
Abstract 
The use of specialization hierarchies in model-based 

vision systems may cause problems with uniformity in 
representation and efficiency. The concept of a discrimi­
nation graph is introduced. Such a graph facilitates the 
representation of hypothetical and ambiguous interpreta­
tions in a uniform and efficient way. We describe the 
implementation of Mapsee-3, a sketch map interpreta­
tion program that uses discrimination graphs in combi­
nation with a hierarchical constraint propagation algo­
rithm. 

1. Introduction 
A key issue in Computational Vision is the proper 

mapping from image features to interpretations. Image 
features are often highly ambiguous with respect to 
interpretation. As a result, alternative interpretations for 
a single feature have to be represented as hypotheses. 
These hypotheses are instantiations of scene objects and 
they can be represented by means of an interpretation 
graph in which each variable (node) represents a 
hypothesis and the arcs represent constraints between 
different hypotheses. In a computational vision system 
the number of hypotheses can be quite large. Hence, the 
propagation of constraints over the interpretation graph 
can be a complex and cumbersome operation, because 
the addition of new hypotheses and invalidation of exist­
ing ones requires a continuous restructuring of the 
graph. 

Most model-based vision systems use specialization 
hierarchies2 in an attempt to alleviate this problem. 
These hierarchies can be used to replace sets of elemen­
tary interpretations with a similar appearance in the 
image by a smaller set of more abstract interpretations. 
These interpretations are not only hypothetical, they are 
also ambiguous. They reduce the number of hypotheses 
that the system has to deal with. Unfortunately, speciali­
zation hierarchies only offer a partial solution to the 
interpretation explosion problem. They are natural 
categorization schemes and many image features allow 
for interpretations that do not fit into such schemes. For 
example, a grassy area seen from low altitude could be 
farm land as well as a golf course and there is no special­
ization hierarchy that joins both concepts into one. 

lThe research reported in this peper was carried out in the Laboratory 
for Computational Vision at the University of British Columbia. 

2For a review of different uses of specializations hierarchies, see (1) 

The use of specialization hierarchies may therefore 
cause some interpretations to be hypothetical, whereas 
others are both hypothetical and ambiguous. Hypotheti­
cal interpretations are explicitly represented in an 
interpretation graph by means of different variables, 
whereas ambiguous interpretations are implicitly 
represented by means of a single variable. Such a 
representation is not uniform. 

The efficiency of the system is also affected, in par­
ticular, with respect to constraint propagation. Most 
images allow only one globally consistent interpretation 
for each image primitive. At the start of the interpreta­
tion process, however, each image feature has many 
possible interpretations, most of which are explicitly 
represented in the interpretation graph. Once, more glo­
bal constraints are found, most hypotheses have to be 
deleted from the interpretation graph. 

Both the problems of uniformity and efficiency can 
be alleviated, if discrimination graphs are used. Such 
graphs permit the representation of all interpretations, 
hypothetical or ambiguous, by means of a single variable 
which is never deleted from the interpretation graph, 
once it is constructed. The use of a hierarchical con­
straint propagation algorithm in combination with 
discrimination graphs further increases the efficiency of 
the system. We have designed a model-based vision sys­
tem that uses discrimination graphs in combination with 
such an algorithm. This system has been implemented as 
a schema-based sketch map interpretation program. 

2. Discrimination graphs 
The idea of discrimination graphs is based on the 

assumption that we can classify image features with 
respect to a particular characteristic (e.g. shape, texture) 
the result of which is a finite number of categories. As 
well, we assume that there is only a finite number of 
scene objects whose image appearance falls in a particu­
lar category. Discrimination graphs are based on a 
categorization of object classes that belong to a particular 
image feature category. The source node of the graph is 
an abstract object class that intensionally represents all 
the elementary object classes described by a particular 
image feature category. The leaves of this graph are the 
elementary object classes. Elementary object classes can 
belong to more than one image feature category. As a 
result, discrimination graphs can become tangled hierar­
chies with multiple source nodes. 

Discrimination graphs differ from specialization 
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hierarchies in at least two respects. An abstract class 
often represents elementary classes that cannot be joined 
in a natural specialization hierarchy. As well, the tangled 
structure of the graph means that not all members of a 
subclass are automatically a member of a superclass as 
well (i.e. no universal implication). At the source nodes, 
discrimination graphs represent object classes which are 
unique with respect to a particular image appearance, but 
highly ambiguous with respect to interpretation. At the 
leaves, on the other hand, we find elementary classes 
which are unique with respect to interpretation, but 
ambiguous with respect to their physical appearance. 

Discrimination graphs permit the construction an 
interpretation graph in which each image feature is 
represented by means of a single variable. This variable 
is an instance of an abstract object class which intension-
ally represents the whole range of possible (elementary) 
interpretations for the feature concerned. The elemen­
tary interpretations can be represented explicitly as a set 
of labels in the domain of the variable, or, if we use 
discrimination graphs, implicitly by an abstract label. As 
the interpretation progresses, we can expect an invalida­
tion of some of these labels. The variables, however, 
only represent information that is true for all interpreta­
tions. Thus, invalidation of one label only requires its 
deletion or replacement. This can be done without 
changing the structure of the interpretation graph. As 
well, all interpretations, hypothetical or ambiguous, are 
now represented as labels in the domain of a single vari­
able. 

3. Mapsee-3 
Mapsee-3, the sequel to Mapsee-2 [2], is a 

schema-based program for interpreting sketch maps. Its 
schema-based format has been inherited from Mapsee-2. 
Each object class is represented as a list of attribute-
value pairs. The attributes determine its internal struc­
ture and its relations to other object classes. For exam­
ple, each class has a "components'* and "super-
components" attnbute which determines its location in a 
composition hierarchy of objects. The object's location in 
a discrimination graph, on the other hand, is determined 
by its "discriminations" and "generalizations'1 attri­
butes. An "instances" attribute lists the current instan­
tiations of the object class. Each instance of an object 
class inherits the attributes of its parent. A special attri­
bute "label" is used to store the current interpretation 
of the instance. 

