
A N A L Y Z I N G O R I E N T E D P A T T E R N S 

Michael Kaas 
Andrew Witkin 

Schlumberger Palo Alto Research 
3340 Hillview Ave. 

Palo Alto, CA 94304 

ABSTRACT 

Oriented patterns, such as those produced by propaga­
tion, accretion, <>r deformation, ore common in nature and 
therefore an important class for visual analysis. Our ap-
proach to understanding such patterns is to decompose 
them into two parts: a flow field, describing the direction 
of anisotropy, and the residual pattern obtained by de­
scribing the image in a coordinate system built, from the 
flow field. We develop a method for the local estimation 
of anisotropy and a method for combining the estimates 
to construct a flow coordinate system. Several examples 
of the use of these methods are presented. These included 
the use of the (low coordinates to provide preferred di­
rections for edge detection, detection of anomalies, fitting 
simple models to the straightened pattern, and detecting 
singularities in the flow field. 

I I n t r o d u c t i o n 

A central focus in recent computational vision has been the de­
composition of the original intensity image into intrinsic images 
(Horn 1977, Barrow & Tenenbaum, 1978; Marr, 1982), repre­
senting such properties as depth, reflectance, and illuminance. 
These intrinsic properties are believed to be more meaningful 
than image intensity because they describe basic independent 
constituents of the image formation process. Thus, for exam­
ple, in separating shape from illumination, we can recognize an 
invaxiance of shape regardless of changing illumination. 

The advantages of decomposing what we see into its more-or-
less independent parts extends beyond the image formation pro­
cess to the shapes and patterns on which that process operates. 
For instance, decomposing a bent rod into a straight rod and a 
bending transformation reveals the similarity between a bent rod 
and one that hasn't been bent, or some other solid that's been 
bent the same way (Barr, 1984). 

Just as we need to understand the image-forming process to 
decompose an image into intrinsic images, we need to under­
stand the processes that generate patterns to decompose them 
into their intrinsic parts. But, whde there is only one image-
forming process, a staggering variety of processes shape and color 
the world around us. Our only hope of dealing with this com­
plexity is to begin with some basic pattern classes that recur in 
nature, and understand how to decompose and describe them. 

One such class are oriented patterns, notably those produced 
by propagation, accretion, or deformation. To understand an 
oriented pattern we must be able to say (l) what is propagat­
ing, accreting, or deforming, and (2) which way and how much. 
More precisely, we must estimate everywhere the direction and 
magnitude of anistropy (which we will call the flow field,) and 
describe the residual pattern, independent of that field. Why 
this decomposition leads to simpler, more regular descriptions is 
best illustrated by example: 

• A typical oriented pattern created by propagation is the 
streaked trail left by a paint brush dipped in variegated 
paint. The flow field describes the trajectory of the brush, 
the residual pattern depending only on the distribution of 
paint on the brush. 

• Accretion typically results in laminar structures, such as 
wood grain. Here, the flow field gives isochrones (the mov­
ing accretion boundary,) and the residual pattern describes 
the change in color or brightness of the accreting material 
over time. 

• If an isotropic body is deformed, the flow field principally 
describes the bending and stretching it has undergone, while 
the residual pattern describes the undeformed body. 

In all these cases, separate descriptions of the flow field and the 
residual pattern are appropriate because they describe different 
processes. The path of propagation for many physical processes 
is controlled by very different mechanisms than control the col­
oration of the trail left behind. Similarly, the mechanisms which 
control the shape of an accretion boundary are frequently unre­
lated to the processes controlling the color of the accreted ma­
terial. Finally, the forces which deform a piece of material are 
often completely unrelated to the process which created the piece 
of material in the first place By separately describing these pro-
cesses, we can create descriptions of the whole which are often 
simpler than is possible without the separation because each of 
the pieces may have different regularities. 

Orientation selective mechanisms have been extensively stud 
ied by physiologists since Ilubel and Wiesel's (1962) discovery 
of orientation selective cells in mammalian visual cortex (see 
Schiller et. al. (1976) for a comprehensive example). There 
has also been considerable interest among psychologists in the 
perception of oriented patterns, particularly dot patterns (Glass, 
1969). Only recently have the computational issues involved re­
ceived attention. Stevens (1978) examined the groupmg of to­
kens in Glass patterns based on orientation. While successful 
with Glass patterns, his methods were never extended to natural 
imagery. Zucker (1983) investigated the estimation of orientation 
by combining the outputs of linear operators. Zucker's estima­
tion method for what he calls "Type II" patterns, while differing 
in many respects, is quite close in spirit to our own. 

