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ABSTRACT

Wo use some ideas from the theory of Lie groups and Lie algebras
to study the problem of recovering rigid motion from a time varying
picture. We are able to avoid the problem of finding comesponding
points by considering only what can be determined from picture point
values and their ime derivative. We do not assume that we can track
individual points in the image, nor that we are given any of their
velocities (i.e., the optic (low). Among our results arc:

The 6 point df/dt theorem, showing that generically*** the
values of df/dt at 6 points of the monochrome image / are necessary
and sufficient to specify the motion of a given object.

The 2-color theorem for optic flow, which states that the optic
flow vector is uniquely specified at a generic point of the image if there
arc 2 or more color dimensions.

Also, we get the color version of the 6 point theorem, the 2 colors,
3 points corollary, which reduces the number of points required to
3, if there are at least 2 color dimensions.

I INT TION

For the past several years, many researchers have been investigat-
ing of moving objects and observers (see e.g., (Tsai and Huang
1984], [IVa/dny 1083), [Nagel 1983], [Hom and Schnnck 1980], [Bruos
and Hom 1983], [Ulimau 1979)). A conventional paradigm is to consider
2 subproblems: finding the optic (ow in the image, then computing 3-
dimensional motion. Finding the optic flow in monochrome images by
point tracking is, however, degenerate except for spedial points, just as
for the point matchlng problem [Blichcr 1983, Hiicher 1984]. 10g ata
single point, the image function and its ime derivative tell us nothing
about motion perpendicular to the gradient of the image function.

We consider a rigid object undergoing an arbltrary motion in
space. Our data is a time-varying image, ie. a map / : —
R", where | is a time interval, AY is some 2-d|menS|onaI manlfold,
specrﬁcally the image plane, and u is the number of independent color
dimensions; n — | for monochrome pictures. We concem ourselves
here with the problem of finding the motion of the object, particularly,
how much data is necessary and sufficient. Rather than make jissump-
tions about first finding point comespondences or optic How, we con-
sider the full situation of a mgp from the rigid motion group to the
time-varying image (but only for the interior of a single object), and
we the differential theory, based on the data of the picture and
its ime derivative.

We regret that space limitations predude defining mathematical
terms. A fuller presentation, as well as more extensive references, can
be found in [Hicher 1984).

I THE MATHEMATICAL STRUCTURE
The situation is that of Fig. (*"), just jis in [Hiicher 1983], except
now the nature of the transformation g will be paramount
We are interested in rigid motions in R%, so f G E(3) the
(rigid motion) group of R>. The time evolution of the mo-
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tiot s then given by ¢ 0 R -+ B(3), ic, s o path in Lhe transfor-
mation group. ln fact, 5 defines a l-parameter Bumily of tranaforma-
Ltians, Since we arc interested only in smalb changes from the corrent
state, we lnke 9{0) = I, the ideulity in £{1) {we could have done this
anyway by using Uhe group atructure Lo translale back o the iden-
tity). For every {, v given a rigid motion of R3, since we nre identify-
ing F{3) with the rigid motions of R?, e, 7{t) : R? - RY. Each
point of R? is carried along with this motion, and deacriben a path
in BY [delined by 4,(t) = (+())(r), » € B} In pacticular, every
peint of our surfaee of interest, embedded in RY, hpa such a path.
Now apply the imaging projection, and restriet altention only o the

visible surlace of the embedded objeel. By ecanponition, this leads

lo a path through cach point that gels hil in the image. {defined by

Folt) = m{(~(2D)P) g ¢ M) Now consider only asingle time, ¢ = 0.

The structure we have presented this Tae B soteemarized in Fig. (llow),
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Fig. (»') Fig. {llow)

Each such path in the picture has a velocity vector, and each
point in the image has a path, so there is a vector field defined on the
image. This is usually called the optic flow, but it is more consistent
with mathematical terminology to call its integral, ie. the paths in
the image, the optic flow. We will reserve the term optic flow for
this integral, ie. the mep @ : U -» R? which spedifies the paths of
comesponding points in the picture with initial points in the region U,

while using optic velocity field or optic vector field for its instantaneous

velocities, the vectors d<pt/dt. Similarly, the paths in R® define a vector
field on R and the path 7 in E(3) defines a tangent vector at the
identity in E(3)

The available data, however, is not the optic flow or vector field,
but the time-varying picture function # which is just the projection of
the intrinsic surface function 7F which we assume is caried along with
the motion, ie. we neglect dhanges in / due purely to photometric
effects, such as specular rellection. Since we are considering only the

¢ for gdifferential theory, we regard our data as telling us only the instan-
denssfaneous value /o, and all the time derivatives at t — 0. This ia the

sare as knowmg the Taylor series for ;. We will only use the 1st
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derivative. At n poinl p of the finnge, eall the oplic flow veclor v.
Then in & frame with velocity v al p in the image, f; dots nol appear
to change; the oplic How specifies the motion of corresponding pointa,
Flhiue il we lenve the Trame fixed, woe see that

