry defines a map T*R2 —>e*(3). 
What we saw earlier is 

Lemma (3 liber lemma). If we choose 3 generic points in R2, and 
2 linearly independent coventors in each fiber over those points, the 6 
resulting points of T*R2 are mapped to a spanning set in e*(3). 

What we will now show is that we can choose any 6 generic points 
in T'*R2, i.e. 6 generic points in the image, and f> generic values of df 
at those points (i.e. a generic /). This is pretty easy by making use 
of the 3 liber lemma. The lemma still applies for any neighborhood 
of R2, i.e. we can choose the 3 points arbitrarily close together. This 
gives us 

Lemma (local spanning). Every neighborhood of every point in 
T'*R2 contains 6 points which are mapped to a spanning set in e*(3). 

Proof. Choose a point and neighborhood in T'*R2. It projects to 
a neighborhood of R2, in which we can choose 3 generic points. We 
can then choose 6 points in T*R2, 2 to a fiber, by the 3 liber lemma. 
QIC!) (local spanning). 

Now we can sec what happens when we choose 6 points in the 
image, df gives us (i points in T*R2. We can perturb these points to 
guarantee that df -/-- 0. Now since every neighborhood of each point 
maps to a spanning set of e*(3) (local spanning lemma), we can always 
perturb the nth point so that it is mapped to something outside the 
span of the first n - I points (at hast through n — 6, anyway). This 
gives a perturbation of the (i points which maps to a spanning set. Since 
spanning sets are open, these points will still span under sufficiently 
small perturbation. (In general, one might need a perturbation of both 
the location of the points and of / to guarantee a spanning set. The 
degenerate situation occurs when the optic velocity vector is in the 
direction of constant /.) QED| 

IIl AFTERWARD 
By virtue of the local spanning lemma and the 3 liber lemma, our 

results are local, i.e. they hold in an arbitrarily small neighborhood— 
generically every neighborhood has i\ points yielding sufficient data. 
This is significant because it implies that an estimate of the motion 
can be obtained from any neighborhood. In practice, of course, using a 
very small neighborhood would lead to a very bad estimate. One would 

rather use many points over a large region to obtain a least squares 
estimate. Hut the localness means that estimates can be made over a 
range of scales, and that a procedure for segmentation based on local 
estimates is well-founded. 
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