Little progress has been made in using local orientation esti­
mates to interpret patterns, perhaps because reliable estimates 
have proved difficult to obtain. The key difference between our 
work and earlier efforts lies in our use of the flow field to build a 
natural coordinate system for analyzing the pattern. 

The remainder of the paper covers the computation of the 
flow field by local estimation of orientation, the construction of 
a coordinate system using the flow field, and some examples of 
analysis and description using flow coordinates. 

In Section 2 we develop an estimator for the local flow direc­
tion, that direction in which intensity tends to vary most slowly 
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due to an underlying anisotropic process. The estimator, based 
on the direction of least spatial variance in the output of an ori­
ented filter, is computed as follows: After initial filtering, the 
intensity gradient is measured at each point in the image. The 
gradient angle, 0, is then doubled (by treating the gradient vec­
tors as complex numbers and squaring them) to map directions 
differing by π into a single direction. The transformed vectors are 
then summed over a weighted neighborhood around the point of 
interest. The angle of the summed vector is halved, undoing the 
previous transformation. This gives an estimate for the direction 
of greatest variance, which is then rotated by π/2 to yield the 
flow direction. 

In section 3, we describe the construction and use of coordi­
nate systems based on the result of local estimation. Integral 
curves in the flow field are computed numerically, by following 
the estimated vectors from point to point. A coordinate system 
is constructed in which the integral curves are parameter lines. 
Transforming the image into these "flow coordinates" straight­
ens the pattern, removing the effects of changing orientation. We 
present several examples of analysis and description of the flow 
field and the straightened pattern. 

I I F l o w C o m p u t a t i o n 

For intensity patterns created by anisotropic processes such 
as propagation, accretion, or deformation, variation in the flow 
direction is much slower than variation in the perpendicular di­
rection. Anisotropy in such patterns will be evident in the local 
power spectrum. The high frequency energy will tend to cluster 
along the line in the Fourier domain perpendicular to the flow 
orientation. 

A simple way to detect this clustering is to sum the energy in 
an appropriate region of the power spectrum and examine how 
the sum is affected by rotations. This can be done by examining 
the energy in the output of an appropriate orientation-selective 
linear filter. The orientation at which the energy is maximal can 
be expected to be perpendicular to the flow orientation. 

Selection of the filter involves a number of tradeoffs. Very 
low spatial frequencies are affected more strongly by illumina­
tion effects than surface coloration, so they are inappropriate for 
measuring textural anisotropy. Very high spatial frequencies are 
sensitive to noise and aliasing effects so they too are inappropri­
ate. Hence some type of roughly bandpass filtering is required. 
The orientation specificity of the filter is also quite important If 
the filter is too orientation-specific then a large spatial neighbor­
hood will be required in order to make a reliable measurement of 
the energy. Conversely, if the filter responds over a wide range 
of orientations then it will be difficult to localize the orientation 
very accurately. Thus there is a trade-off between angular- and 
spatial- resolution. 

The filter is bandpass with passband determined by and a2-
In our experience, ratios of the sigmas in the range of 2.0 to 10.0 
work well. The orientation specificity or tuning curve is provided 
by the cosine dependence of the filter on 0. This appears to strike 
a reasonable balance between angular- and spatial- resolutions 
for the range of patterns we have examined. The filter's power 
spectrum is shown in figure 1 

The cosine orientation tuning-curve of the filter has some un­
usually good properties for computing the filter output at dif­
ferent orientations. The impulse response S(xyy) of the filter 
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One might be tempted to believe that smoothing the gradient 
vectors G(x,y) would be nearly as good a measure of anisotropy 
as smoothing the rotated squared gradient vectors J(x,y). This 
is emphatically not the case Consider an intensity ridge such 
as /(x,y) = exp(- x2). The gradient vectors on the left half-
plane all point to the right and the gradient vectors on the right 
half-plane all point to the left. Adding them together results in 
cancellation. By contrast, if they are first rotated to form the 
J vectors, they reinforce. The types of oriented patterns we are 
concerned with often have nearly symmetric distributions of gra­
dient directions around the axis of anisotropy. In such patterns, 
if the gradients are added together directly, the cancellation is 
so severe that the result often has little relation to the direction 
of anisotropy. Thus the difference between rotating the gradient 
vectors or leaving them be is often the difference between being 
able or unable to detect the anisotropy. Note also that smooth­
ing the image first and then computing the gradients is exactly 
the same as computing the gradients and then smoothing. It will 
not avoid the difficulties of cancellation. 

