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Abstract: The brightness patterns in two successive im-
age frames are used to recover the motion of a planar ob-
ject without computing the optical flow as an intermediate
step. Based on a least-squares formulation, a set of nine
nonlinear equations are derived. A simple iterative scheme
for solving these equations is presented. Using a selected
example, it is shown that in general, the scheme may con-
verge to cither of two possible solutions depending on the
initial condition. Only in the special case where the trans-
lational motion vector is perpendicular to the surface does
our algorithm converge to a unique solution.

1. Introduction

The problem of determining rigid object motion and sur-
face structure from a sequence of image frames has been
the topic of many recent research papers in the area of
machine vision. Much of the theoretical work has been
restricted to using the optical flow, the apparent veloc-
ity of brightness patterns in the image Three types of
approaches, discrete, differential, and least-squares, have
been commonly pursued.

In the discrete approach, information about a finite
number of points is used to reconstruct the motion [3,7,11-
13]. To do this, one has to identify and match feature
points in a sequence of images. The minimum number of
points required depends on the number of image frames.
In the differential approach, one uses the optical flow and
its first and second derivatives at a single point [8,15]. In
the least-squares approach, the optical flow is used at every
image point [1,2,16].

In general, to compute the optical flow, one exploits a
constraint equation between the optical flow and the image
brightness gradients. Locally, the brightness variations in
time varying images only provide one constraint on the two
components of the optical flow. Therefore, an additional
constraint will be required to compute the local flow field.
For instance, one may assume that the flow field varies
smoothly [5,6], or that it is locally quadratic [15].

In this paper, we restrict ourselves to planar surfaces
where only three parameters are needed to specify the
surface structure. We determine the motion and surface
parameters directly from the image brightness gradients,
without having to compute the optical flow as an interme-
diate step.

2. Problem Formulation

Horn and Schunk {6] have derived a constraint equation
between the optical flow (u,v), the apparent velocity of
brightness patterns in the image, and the spatial-temporal
gradients of the brightness patterns (E;, E,, E;), when the
incident illumination is uniform across the surface. This
constraint equation is of the form:

Exu+ Egp+ E =0 (1)

In oractice. the brightness gradients are estimated from

the gray levels in consecutive image frames using fnite
difference methods.

Anpy rigid body motion can be decomposed into transla-
tional and rotational compounents. We can either consider
the motion of an object relative to a stationary camera, or
equivalently the molion of a camera relative to a station-
ary object (navigation}. In either case, the relative motion
between the object and the camera and the object struc-
ture are to be determined from sequences of image framea.
Let t = (U,V,W)T and w = (A,B,C)T denote the vec-
tors of translational and rotational velocity, respectively
(T denotes the transpose of a vector), and let the point
r = [z,% 1)7 in the image plane be the perspective projec-
tion of the point r = (X, ¥, Z[X,¥ )7 on the rigid object.
It can be shown that the optical How generated in the im-
age plane by the relative motion between the camera and
the object is given by[2]:

u=Azy - B{z* + 1)+ Cy+ (-U + 2 W)/Z,
v=A(y*+1) - Bazy--Cz+ (-V+yW)/Z.

(2)

Substituting equationa (2} into (1), and simplifying the re-
sults, we obtain the brightness change constraint equation
for the case of rigid body motion:

c+v-w+%l-t=ﬂ, (3)

where ¢ = I, and

E.zy + Ey(l‘z +1) ~E;
v | —E(z2+1)-Egy |, s= -E, .
Eyy - Eyz Ez+ Eyy



For a planar surface, (r-n) Z = 1, where r = {p,q,7}7 is
the normal to the surface. Substituting for Z into equation
{3) yielda:

e+v-w+(r-n)s-t)=0 (4)

This ia the brightness change constraint equation for a rigid
planar object undergoing 3-D motion. We will exploit it
to recover the motion and surface parameters.

3. Least-Squares Formulation

Given perfect data, only a few points are sufficient to de-
termine the nine unknowns (three components of w, t, and
n)—or rather, eight, since we can only recover the distance
to the plane and the translational velocity up to a scale fac-
tor (Equation (4) will remain invariant if n is multiplied
by a scale factor and t is divided by the same factor).
In practice, this constraint equation will not be satisfied
at each image point due to additive sensor noise, quanti-
zation of the image brightness levels and finite difference
approxaimation used to estimate the brightness gradients.
Therefore, a least-squares formulation seems appropriate
in developing a robust algorithm.

