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Abstract 

Depth reconstruction from the two-dimensional image plays 
an important role in certain visual tasks and has been a ma­
jor focus of of computer vision research. However, in this 
paper we argue that most instances of recognition in human 
and machine vision can best be performed without the pre­
liminary reconstruction of depth. Three other mechanisms 
are described that can be used to bridge the gap between the 
two-dimensional image and knowledge of three-dimensional 
objects. First, a process of perceptual organization can be 
used to form groupings and structures in the image that are 
likely to be invariant over a wide range of viewpoints. Sec­
ondly, evidential reasoning can be used to combine evidence 
from these groupings and other sources of information to re-
duce the size of the search-space during model-based match­
ing. Finally, a process of spatial correspondence can be used 
to bring the projections of three-dimensional models into di­
rect correspondence with the image by solving for unknown 
viewpoint and model parameters. These methods have been 
combined in an experimental computer vision system named 
SCERPO. This system has demonstrated the use of these 
methods for the recognition of objects from unknown view­
points in single gray-scale images. 

Introduct ion 

The standard model for much recent research in computer 
vision has been based on the reconstruction of depth in­
formation from the image prior to recognition. However, 
in this paper we will argue that this is not the primary 
pathway used for most instances of recognition in human 
vision. Although depth measurement has an important role 
in certain visual problems, it is often not available and is 
not needed for typical instances of recognizing familiar ob­
jects. Instead, we will propose that the primary bottom-up 
descriptive analysis of the image can best be performed by 
a process of perceptual organization. This process leads 
to the formation of significant groupings and structures di­
rectly from the two-dimensional image data. These group­
ings are partially invariant to viewpoint and can be matched 
directly against three-dimensional object models. The veri­
fication of these matches can be performed by spatially map­

ping the projection of three-dimensional object models onto 
the image data, through a process of viewpoint and model-
parameter determination. 

These methods have been combined in a vision sys­
tem named SCERPO (for Spatial Correspondence, Eviden­
tial Reasoning, and Perceptual Organization). While seem­
ingly solving a more difficult problem—the direct recogni­
tion of objects from unknown viewpoints in two-dimensional 
images—the approach is shown to be apparently simpler 
and more flexible than those that rely upon depth recon­
struction. While it is true that the appearance of a three-
dimensional object can change completely as it is viewed 
from different viewpoints, it is also true that many as­
pects of an object's projection remain invariant over large 
ranges of viewpoints (examples include instances of connec­
tivity, collinearity, parallelism, repetitive textures, and cer­
tain symmetries). It is the role of perceptual organization 
to detect those image groupings that are unlikely to have 
arisen by accident of viewpoint or position. Once detected, 
these groupings can be matched to corresponding structures 
in the objects through a knowledge-based process of evi­
dential reasoning. These methods for evidential reasoning 
were initially developed for combining probabilistic informa­
tion in diagnostic expert systems, but they can be readily 
adapted to combining information regarding probabilistic 
associations between particular image features and object 
models. This probabilistic information is used to order the 
search strategy so that the most reliable and informative 
information is tested first. 

The reliability of the search process depends upon the 
the final verification of each hypothesized interpretation. 
SCERPO uses a quantitative method to simultaneously de­
termine the best viewpoint and object parameter values for 
fitting the projection of a three-dimensional model to given 
two-dimensional features. It allows a few initial hypothe­
sized matches to be extended by making exact predictions 
for the locations of other object features in the image. This 
provides a highly reliable method for verifying the presence 
of a particular object, since it can make use of the spatial 
information in the image to the full degree of available res­
olution. 
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The role of depth recovery in human vision 

A substantial fraction of recent computer vision research 
has been aimed at the bottom-up derivation of depth or 
surface orientation from image data, using information such 
as stereo, motion, shading or texture. This has come to be 
known as the "Shape from X" paradigm. Marr [12] sug­
gested that these sources of information could be combined 
in a representation known as the 21/2-D sketch that would 
allow one source of information to compensate for the ab­
sence of another. The depth representation would then be 
used to determine correspondence with three-dimensional 
object representations, the assumption being that it would 
be easier to match a three-dimensional model to a depth 
representation than to two-dimensional image data. 