C. Coherence 

In addition to finding the direction of anisotropy, it is im­
portant to determine how strong an anisotropy there is. If the 
orientation of the local J vectors are nearly uniformly distributed 
between 0 and 2Π, then the orientation of slight anisotropy is 
not very meaningful. Conversely, if all the J vectors arc pointing 
the same way then the indication of anisotropy is quite strong and 
Φ is very meaningful. A simple way of measuring the strength 
of the peak in the distribution of J vectors is to look at the ra­
tio x(x,y) = |W *Jl/W * IJl which we will call the coherence 
of the flow pattern. If the J vectors are close to uniformly dis­
tributed, then the ratio will be nearly zero. If the ./ vectors all 
point the same way, the ratio will be one. In between, the ratio 
will increase as the peak gets narrower. 

D. Summary 

The computation of the flow direction and local coherence 
can be summarized as follows. First the image /(z, y) is 

Figure 2: An image of wood grain with its flow field. Estimated 
flow directions are given by the black needles. The length of the 
needle encodes coherence. Notice that coherence is low within 
the knot at the center. 

An example of this computation applied to a picture of a piece 
of wood is shown in figure 2. The flow direction Φ(x,y) + 7r 2 is 
displayed by the orientation of small needles superimposed on the 
image. The lengths of the needles is proportional to the coherence 
x(x,y). Note that the pattern is strongly oriented except near the 
knot in the middle. 
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E. Relation To Prior Work 

The flow computation just described bears an interesting rela­
tion to an early proposal of David Marr that information about 
local distributions of oriented edge elements be included in the 
primal sketch (Marr 76). If this proposal is combined with his 
later work with Hildreth on edge detection (Marr & Hildreth, 
1980) it results in a special case of the above computation. Marr 
and Hildreth define edges as zero-crossings in the Laplacian of the 
Gaussian smoothed image. The natural combination of Marr's 
proposal with this definition of edge elements calls for examining 
the local density of zero crossings as a function of orientation. For 
stationary zero-mean Gaussian processes the square of the ori­
ented zero-crossing density is approximately (see appendix 
B). Thus in the special case where the point spread function of 
the filter is our computation 
can be viewed as computing the direction of minimal edge density 
in the Marr-Hildreth theory. 

Zucker's work on flow (Zucker 1983) is also related to a spe­
cial case of the above computation. For biological reasons, he 
prefers to use oriented second derivatives of Gaussians as the ini­
tial filters. These have . Instead 
of looking at the variance of the filter outputs as the orientation 
is changed, he combines the outputs in a biologically motivated 
relaxation process. Although quite different in detail, the com­
putation described here has much in common with his technique. 

I l l F l o w c o o r d i n a t e s . 

The orientation field is an abstraction from the anisotropic 
pattern that defines it. We can, for example, get the same spiral 
field from a pattern composed of bands, irregular streaks, dot 
pairs, etc. In addition to measuring the orientation field, it is 
useful to be able to produce a description of the underlying pat­
tern independent of the changing direction of anisotropy. Such 
a description would make it possible to recognize, for example, 
that two very different orientation fields are defined by the same 
kind of bands or streaks. 

A powerful way to remove the effects of changing orientation is 
to literally "straighten" the image, subjecting it to a deformation 
that maps the flow lines into straight, parallel lines in a canon­
ical (e.g. horizontal) orientation. Performing this deformation 
is equivalent to viewing the image in a coordinate system (u,v), 
with u = u(x,y) and v = v(x,y) that everywhere satisfies 

(6) 

Equation 6 does not determine a unique coordinate system. 
An additional constraint may be imposed by choosing lines of 
constant v orthogonal to those of constant u, i.e, 

(7) 

which has the desirable effect of avoiding the introduction of 
spurious shear in the deformation. 

