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ABSTRACT 

Music transcription is a significant problem in 
machine perception. The system discussed in this paper, 
MANA. takes as input either the sound of a recorded 
performance, or data captured using a musical keyboard. It 
produces conventional musical notation as output. It has 
successfully handled pieces ranging from 18th-century 
piano music to improvisations on conga drums, in the Afro-
Cuban style. 

The paper describes the key ideas and techniques 
found in the temporal analysis component of MANA, the goal 
of which is to assign a rhythmic value to each note played. 

Perception seems to result from the interplay of 
sensory evidence and pre-existing mental structures, data-
driven agents pitted against model-driven agents in the 
formation of hypotheses that seem tolerable to our 
prejudices and not too distant from the data. To this first 
order view one must add a second order one, which allows 
the system to notice patterns among partially elaborated 
hypotheses, and to use these patterns to alter confidence 
ratings, according to "peer pressure" rules. 

Concerning the use of multiple criteria for hypothesis 
evaluation and pruning, which necessary in the context of 
perception systems, it is argued that the use of partial orders 
over multi-dimensional spaces of natural criteria yield more 
robust methods that approaches based on combining criteria 
down to scalars. 

I INTRODUCTION 

An ongoing research project at CCRMA (Stanford 
University) is concerned with exploring an AI approach to 
the recognition of musical structures in sound and other 
forms of data. The effective Integration of numerical 
processing and symbolic processing towards the goal of 
machine perception is a central technical theme, while music 
transcription is the task goal. 

Automatic transcription from sound is clearly more 
difficult than transcription from keyboard strokes. It 
requires, prior to the musical analysis which is needed in 
both cases, an initial stage of acoustic analysis. Further 
refinements may be obtained by feeding information 
gathered from the musical context back to acoustic levels of 
the analysis system. 

It is perhaps less obvious that transcription from 
keyboard strokes alone presents a significant challenge. The 
problem is trivial if one either forbids expressive 
performance and rhythmic complexity, requiring strict 
metronomis accuracy in timing; or if one accepts musically 

absurd (but physically accurate) transcriptions, as may be 
obtained by setting the tempo and the metrical grid 
resolution to fixed values, and rounding durations to the 
nearest grid point. But one should keep in mind that, for 
example, an eighth note (1/2 of a beat) may be played 
shorter than a triplet eighth (1/3 of a beat) without 
confusing human listeners, provided the appropriate musical 
context. How to provide sufficient context mechanisms to 
reach correct decisions, often in spite of the physical 
evidence, without carrying context-driving to excess, may 
well be the most sensitive question in the design of robust 
perception systems. 

In this paper, the discussion wi l l be limited to the 
musical analysis component of MANA, and further restricted 
to the temporal aspects of the analysis. The reader is 
referred to [F0S82a-b, SCH84] for a discussion of acoustic 
analysis, and to [CIIA82, M0N84] for a more comprehensive 
account of the methods used in musical analysis. Section II 
of the paper provides an overview of the system, and 
presents some of the key ideas and techniques used in 
temporal analysis. Section III discusses some of the problem-
solving strategies whose compounded effect is a carefully 
measured dose of context-driving. Section IV draws some 
conclusions and outlines the direction of future research, in 
which learning issues wi l l play an increasing role. 

I I MUSICAL ANALYSIS 

The performance goal initially set for the system was 
to exhibit a fair degree of musical wisdom while 
transcribing expressively played 18th-century music. The 
input was restricted to a single musical voice. A first 
redesign of the temporal analysis permitted opening up the 
range of musical styles without having to train specific 
styles into the program. Another redesign, which is is 
progress, is aimed at dealing with polyphonic sound. 
However, the system as discussed here only with one voice 
at a time 

Further progress towards increased grasp of the 
musical structure. Including more robust methods for tempo 
tracking and meter determination, require moderately 
powerful learning techniques, of the "unsupervised" type. 
The idea Is to uncover the most significant musical patterns 
in a piece, and to use the temporal patterns of pattern 
occurences as hints to the tempo and meter. Near-misses 
also offer Important possibilities, notably for error 
detection, near-missed to initiate self-doubt. 