Human vision contains many of these components for 
recovering depth, and they presumably have important 
functions. However, biological visual systems have many 
objectives, so it docs not follow that these components are 
central to the problem of visual recognition. In fact, the 
available evidence would seem to indicate the opposite. The 
first problem with these methods is that depth information 
is often unavailable or requires an unacceptably long inter­
val of time to obtain. Stereo vision is only useful for objects 
within a restricted portion of the visual field and range of 
depths for any given degree of eye vergence, and is never 
useful for distant objects. Motion information is available 
only when there is sufficient relative motion between ob­
server and object, which in practice is also usually limited to 
nearby objects. Recognition times are usually so short that 
it seems unlikely that the appropriate eye vergence move­
ments or elapsed time measurements could be taken prior 
to recognition even for those cases in which they may be 
useful. Depth measurements from shading or texture are 
apparently restricted to special cases such as regions of ap­
proximately uniform reflectance or regular texture, and they 
lack the quantitative accuracy or completeness of stereo or 
motion. 

Secondly, human vision exhibits an excellent level of 
performance in recognizing images—such as line drawings— 
in which there is very little potential for the bottom-up 
derivation of depth information. Whatever mechanisms are 
being used for line-drawing recognition have presumably 
developed from their use in recognizing three-dimensional 
scenes. The common assumption that line-drawing recogni­
tion is a learned or cultural phenomena is not supported 
by the evidence. In a seemingly definitive experiment, 
Hochberg and Brooks [6] describe the case of a 19-month-
old human baby who had had no previous exposure to any 
kinds of two-dimensional images, yet was immediately able 
to recognize ordinary line drawings of known objects. 

Finally, there has been no clear demonstration of the 
value of depth information for performing recognition, even 
when it is available. The recognition of objects from com­
plete depth images, such as those produced by a laser scan­

ner, has not been shown to be much easier than for systems 
that begin only with the two-dimensional image. This paper 
will describe methods for directly comparing the projection 
of three-dimensional representations to the two-dimensional 
image without the need for any prior depth information. 

Of course, none of this is meant to imply that depth 
recovery is an unimportant problem or lacks a significant 
role in human vision. Depth information may be crucial for 
the initial stages of visual learning or for acquiring certain 
types of knowledge about unfamiliar structures. It is also 
clearly useful for making precise measurements as an aid 
to manipulation or obstacle avoidance. However, it seems 
likely that the role of depth recovery in common instances 
of recognition has been overstated. 

Matching 3-D knowledge to the image 

Although knowledge of object shape, context, and sur­
face properties must naturally be represented in three-
dimensional form, this knowledge can be matched directly 
against the two-dimensional image through the use of pro­
jection. A major practical difficulty is in using image mea­
surements to determine the unknown projection parameters. 
Six parameters are needed to specify an arbitrary position 
and orientation of an object with respect to the camera, and 
there may be other unknown parameters internal to the ob­
ject. However, each match between a point in the image 
and a point on the object allows us to solve for two param­
eters. Therefore, only three or four hypothesized matches 
between the image and an object model are typically needed 
to solve for the projection parameters. Once these param­
eters have been determined, it is straightforward to carry 
out the projection and extend the match by making accu­
rate predictions for the locations of other model features in 
the image. These further matches may be used to solve for 
any remaining model parameters, but their most important 
function is to provide reliable confirmation for the correct­
ness of an interpretation. 

The author has previously presented a mathematical 
technique [7, 9] for solving for viewpoint and model pa­
rameters given some matches between image and model. 
Briefly, this method linearizes the projection equations and 
uses Newton-Raphson iteration to solve simultaneously for 
the unknown parameters. Since the projection equations are 
very smooth (consisting of linear combinations of sin and 
cos functions of viewpoint), the method has quadratic con­
vergence and typically requires only 3 iterations to achieve 
high accuracy. This basic technique has been extended to 
perform least-squares solution of over-determined systems, 
and to allow matching of image lines to model lines (without 
concern for the location of line terminations). Given these 
methods, the problem of verification is largely solved for 
well-specified objects, and the remaining problems of recog­
nition are those of reducing the size of the search space to 
produce the few initial matches. 
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There is experimental evidence that human recognition 
also relies upon the determination of viewpoint parameters 
for projecting a three-dimensional object description onto 
the image. Cooper &; Shepard [4] describe experiments in 
which subjects are asked to compare images at varying ori­
entations to previously memorized shapes. They found that 
the recognition time varied linearly in the angle of rotation 
between the image and the orientation of the original mem­
orized shape. In conjunction with their other work on men­
tal rotation, this would seem to indicate that recognition 
is performed by bringing a prior representation into spatial 
correspondence with image data by manipulating viewpoint 
parameters. 