A suitable choice of surface and motion parameters
should minimize some measure of error in equation (4)
for every image point. We will formulate the following
unconstrained optimization problem:

Find the surface n, and motion parameters w and t, that
minimize the expression:

J=[jn[c+v‘w+(r-n}{n‘t}}zdzdy, (5)

where the integration ie performed over the relevant region
{1 of the image plane. Neceasary conditions for minimising
equation (5) with respect to w, t, and n include:

at aJ aJ
E = 0, "a-'; = 0, and 5; =

Performing the indicated differentiations in (6) we get:

//n[c+v-w+[r-n)[s-t)]\rd:dy=0, (7a)

0. (6

f/ﬂ[r-n)]e+v-w+(r-n)(s-t)}sdzdy:(l, (7)
[fn[l-t}[c+\r-w+(r-n]{s-t]]rdzdy:ﬂ. (7c)

These comprise nine nonlinear simultaneous equations that
can be solved for the six motion parameters, t and w, and
the three surface parameters, n.

4. An Iterative Solution Procedure

We now present an iterative solution procedure for solving
the nine simultaneous equations defined previously. First,
some observations about equations (7) are in order:
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1. Equation (7a) is linear in w, t, and m.
2. Equation (7b) is linear in w and t, but quadratic in n.
3. Equation (7c) is linear in w and n, but quadratic in t.

Several iterative schemes for solving equations (7) can be
considered, The two we have implemented are as fo]lows:

1. Solve the linear equations in {7a) and {7h) for w and ¢
in terms of n, and the linear equations in (7c) for n in
terms of w and t in an iterative procedure.

2. Solve the linear equations in (7a) and (7b) for w and t
in terms of n, and the linear equations in {7a) and (T¢)
for w and n in terms of t in an iterative procedure.

The second scheme mvolves more computation, but con-
verges faster. We will only describe the first scheme here
{sec {10] for more details on both achemes).

Expanding equatiens (7), colleciing terms, and simpli-
fying the results yield:

(v ) (0)--(2) o
Nn = -g, (9)

where

M; :ffn(w‘f}d:dy Mngfn nTr{ve”)dz dy

M= .[/n n? (rrT)n(es?) dz dy

- Tiaal T
N-[/‘;t (sa®)t(rr" ) dzdy

d, _f/ evdzdy d,:f/ c{ar7)n dz dy
n [¢]

E= [,[n [c(rsT)t. + trs(rvr)u] dz dy.

Given the surface parameters r, the motion parameters
w and t can be determined from equation (8). Similarly,
given the motion parameters w and t, equation (9) can
s be solved for the surface parameters n. Based on these
observations, we adopt Lhe following iterative scheme:

. Start with an initial guess for the surface parameters.
Sotve the matrix equation (8) for motion parameters.

Solve the matrix cquation [9) for surface parameters.
. Evaluate the improvement in the solution tu either go
to (2) for the next iteration or stop if the solution has

not improved.

LD kD e

The sotution of equation (8) for w and t can be deter-
mined analytically, and can be written m many forms. For
exaniple, if M; is invertible, we have
-1
v= (Mc-MIM;"M;)  (MIM['d; - da), (100)

w = -M'(d; + Mat}). (100)
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Similarily, the solution of equation (9) is given by:
n=-N"lg (11)

Since all arrays in equations (10) and (11) are cither 3x 3
matrices or vectors of length 3, the solutions for w, t, and
n can be determined easily.

5. Implementation

Let us consider the computations involved during one it-
eration. Using tensor notation (implicit summation over
repeated indeces}, we have:

M1}, 5 =/fv,-1.=_,- dzdy {Ma}i; =[ff LU0, d2 dy] fii
0 n
{My}iy = [[f ririe;8; dz dy] ngmy
i

{N}, = [fj‘; spayriry d:dy] bty (12)

{d:i}i =//n evjdzdy {da}, = [//n“i"jdzdy] n;
{gh= [j/n crs; dz dy} ty + [//n sLriviaL dy] tewy.

In the above equations, (cv;), (viv,), (cair;), {revis;), and
(rires,8;) depend ouly on z, y, B, Ey, and E;, and so
can be integrated over the image once. Therefore, the
updating of the coefficients at each iteration only involves
27 multiplications to compute My, 9 to compute d3, and
42 to compute each of My, N, and g (note that My and N
are symmetric). This gives a total of 162 multiplications
per iteration. Further, solving equations (10) and (11) for
w, t, and n requires a total of 117 multiplications.

This iterative scheme has been implemented and tested
for many cases. We will present a selected example in
section 7.