A Rational Approximation Generation 

Note values, metrical intervals and metrical positions 
are rational numbers, expressed In terms of a reference unit. 
Given (say) a note duration X and the duration R of the 
metrical reference unit, both in seconds, one wishes to 
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generate rational approximations of X/R as candidate note 
values for the given note, in terms of the given unit. The 
choice of rational approximations must take into account at 
least two criteria: closeness to the data (or fit), and 
simplicity of the fraction. The latter must be understood in 
terms of how simple or natural the resulting musical 
notation would be. The techniques of multi-criteria 
filtering (section III-B) come into play at this point, to limit 
the number of answers retained. 

The program relies on the same generator for a 
variety of different tasks, but it varies parameters such as 
the set of acceptable numerators and denominators, and the 
error thresholds. The most obvious use is in the generation 
of hypotheses for individual note values. There are others, 
and they use different tunings. 

Finally, the complexity measure for metric fractions 
is allowed to change over time. For example, fractions such 
as 1/3 and 2/3 may become simpler than 1/4 or 1/2 after 
sufficient statistical evidence of ternary meter has been 
gathered. This is an applications of peer pressure (cf. I l l -
A). 

B Approach to the rhythmic value problem 

The goal is to express note values as rational fractions 
of a "whole note. It turns out that this goal must be 
approached in a round-about manner, which goes in 4 steps 
as follows: (a) choose a reference unit R; (b) express note 
values as fractions of a reference unit R; (c) analyze the 
patterns of note values in order to determine values for 
metrical divisions like beat, bar and (at least) the whole 
note; and (d) convert from R-values to whole-note values. 

Problem (b) is the rhythmic value problem. Problem 
(c) is the meter problem, which is not discussed here. From 
a formal point of view, it appears that the value of R n step 
(a) is arbitrary. This is not so: the behavior of the rational 
approximator depends very much on the reference unit 
used. A first set of rules is used to determine R. Statistical 
clustering of note values plays a role there. 

The next key idea is to localize the problem, to 
regions where the tempo is supposedly held constant. This 
factors out the global tempo fluctuation, which can be 
represented by a piecewise linear correspondence between 
musical time and physical time. The slope of each linear 
segment is a tempo value, and the list of successive segments 
is regarded as the tempo line of the piece. A second set of 
rules, based on simple rhythmic and melodic patterns is used 
to determine the structural anchors. These notes are singled 
out as likely candidates to occupy strong positions in the (as 
yet undetermined) metric grid. For instance, these notes 
might occur at downbeats, or at least at beat boundaries. 
The endpoints of the tempo line segments, on the physical 
time axis, are placed at these structural anchor points. 

A third set of rules determines the metrical duration 
of each tempo line segment, in terms of R. This completes 
the construction of the tempo line. Once the tempo is 
known within each segment, it is possible to use the 
rational approximation generator to associate with each 
note a set of candidate rational values, in terms of R. Among 
the combination of approximations which add up to the 
desired metric length it is possible to select one that 
represents the best compromise between musical simplicity 
and closeness to the data, for this segment. 

In terms of search paradigms, choosing the tempo line 
before assigning individual note values is a special case of 
solving a problem in a much smaller abstract space. Once an 

abstract solution S is obtained, one returns to solving the 
original problem under the constraints imposed by S. 

I l l PROBLEM-SOLVING STRATEGIES 

MANA operates primarily in a bottom-up fashion, but 
it does use top-down constraints. The important point is 
that very few a priori top-down constraints are used. In 
other words, the program tries to refrain from having too 
strong a notion of what music "must" be like. On the other 
hand, a posteriori constraints are heavily relied upon. Such 
context-driving operates in a top-down manner, but the 
context is acquired during previous bottom-up hypothesis 
generation. The idea is to promote homogeneity, or self-
consistency. In other words, the program operates under 
the assumption that a piece defines its own "style" and then 
wants to see more of the same "style". This feedback 
mechanism, termed peer pressure, is further examined in 
section III-A. 

Instead of backtracking, the system relies on a 
multiple-value technique, whereby a set of alternatives is 
operated on parallel. Techniques of multi-criteria filtering 
(cf III-B) are used to to prune the sets of alternatives 
whenever evaluation criteria are added or modified. 