Even with equation 7, an additional constraint is needed, be­
cause we are free to specify arbitrary scaling functions for the u 
and v axes. In the spirit of equation 7, we want to choose these 
functions to avoid the introduction of spurious stretch or dila­
tion. Although difficult to do globally (one might minize total 
stretch,) we will usually want to construct a fairly local coordi­
nate frame around some point of interest. For this purpose, it 
suffices to take that point as the origin, scaling the axes u — 0 
and v = 0 to preserve arc-length along them. 

Intuitively, the flow field describes the way the pattern is bent, 
and viewing the image in these flow coordinates straightens the 

Figure 3: A flow coordinate grid obtained for the image of figure 
2. 

pattern out. Figure 3 shows the flow coordinate grid for the 
wood-grain image from figure 1. The grid lines were computed 
by taking steps of fixed length in the direction (cosΦ, sinΦ) or 
( — sin Φcos Φ) for lines across and along the direction of flow re­
spectively, using bilinear interpolation on the orientation field. 
Since Φ is always computed between 0 and 7r, we must assume 
that there are no spurious discontinuities in direction to track 
smoothly. 

For many purposes it is unnecessary to compute the deformed 
image explicitly, but doing so vividly illustrates the flow coor­
dinates' ability to simplify the pattern. Figure 4 shows the de­
formation from image coordinates to flow coordinates in several 
stages. As the grain lines straighten the knot shrinks and finally 
vanishes. The deformed images were anti-aliased using texture-
map techniques (Williams, 1983) The deformed linage shows, to 
a reasonable approximation, what the grain would have looked 
like had it not been subjected to the deforming influence of the 
knot. 

Thus far, we have separated the image into a flow field, and 
a pattern derived by viewing the image in flow coordinates. We 
argued earlier that the advantage of this decomposition, like the 
decomposition of an image into intrinsic images, is that the com­
ponents are liable to be simpler and more closely tied to indepen­
dent parts of the pattern-generating process than is the original 
image. To exploit the decomposition, we need ways of analyzing, 
describing, and comparing both the flow field and the straight 
ened pattern. These are difficult problems. In the remainder of 
this section, we present several examples illustrating the utility 
of the decomposition. 

A. A coordinate frame for edge detection. 

Oriented measurements have been widely used in edge detec­
tion. For example Marr & Poggio (1979) employed directional 
second derivative operators, whose zero-crossings were taken to 
denote rapid intensity changes. Due to the difficulty in select­
ing an orientation, Marr & Hildreth (1980 later abandoned 
this scheme, in favor of zero-crossings of the Laplacian, a non-
directional operator. 

The flow field provides two meaningful directions along and 
across the direction of flow — in which to look for edges within 
an oriented pattern. Zero-crossings in the second directional 
derivative in the direction of Φ (against the grain) should high­
light edges that contribute to defining the flow field, while zero-
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Figure 4: Deformation, in stages, from image coordinates to flow coordinates. Upper left: the original image; Lower left, upper right: 
two intermediate stages, in which the grain's curvature has diminshed, and the knot compressed; Lower right, the image as seen in flow 
coordinates: the grain lines are straight and the knot has vanished, showing approximately what the grain would have looked like had 
it not been deformed by the intrusion of the knot. 

crossings in the second derivative perpendicular to Φ (with the 
grain) should highlight anomalous elements or terminations. The 
sum of these two derivatives is the Laplacian. 

The two directional derivatives of the wood grain image are 
shown, with the Laplacian, in figure 5. Indeed, the derivative 
against the grain captures all the elements comprising the grain 
pattern, while the derivative with the grain does not appear 
meaningful. The Laplacian confuses these very different signals 
by adding them together. 

The derivative along the grain can also be meaningful, where 
anomalous elements are present. In addition to being perceptu­
ally salient, such anomalies are often physically significant, with 
origins such as cracks, intrusions, or occlusions, that are dis­
tinct from those of the main pattern. In man-made structures, 
anamolies are often important because they indicate some variety 
of flaw. 

Figure 6 shows a pattern of aligned elements (straw) with some 
anomalous elements. The directional second derivatives along 
and across the flow direction are shown, together with their sum 
(which is just the Laplacian.) Differentiating along the grain 
highlights anomalous elements, attenuating the rest (thus finding 
the "needles" in the haystack.) Differentiating across the grain 
supresses the anomalies. The Laplacian shows both. 