SI0) = ~Dup) = - Vde), (+)

where D, mennn differentiation by the vector v, equivalent o v - 7,
{This is well-knowr in Lhe conlext of oplic flow; see c.g, [liurn and
Schunck 1980], [Ballard and Wrown 1982}) Equative () ahows how
W oin thal we only lawe portial information aboui »: we only know
I compemenl. We can immaediately see, nlio, that it f lind sudtiphe
diinensionn, i, il Urere were mare than | color dimension, we woald
e information alout multiple components, and v would be uniquely
delermined for peneeie f. Thin s Lhe differentind yersion of the 2-color
theorem we have proved carbier [lHlicher 1983, Jilicher 1984]. Finding
oplic llow, like matching, iB muach cawsicr wilh color. We formalize Lhis
in

Theorem. (Z-color theoroin for oplie lluwj For n generic Limnes
vary ing inage Tunetion f; : M2 — L™, the oplic llow veetor in uniquely
apecilivd al n generie poinl of Lthe image il v 2> 2, e for 2 or more
calor dimensions.

When we lix & = 0, each side of equation (o) i just 2 number, so
for cach p we have s wap B (f}p) : v — a real number. We have Lhum
detined nabring of inear mappings (v.f. slands for vector field, v.b. Tor
veetor bundle):

tangent veetor on (1) — v b. section on object —
u.f on image +— veclor ot p v+ real number

(We musl consider sectione of n veclor bundle on e object rather
tham veelor Jiclds (seciions of the tangent hundle) because the veclors
we arc interested in are Langent veetors Lo paths in R poing through
putnla of the object. Since the paths generslly do nol lie in the objeet,
their Lanpeut vectors neadn't be in the Langent space of Lhe objeet, but
ralher are merely Langenl veckom in ﬂ.’.}

The Vie algebea g of a Lie group (7 8 o vecbor apace which can
be identificd with U tangent apace of & oab the idenlity. 2{3) is a
lie group, and Lherelore associated with it is the Lie algebra ¢f3); and
since &{3) is 4 B-dimenaional manifold, e(3) is & 6-dimensionnl vector
space. The tangent vector {01}, which iv Lhe instantaneous molion,
can thercfore be Whivaght of as an clement of the Lic algebra of3).

We can do Lhis for every path 7, hence for every cluinent of 13),
giving us n homomorphism from the Lie algebirn of3) to scctions of
the vector bumlle vn the object, and likewise again to & Lic sigebra
ol vector fickls on the image of the objeet in Lhe image plane. The
componition of Lhese is a Lic algebra homomorphism. The sequence of
linear maps can therefore be writlen

Lie algebra ¢{3) —+ v.b. sections on object —
v.f.'s on smage — veclors af p — real numbers

This defines a map £{3) — R, i.c. an clement of ¢*{3), the dual of f3).

Now we have cnough machinery to atiack some queations. The
first queation is whether there is enough information in df fdt o
uniquely specily the inatantantoua motion, for generie f. The instan-
Lanecus motion is an clement of ¢{3). An we just saw, for cach point p of
the image, the @ try delines sn el Lof e*(3). The question then
becomes whether we ean apan abl of r*(3) by ranging over all points
of the image, for knowing the value of applying a dual basis in ¢*(3)
uniquely apecifies the priginal vector in e{3). ¢ (3) is 0-dimcnsionnl, so if
thin is possibic, it is poasible for B pointa correaponding to s dual baais,
Thia doean't say anything yel sbout finding the shape or posilion of
the objeel; we only want 1o know whether we can rocover Lhe motion
for fixed shape and poaition.

Theorem (8 point &f /d¢ theorem). Let

J:IXUR
(t.p) — f{t,p)

be & Llime-varying piclure for mome time interval I around 0, and some

ncighborbood €/ in the image plane of regulsr vidues of the imaging
prajection of sme 2-dimenaional objecl (i.e. a 2-nnnifoll) embedded
in R, Ir J comen from Whe projeciion of & gescric inlrinsie funetion on
nn obiject undergoing rigid motion in R¥, then e values af 3f /3L (0, p)
at B gencrie poinls p & U are peccsnnry and sollicionl Lo wniquely speeily
Lhe inatanlancous motion of the object.