Al lowing for variations in object models 

The capability for recognizing objects from their two-dimen­
sional projections is possible only because of previous knowl­
edge regarding the objects. However, recognition does not 
imply that we must know every aspect of an object's ap­
pearance prior to recognition. Object models may be pa­
rameterized with variable sizes, angles, or articulations be­
tween components, with expected bounds given for each 
parameter. As already mentioned, it is possible to back-
solve for these parameters using the same methods as when 
solving for viewpoint. Just as important is the fact that 
there is no precise boundary between what is an object and 
what is a component. It is possible to recognize commonly-
occurring components, such as cylinders, rectangular solids, 
or repeated patterns, as parameterized objects in their own 
right. The only requirement is that there be fewer unknown 
parameters to the description than there are useful measure­
ments to be made from the image data. These recognized 
components—even if the identification is only tentative— 
can then be used to suggest the identity of the more specific 
structure of which they are a part. If the identification of 
the components is quite certain, then they can even be com­
bined into previously unknown or very loosely parameter­
ized relationships. Most objects can be represented both in 
terms of their overall shape and in terms of a combination 
of components, and different images can best make use of 
each type of description depending upon such variables as 
image resolution, viewpoint, and occlusion. 

Previous work on model-based vision 

There is a considerable body of previous research in model-
based vision. The remarkable early work of Roberts [13] 
demonstrated the recognition of certain polyhedral objects 
by precisely solving for viewpoint and object parameters. 
Unfortunately, this work was poorly incorporated in later 
vision research, which tended to emphasize less quantita­
tive methods. The ACRONYM system of Brooks [1] used 
a general symbolic constraint solver to calculate bounds on 
viewpoint and model parameters from image measurements. 
These bounds could then be used to check the consistency 

of interpretations produced by general matching operations, 
and were capable of handling wide classes of generic object 
descriptions. Goad [5] describes the use of automatic pro­
gramming methods to precompute a highly efficient search 
path and viewpoint-solving technique for each object to be 
recognized. This research has been incorporated in an in­
dustrial computer vision system by Silma Inc. which has the 
capability of performing all aspects of recognition within as 
little as 1 second. Because of their runtime efficiency, these 
precomputation techniques are likely to remain the method 
of choice for industrial systems dealing with small numbers 
of objects. Other closely related research on model-based vi­
sion has been performed by Shirai (14] and Walter & Tropf 
[16). 

Perceptual organisation in SCERPO 

Unlike previous model-based systems, SCERPO makes use 
of perceptual organization as the central process for bottom-
up analysis of an image. Perceptual organization refers to a 
basic capability of the human visual system to derive rele­
vant groupings and structures from an image without prior 
knowledge of its contents. For example, people will im­
mediately detect clustering, connectivity, collinearity, par­
allelism, and repetitive textures when shown an otherwise 
randomly distributed set of image elements. This grouping 
capability of human vision was studied by the early Gestalt 
psychologists [17] and is related to research in texture de­
scription [10]. A major function of perceptual organization 
is to distinguish non-accidental groupings from the back­
ground of groupings that arise through accident of view­
point or random positioning [18, 8]. Those groupings that 
are non-accidental in origin will also be partially invariant 
with respect to viewpoint and be most suited to model-based 
recognition (see [9] for a much more detailed discussion). 

In order to provide image features for input to per­
ceptual organization, the first few levels of image analysis 
in SCERPO use established methods of edge detection, as 
shown in Figures 1-3. The 512-by-512-pixel image shown 
in Figure 1 was convolved with a Laplacian of Gaussian 
function (a — 1.8 pixels) as suggested by the Marr-Hildreth 
[11] theory of edge detection. The zero-crossings of this 
function are shown in Figure 3. Of course, many of these 
zero-crossings do not correspond to significant edges in the 
image. We remove those corresponding to insignificant in­
tensity changes by applying the Sobel gradient operator to 
the 2G convolution. Only those points that are above 
a chosen gradient threshold and lie on a zero crossing are 
retained in Figure 5. These remaining zero-crossings are 
linked into lists of points on the basis of connectivity. 

The first stage of perceptual organization is to group 
the linked lists of points into perceptually significant curve 
segments. The author has previously described a method 
for finding straight-line and const ant-curvature segmenta­
tions at multiple scales and for measuring their significance 
[9, Chap. 4], However, here we use a simplified method that 
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selects only the single highest-significance line representa­
tion at each point along the curve. The significance of a 
straight line fit to a list of points is measured as the ratio 
of its length divided by the maximum deviation of a point 
from the line. This provides a scale-independent measure of 
significance that places no prior bounds on the allowable de­
viations. This is then used in a modified version of the recur­
sive endpoint subdivision method. A segment is subdivided 
at the point with maximum deviation from a line connect­
ing its endpoints. If the maximum significance of any of the 
subsegments is greater than the significance of the complete 
segment, then the subsegments are returned. Otherwise the 
single segment is returned. This procedure is applied recur­
sively until each segment contains fewer than 3 points. The 
procedure will return a segment covering every point along 
the curve, but those with a length-to-deviation ratio less 
than 4 are discarded. This method is implemented in only 
40 lines of Lisp code, yet does a reasonable job of detecting 
the most perceptually significant straight line groupings in 
the linked point data. The results are shown in Figure 4. 