A related demonstration is shown in figure 7, in which the 
anomalous elements have actually been removed by directional 
median filtering in the flow direction. 

B. Singularities. 

We have shown several ways in which viewing an oriented pat­
tern in flow coordinates facilitates analysis and description of the 
pattern. Describing and anlyzing the flow field itself is the other 
side of the coin. The topology of a flow field, as of any vector field, 
is determined by the structure of itss singularities, those points at 
which the field vanishes. Identifying and describing singularities 
is therefore basic to describing the flow field. The singularities 
provide the framework around which metric, properties, such as 
curvature, may be described. Singularities arc also perceptually 
salient (see figure 8.) 

A robust basis for identifying singularities is the index or wind­
ing number (Spivak, 1979.) Suppose we follow a closed curve on 
a vector field. As we traverse the circuit, the vector rotates con­
tinuously, returning to its original orientation when the circuit 
is completed. The index or winding number of the curve is the 
number of revolutions made by the vector in traversing the curve. 
The index of a point is the index of a small circle as we shrink it 
around the point: 

To compute the winding number numerically, we divide the flow 
field into suitably small rectangles, summing the rotation of Φ 
around each rectangle. As in computing the flow lines, we assume 
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Figure 5: Using flow coordinates for edge detection Upper left: 2nd directional derivative across the How direction. Upper right: 2nd 
directional derivative along the flow direction. The first of these highhghts the oriented structure, the second supresses it. Lower left: 
the sum of the directional derivatives is the Laplacian. 

that Φ has no spurious discontinuities. Where the result is non­
zero, the rectangle surrounds a singularity. Figure 9 shows an 
example of the detection of singularities using winding number, 
for a fingerprint. We are currently working on classifying the 
singularities, and using them to describe the topology of the flow 
field. 

I V C o n c l u s i o n 

We addressed the problem of analyzing oriented patterns by 
decomposing them into a flow field, describing the direction of 
anisotropy, and describing the pattern independent of changing 
flow direction. 

A specific computation for estimating the flow direction was 
proposed The computation can be viewed as a) finding the di­
rection of maximal variance in the output of a linear filter, b) 
combining gradient directions locally, or c) finding the direction 
of maximal edge density. The computation has been applied to a 
number of natural and man-made patterns with consistent suc­
cess. 

The flow field was then used to form a coordinate system in 
which to view the pattern. Two orthogonal familes of curves— 
along and across the direction of flow form the coordinate sys­
tem's parameter lines. Viewing the pattern in these flow coor­
dinates amounts to deforming the pattern so that the flow lines 
become parallel straight lines. This deformation produces a pat­
tern that is simpler, more regular, and therefore more amenable 
to analysis and description than the original one. 

Several examples of the use of this decomposition were pre­
sented. These included the use of the flow coordinates to provide 
preferred directions for edge detection, detection of anomalies, 
fitting simple models to the straightened pattern, and detecting 
singularities in the flow field. 

Our ongoing work focuses on the analysis of patterns with 
multiple axes of anisotropy, statistical modeling and resynthesis 
of straightened patterns, and richer description of the structure 
of the flow field. 
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Figure 6: "Finding the needle in the haystack." In this straw pattern, directional derivatives across the flow direction show elements 
aligned with the pattern (upper right.) Those along the flow direction show anomalous elements (lower right.) The Laplacian (lower 
left) shows both. 

Figure 7: Left: the straw picture from figure 6. Right: the anomalous elements have been removed by directional median filtering in 
the flow direction. (Following a suggestion by Richard Szeliski.) 
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Figure 8: A spiral Glass pattern and its flow lines. The pattern is perceptually dominated by the singularity at the center. Since the 
flow field vanishes at a singularity, the flow lines obtained by integrating the flow field tend to become ill behaved as they approach one. 

If the integrals are computed locally with the windowing function 
W, then we have the following estimate for zero crossing density: 

If W is radially symmetric, W * B2 will not depend on 0 so the 
maximum zero-crossing density will occur at the maximum of 
W * B2. By assumption, the mean of the process is zero, so 
W * B2 is the variance of Dx * R0[1]. Thus, for stationary zero-
mean Gaussian processes, if S — DX, A2(0) V (0). 
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