Mapsee-3 interprets sketch maps such as the one in 
figure 1. Both line segments and regions have meaning. 
Line segments can be interpreted in terms of elementary 
object classes such as roads, rivers, shores, towns, 
mountains, and bridges, whereas regions can be land or 
water. The input consists of a set of plotter commands 
which indicate the exact location of each line segment in 
the image. 

The Mapsee-3 control is subdivided into three 
stages: segmentation, image-to-scene mapping, and 
interpretation. A segmentation process results in the 
creation of sets of connected line segments (called 
chains) and regions. The chains form the image features 
that need interpretation. Mapsee-3 has a fixed number 

of shape categories for describing chains. The image-to-
scene process observes the shape of each individual 
chain and selects a category in which the chain is placed. 
Different categories are characterized by features such as 
closure, mountain-shape, bridge-shape, and blobs. 

Discrimination graphs form a key feature in the 
Mapsee-3 design. Each shape category allows for many 
different elementary interpretations. The discrimination 
graphs are constructed such that there is a single 
(abstract) object class for the set of elementary classes 
allowed by each shape category. Figure 2 shows a 
simplified example of a Mapsee-3 discrimination graph. 
This graph would result from the existence of two shape 
categories. A closed chain depicts a coastline, lakeshore, 
or road. Any other line segment depicts a road or river. 
The leaves of the graph are elementary object classes 
(e.g. lakeshore, road), the other nodes represent more 
abstract classes, some of which are unnatural (e.g. 
road/shore). All descendents of road /shore can have the 
same appearance in the image. The nodes in the graph 
with more than one parent can have different 
appearances in the image. A road, for example, may or 
may not be depicted by a closed line segment. Thus, not 
all roads are road/shores, some may be road/rivers 
instead. 

The image-to-scene process instantiates the 
appropriate scene object for each chain. Only one 
instance is created for every chain. A closed chain, for 
instance, gets represented by an instance of the class 
road/shore. The interpretation of this chain is 
represented by the "label" attribute of the instance. 
This label is also road /shore, which indicates that all of 
road/shore's successors in the discrimination graph are 
valid interpretations. The image-to-scene process also 
creates the beginning of the interpretation graph. The 
instances are the variables, their label the domain. Find­
ing the constraints between instances, however, is the 
responsibility of the interpretation process. 

This paper does not address the question of the 
construction of the interpretation graph. For such a dis­
cussion the reader is refered to [3]. We therefore only 
discuss the component of the interpretation process that 
is concerned with constraint propagation. In Mapsee-3 
this process is called discrimination, and it uses the 
discrimination graphs. 

Discrimination is an implementation of a network 
consistency algorithm called hierarchical arc consistency 
(h.a.c). This algorithm is a derivative of arc consistency 
as described in [4]. It maintains consistency between 
labels in the domain of adjacent variables in a constraint 
graph. Two adjacent variables are considered consistent 
if all labels in the domain of one variable are consistent 
with at least one label in the domain of the other. If this 
is not the case then the inconsistent label is replaced. In 
case of replacement the test is repeated for all variables 
adjacent to the one in the domain of which the replace­
ment took place. H.a.c. assumes a hierarchical organiza­
tion of the domain of each variable as is the case in 
discrimination graphs. If a label is inconsistent then 
h.a.c. will recursively replace it by one of its descendents 
in the hierarchy until a consistent descendent is found. 
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As an example, the road/short label of an instance 
becomes inconsistent if both regions surrounding the 
closed chain are constrained to be land. Road/shore is 
valid only as long as all of its descendents (see figure 2) 
are valid. The new constraint invalidates the shore 
interpretation. H.a.c. replaces this label by using the 
principle of least commitment, introduced to Computa­
tional Vision by Man and Nishihara [5]. First, 
road/shore is replaced by road and shore. Next, the con­
sistency of each of these labels is tested. Consistent 
labels are kept, inconsistent labels are replaced by their 
successors. In this example, shore, lakeshore and coast­
line are all inconsistent. Thus road is the only label that 
remains. A more detailed discussion of h.a.c. is provided 
in [3]. 

Mapsee-3 solves the problem of uniformity and 
efficiency as described in the introduction. Competing 
interpretations are all represented as labels in the 
domain of a single variable. Efficiency is achieved in 
several ways. First, invalidation of a particular label does 
not result in a structural change in the interpretation 
graph. Second, the number of labels in the domain of 
each variable can be kept very small, thanks to the use 
of discrimination graphs and the principle of least com­
mitment. Specialization hierarchies do not offer this 
capability to such an extent. Third, h.a.c. does not main­
tain an explicit administration of the compatibility 
between the labels of adjacent variables. Only if a label 
change in a neighboring variable took place, will a vari­
able test its labels. It will stop this test as soon as a com­
patible label is found in the domain of a neighbor. In 
interpretation graphs with competing interpretations 
represented by different variables, the compatibility 
between the interpretation of adjacent variables is 
represented explicitly. As mentioned before, most 
interpretations tend to be eliminated during the course 
of the interpretation process. 

4. Conclusions 
We have described the concept of discrimination 

graphs as a uniform and efficient way for representing 
interpretations that are hypothetical and ambiguous. We 
have also described a hierarchical constraint propagation 
algorithm that uses discrimination graphs in an efficient 
manner to propagate constraints in an interpretation 
graph. Discrimination graphs and hierarchical constraint 
propagation have been implemented in Mapsec-3, a 
schema-based vision system that interprets sketch maps. 
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