The straight line segments are indexed according to 
endpoint locations and orientation. Then a sequence of pro­
cedures is executed to detect instances of collinearity, end-
point proximity (connectivity), and parallelism. A region 
around each endpoint or segment is examined to determine 
candidates for grouping. Each potential grouping is assigned 
a significance value that is roughly inversely proportional to 
the likelihood that it is accidental in origin. This is done in 
a scale-independent manner (i.e., measurements of endpoint 
proximity or separation of parallel lines are divided by the 
length of the shortest of the two line segments). After the 
execution of this grouping process, the many groupings are 
ranked in order of significance. Unfortunately, it is diffi­
cult to display the results of this grouping process without 
showing a separate image for each grouping that has been 
detected. Although several hundred significant groupings 
were detected in the line segments of Figure 4, we show in 
Figure 5 only the two sets of highly-ranked groupings that 
were actually used for successful recognition. 

Evidential reasoning 

Evidential reasoning refers to the combination of different 
sources of information or evidence in order to reach a con­
clusion with a specified level of certainty. This form of 
reasoning has been developed for use in diagnostic expert 
systems, among other applications. It can be used, for ex­
ample, to calculate the likelihood that a particular disease 
is present given a number of symptoms. We are faced with 
a very similar problem in vision when we wish to calculate 
the likelihood that a particular object is present in an im­
age given a number of detected features and other sources of 
information. The performance requirements for evidential 
reasoning in vision are much less stringent than in medical 
expert systems, since we have a reliable procedure for final 

verification and only need to use the evidential reasoning to 
suggest the most efficient ordering for our search. 

In order to minimize the search time, we would like to 
order our consideration of hypotheses according to decreas­
ing values of Pk/Wk, where Pk is the probability that a 
particular hypothesis for the presence of object k is correct, 
and Wk is the amount of work required to verify or refute 
it. Evidence can come from many sources: we may have 
initial expectations for the presence of certain objects, con­
textual expectations resulting from the presence of already-
detected objects, and information from many forms of image 
data such as perceptual groupings, texture, color, or met­
ric measurements. The initial researchers in medical expert 
systems rejected the use of Bayesian methods for combin­
ing evidence [15], since they assumed that it would either 
require unrealistic independence assumptions or an impossi­
bly large number of known statistical parameters. However, 
recent work by Charniak [2] has shown that it is possible to 
formalize the previous apparently ad-hoc methods within a 
Bayesian framework. The application of Charniak's meth­
ods to ordering search during recognition is discussed in [9, 
Chap. 6]. An important aspect of evidential reasoning is 
that it offers a strong basis for building learning systems in 
which the required statistical parameters are moved towards 
their correct values as the system gains experience. 

The evidential reasoning component of SCERPO has 
not yet been developed as fully as other parts of the system. 
Since the system has only been used with a single object 
under consideration, the performance requirements for min­
imizing search have not been great. The system makes use 
of a list of perceptual groupings and the model features that 
could give rise to them. This list is entered by the user at the 
same time as model specification. For example, the group­
ings shown in Figure 5 consist of particular combinations of 
parallelism and endpoint proximity that could be matched 
to various parts of the object model. The probabilities of 
non-accidentalness for the image relations that make up a 
grouping are multiplied together to calculate the probabil­
ity for the grouping as a whole. This is multiplied by an 
estimate of the likelihood of correctness for the match (as­
suming a non-accidental grouping) that has been entered for 
each element of the association list, and these final values 
are used to order the search. We plan to explore methods 
for incrementally learning the required probability values in 
future research. 

Verification of interpretations 

The verification component of SCERPO is able to take a 
tentative match between a couple of image features and 
model features and return a reliable answer as to whether 
the match is correct. If the object is present, this module 
will extend the match as much as possible and determine 
the precise viewpoint. 