A Peer pressure 

The system uses several levels of abstraction in its 
description of the data. It combines data-driven and 
context-driven methods of hypothesis generation and 
evaluation. Data-driven methods use features obtained at 
one level to generate hypotheses at the next level. Context-
driven methods use information gathered at higher levels to 
re-evaluate and possibly re-generate lower-level 
hypotheses. A key problem is to arrange that feedback loops 
between the bottom-up and top-down modes either 
converge rapidly, either to a stable consensus, or to no 
effect at all. This problem is adressed by the peer pressure 
strategy, a method that allows a collection of hypotheses 
(obtained using statistics, clustering or pattern discovery 
methods) to promote hypotheses with similar contextual 
features. 

Using rather broad terms here, let us call "data" some 
collection of hypotheses at a given level of description, and 
"partial model" some description of the the set of data. The 
partial model might be a set of patterns found in the data, or 
a statistical summary of some aspect of the data. 

Peer pressure, which may be viewed as a noise 
reduotion technique, operates in two steps. The first step 
extracts a partial model from the data. The model must be 
"safe" before proceeding: under poor conditions, peer 
pressure may amplify noiset The second step modifies the 
data to create a better agreement with the partial model. 
Each data point is re-examined in terms of this agreement. 
If the agreement is weak, the data point becomes a candidate 
for modification, that is, deletion, replacement by one or 
more other data points, or simple adjustment. Strong 
patterns always get stronger by the use of this technique, 
which decreases the perceived disorder in the interpretation 
of the data. 

B Mul t i -cr i ter ia f i l te r ing 

In an attempt to achieve robustness over a wide 
range of examples and styles. MANA relies on a variety of 
independent methods for hypothesis generation, and also on 
a multiplicity of evaluation criteria. Rather than using 
backtracking, MANA usually carries a small number of 
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hypotheses in parallel. Excessive pruning of a set of 
hypotheses, most likely to occur during early stages of 
analysis, may cause a system to overlook a good solution 
whose value is not yet obvious at that stage of the game. 
Too little pruning, on the other hand, not only slows things 
down, but leaves noisy points which may affect the 
operation of peer pressure. Thus, it is important to 
maintain a balanced degree of indecision. 

In a multiple-criteria situation, a popular approach is 
to use a weighting scheme to produce a scalar from all the 
criteria. MANA considers this method to be one of last 
resort, as it all too often leads to erroneous decisions. 
Trying to improve the approach by making the weighting 
scheme dependent on context leaves the problem unchanged 
for initial decisions, which must be made before sufficient 
context is established. It also forces one to develop ways of 
changing the weights as a function of context, a rather 
hazardous enterprise. 

It seems better to deal with the original multiplicity 
of criteria directly, especially during pruning stages. The 
intuition behind the scheme we use is quite simple: If 
hypothesis A is no worse than hypothesis B in any of the 
criteria, and better in at least one criterion, then (and only 
then) B should be pruned. This idea immediately generalizes 
to an arbitrary partial orderings in the space of criteria. 
We say that an hypothesis is dominated if it is larger than 
some other hypothesis, with respect to the chosen partial 
ordering. Undominated hypotheses are those that 
correspond to minimal elements in the space of criteria. 
They are the only ones retained past a pruning stage. 

Since the retained hypotheses are minimal in the 
partial ordering, they trade one criterion for another: one 
hypothesis might be close to the observed data while the 
other is simpler but farther away, and a third is 
intermediate in both respects. The scheme is uniform, but 
leaves much flexibility in the choice of the partial 
ordering. In our application, this technique has been found 
extremely effective. 

IV CONCLUSIONS 

Elements of a methodology for achieving robustness 
in perception tasks have been gathered, along with some 
ideas more specific of the transcription domain. In terms of 
performance, the automatic transcription system described 
has also produced some rather interesting results. 
Naturally, there is much more work to be done, both to 
improve robustness in single-voice examples, and to deal 
with polyphonic data. 

Experiments underway suggest that the response to 
these challenges wi l l be based on (a) extending the use of 
adaptive feedback strategies into the acoustic levels of the 
system, so that signal processing and reasoning work hand-
in-hand, and (b) developing the techniques for pattern 
discovery and selection to the point where second-order 
patterns become a reliable source of information. 

In fact, in the process of this research, it has become 
more and more apparent that the musical domain provides 
an ideal setting for in-depth studies in machine perception 
and machine learning. Statistical pattern recognition and 
unsupervised inductive learning [MIC83] both have 
Important roles to play in a flexible musical understanding 
system. 
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