8. Uniqueness

Our analytical as well as simulation results show (see [10]
for proof) that there exists at most two solutions that gen-
erate the same optical flow (The existance but not neces-
sarily the unigueness of a dual solution has been shown in
several papers [4,9,12,14]). The two solutions are related
as followa:

n=kt, t'=k'n, and W =w+nxt, (19)

where k is any arbitrary constant chosen to scale the sur-
face and translational motion parameters. Note that when
the translational motion is perpendicular to the planar sur-
face, a unique solution is obtained. Further, when the
component of translational motion along the line of sight
(Z-axia) is zero, the planat surface for the dual solution is

parallel to the line of sight. In this case, the dual solution
can be viewed as a degenerate one.

7. Experimental results

In the following example, we will demonstrate the sensi-
tivity of the scheme to the initial condition. The image
brightness function was generated using a multiplicative
sinusoidal pattern (one that varies sinusoidally in both x
and y directions), a 45° field of view was assumed, and the
brightness gradients were computed analytically to avoid
errors due to quantization and finite differencing of bright-
ness values (In practice, the brightness values in two image
frames are discretized first, and are then used to compute
the brightness gradients using finite difference methods).
Table 1 shows the results of two tests using different initial
conditions. In each case, the algorithm converges to one
of the two possible (true or dual) solutions. The results
show that the error in each parameter after less than 30
iterations is within 10% of the true value.

In similar tests, with various motion and surface pa-
rameters, accurate results have been obtained in less than
40 iterations with a variety of initial conditions. More im-
portantly, the algorithm eventually converged to one of
the two possible solutions. The results have not been as
satisfactory for the particular case where the translational
motion component is (almost) perpendicular to the planar
surface (The solution is unique in this case). In these cases,
several hundred iterations were required to achieve reason-
able accuracy. It appears that the behavior resembles that
observed when the Newton-Raphson method is applied to
a problem where two roots are very close to one another.

8. Summary

The problem of recovering the orientation of a planar sur-
face and its motion from a sequence of images was inves-
tigated and formulated as one of unconstrained optimisa-
tion. Using conditions for optimality, the problem was
reduced to solving a set of nine nonlinear algebraic equa-
tions and an implemented procedure based on an iterative
scheme for solving these equations was presented. Through
a selected example, it was shown that the algorithm could
converge to either of two possible solutions (or the only so-
lution when the translational motion vector is perpendicu-
lar to the surface). In practice, once a solution is obtained,
the dual solution can be computed from equation (13). In
several other cases tested, solutions with good accuracy
have been obtained after 10-40 iterations.
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Table 1. Test Results for a Selected Example

True Rotational Motion
Trar Translalional Motion
Trone Surface Paramcters

A= 003 B-=.001 C=-01
U= .000h V= -000 W =0128
p=.2 g=4 r=1

A= M3 B =-00FC—-m12
Vo= 002h ¥V — 06 W — 0125

Dual Red siional Motion
Dl Translational Motion

Duad Surface arametoers p=04 g=-4 r=1L
Initial Guees p=-5 qg=-15 r=l
Itr A B C U 1% w p q

10 L0531 00260 - 0M016-.00068-.00284.01301 35024 1954
15 S0420 00178 - AH008- 00006 DO3R4.01201 27623 2742
i 0353 00137 -.010020.00024 0045401270 23725 .3448
25 LOU3LA 00T - 00000000058 00485012507 (21718 .381L4
30 00305 00307 -.0100048.00045-.00405.01252 20755 3945
3 L0502 00102 - 0LB00D.OD048- 0040501250 20323 .3984
40 00300 00101 -.01300.00049.00500.01250 20137 3996
15 0500 DOLHY - 1000006851 40500.01250 20058 3999
30 N3G 00100 - 01000000050 G0501.01250 20024 4000
35 00300 00160 -.0L00036.00050-.00500.01250 20010 4000

Initial Guess p=-10 gq=-% r=1

* A B € U V W p q

10 01302 - 00120-.01118.0026G 40503 01247 01941 -.4021
15 0120% - .00108-01119.00206 00500 01249 .03220 -.3992
20 01200 0010501 L20.00253 00500 01250 030692 -.3993
25 04300 - 08101-.0L120.00251 .00HD0 .H1250 0HI8TEC -.3908
30 1300 - 410101-.01120.00250 (0500 01250 03050 -.3098
35 1S - 0160~ 01120.00250 08504 01250 .NX980 - 3090
a0 H1300 -,00100-.01 1 20.00250 00500 01250 03992 - 4000
45 AH 300 -.00100-.01 12000250 00500 01250 03997 - 4000
ol AL300 -.00100-.01120.00256¢ ,00500 05250 03909 - 4000

Note that withont loss of gencrality. we Liave set # = 1, pince the
distance to the plane and the transiational motion component
can ouly be recovered up to a scale factor.
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