Proof. We are in effcel mennnring Lhe oplic velocily lichd with
our image Tunclion; thin s what cquation {¢) sys. To be able o teil
the difference betwern dilferent elements of f3), Lo, dilferent molions,
the mapping from &3} 1o vudocily fivkds on the picture mest be -1
Since the mapping i a vecler space hot phism, Lhis s the sume
s mpying iL haa ne (nontrivisl) keenel.  The homomorphiom of3) —
v.d. acetionn on objeel has no kernel, because any keenel would leave
the entire ubject fixed, but a rigid motion of B can leave at most
a dine fixed.  So efd) s mapped 11 da sections of bondles oo the
object.  Nuw we must shew Uad e kerue? of the honsnorphivm
v.b. aeclions on objrel — v [ e on image docan'L conbain anyWing tial
comen from the previous map frean ef1). The kernel of Use current map
is jusl the seclions whose veclors lie along Lhe rayw of projectlion Lo
the picture. For orthogonat prajeclion, vertical translation would of
course be in Lhin kernel, bul we are assuming o projeclive projection,
i.c. that the raya all meel at a point; for a planar retina thia ia the
usual perspective projection.

|

Fig. {veetor ficlde)

Fig. (kernel-raya)

Wi have W sbow that any auch mation, where pointa move only
along rays, cannal come Trom o rigid motion. Thia s cany Lo see; Lake
3 poinda &, b, ¢ on e object not all on the same line in Y. Since
a rigid motion of R* can only leave a single line axis (or nothing)
fixed, nt lenst | of Lhe points must move, vay a. [T & movien down
{toward the imagee plane), b must move up, o keep their distance
conntisnd, [righl motion).  Sinee b in moving up, ¢ mml move down,
Nl then a and £ oare bolh inoving down and therefore narrowing, their
dintance, showing thal the motion cannol be a rigid molion, ie. the
kernel of v.b, seetions on objeel — v.[.’s on smage is not in Lhe image
of ¢{3) ~» v.b. accitons on object (except for 0, of course). So we know
thal the eomposition ¢(3} -+ v.f.’a on. fmage has no kerael, ie. in 11
This means thal every rigid molion gives a unigue oplic velocity ficld,
and the voctor space of nuch fieldn i 6-dimensional.
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Fig- (3 fibees)

Fig. (3 poinis)



Actually, we shoned more than that. We showed that a generic
set of 3 points cannot stay fixed in the image—we didn't even have to
consider the whole vector field. The set of vectors at 3 such points in
the image: make up a 6 dimensional vector space, so what we showed is

that the map e3) —» vectors at 3 given points in image has no kemel,

ie is 1-1.

That means that to spedfy a motion, i.e. an element of &(3), we
only have to figure out the optic velocity vectors at 3 points. A generic
function, via equation (*), tells us 1 component of each of the vectors
(hy gencricity, the gradient is nonzero at all 3 points). If we had 2
generic functions, then we could recover both com of each of
the 3 vectors by using equation (*) for both functions (generically, the
gradients will be: linearly independent, i.e. in different directions at the
3 points). Parenthetically, we have just proved

Corollary (2 colors, 3 points). For generic / taking values in 2 or
more color dimensions, the values of Of /c)t (0, p) at 3 noncolinear points
p E V art' necessary and sufficient to uniquely specify the instantaneous
motion of the object.

Now we must show that 1 component at each of O points is as good
as 2 components at each of 3 points. We saw earlier that df defines
an element of €%(3). Thus the geometry defines a map T*R? —>e*(3).
What we saw earlier is

Lemma (3 liber lemma). If we choose 3 generic points in R?, and
2 linearly independent coventors in each fiber over those points, the 6
resuling points of T*R* are mapped to a spanning set in €*(3).

What we will now show is that we can choose any 6 generic points
in T*R?, i.e. 6 generic points in the image, and > generic values of of
at those points (i.e. a generic /). This is pretty essy by making use
of the 3 liber lemma. The lemma still applies for any neighborhood
of R%, ie. we can choose the 3 points arbitrarily dose together. This
gives us

Lemma (local spanning). Every neighborhood of every point in
T*R? contains 6 points which are mapped to a spanning setin e*(3).

Proof. Choose a point and neighborhood in T™R”. It projects to
a neighborhood of R?, in which we can choose 3 generic points. We
can then choose 6 points in T*R?, 2 to a fiber, by the 3 liber lemma.
QIC)) (local spanning).

me n Ty "

Fig. {local spanning) Fig. (b points)

Now we can sec what when we choose 6 points in the
image, of gives us (i paints in T*R?. We can perturb these points to
guarantee that df -/-- 0. Now since every neighborhood of each point
meps to a spanning set of €*(3) (local spanning lemma), we can always
perturb the nth point so that it is mapped to something outside the
span of the first n - | points (at hast through n — 6, anyway). This
gives a perturbation of the (i points which maps to a spanning set. Since
spanning sefs are open, these points will still span under suficiently
small perturbation. (In general, one might need a perturbation of both
the location of the points and of / to guarantee a spanning set. The

situation occurs when the optic velocity vector is in the
direction of constant /.) QED|

I AFTERWARD
By virtue of the local spanning lemma and the 3 liber lemma, our
results are local, i.e. they hold in an arbitrarily small neighborhood—
generically every neighborhood has i\ points yielding sufficient data.
This is significant because it implies that an estimate of the motion
can be obtained from any neighborhood. In practice, of course, using a
very small neighborhood would lead to a very bad estimate. One would
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rather use many points over a large region to obtain a least squares
estimate. Hut the localness mears that estimates can be mede over a
range of scales, and that a procedure for segmentation based on local
estimates is well-founded.
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