Given the initial set of correspondences, the iterative 
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Figures 1-6: The original image of some desk staplers is shown in Fig. 1. This image was convolved with 
a V2G function (a — 1.8 pixels). The zero-crossings of this function are shown in Fig. 2. The gradiant 
of the convolved image was measured, and Fig. 3 shows only those zero-crossings at locations where the 
function had a gradient above a selected threshold value. Fig. 4 shows the segments that resulted from 
linking of zero-crossings and selection of the most significant straight-line segmentations (shown superimposed 
on the original image). Fig. 5 shows the two perceptual groupings that were actually used to initiate 
successful recognition. After solving for model viewpoint, selecting new segments most consistent with 
model predictions, and iterating, the segments shown in Fig. 6 were selected as being consistent with one 
viewpoint. 
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Figures 7-8: These final figures show the object model projected onto the image from the two final calcu­
lated viewpoints. The slight orientation error in one direction in Fig. 8 is due to small inaccuracies in the 
model and image measurements as well as the small amount of data being used to determine viewpoint. 

viewpoint-solving procedure described earlier is used to de­
termine the best viewpoint that would project the model 
features onto the image features. The current implemen­
tation solves only for viewpoint and does not allow vari­
able model parameters. If large errors remain following the 
least-squares fit, the solution is rejected as inconsistent. All 
edge features from the model are then projected onto the 
image using the calculated viewpoint, and the image data 
structure is searched for segments that are close to the pre­
dictions. Matches are evaluated according to the degree 
of agreement in transverse location, orientation, and length 
with the prediction, and according to the lack of ambiguity 
between competing matches for a single object feature. This 
evaluation is used to rank the potential matches and only 
those above a high threshold value, or else the single highest-
ranked match, is selected. The selected matches are com­
bined with the original matches and the least-squares view­
point determination is repeated. An estimate is maintained 
of the error bounds, based upon the number of matches and 
the least-squares deviations, so that instances of ambiguity 
become less likely as the viewpoint estimate improves. The 
set of matches is repeatedly extended until no more can be 
found. The final result of this process is the selection of a 
set of segments, as shown in Figure 6, that are consistent 
with a single viewpoint of the model, as shown in Figure 7. 

The current verification process in SCERPO could 
clearly be extended to include many other aspects of verifi­
cation than just the matching of line segments. For example, 
the viewpoint determination for the model instance shown 
in Figure 8 has a small error in orientation, due to errors 
in image measurements and the small number of segments 

being used for the least-squares matching. However, given 
this degree of recognition, it would now be straightforward 
to go back to the original image data or zero-crossings and 
make further image measurements. 

Implementation details 

SCERPO is written in several different languages. The im­
age processing components are executed on a VICOM im­
age processor under the Vsh software facility developed by 
Robert Hummel and Dayton Clark [3j. The VICOM can 
perform a 3x3 convolution against the entire image in a sin­
gle video frame time. However, our edge detection method 
uses an 18x18 convolution that is performed by 36 of the 3x3 
convolutions and the appropriate image translations and ad­
ditions. The steps up to figure 5 are performed on the VI­
COM, after which the zero-crossing image is transferred to 
a VAX 11/750 running UNIX 4.2 for subsequent processing. 
A program written in C reads the original image and pro­
duces a file of linked edge points (requiring about 30 seconds 
of CPU time). All other components are written in Franz 
Lisp. Segmentation into straight line segments requires 40 
seconds, indexing and grouping operations require about 1 
minute and the later stages of matching and verification 
took 40 seconds for this example. 

The object models used by the system consists merely 
of a set of straight 3-D line segments. Each segment has a 
simple visibility specification, listing viewpoint ranges over 
which it is visible. A full hidden-line algorithm and more 
complete object models would improve the performance of 
the system. 
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Conclusions and future research 

The current capabilities of SCERPO provide a framework 
that could be used to incorporate numerous additional ca­
pabilities, each of which would improve the generality of the 
system or its level of performance. A brief list of these pos­
sible extensions might include the following: incorporation 
of a wider range of perceptual grouping operations, the abil­
ity to handle variable model parameters, the recognition of 
object components and their subsequent combination, more 
complete modeling with surface information and hidden-line 
algorithms, the use of color and texture information, the ex­
panded use of evidential reasoning, the incremental learning 
of associations and probabilities, the detection of curve seg­
ments as well as straight lines, and more detailed verification 
in terms of the original image data. 

Perceptual organization and the methods for achiev­
ing spatial correspondence offer an alternative to the use 
of depth reconstruction and matching in three-dimensions. 
It has been argued in this paper that most instances of 
recognition in human vision also work directly from two-
dimensional data. It should be possible to provide a defini­
tive answer to this question by designing psychophysical 
experiments that test human recognition capabilities with 
different combinations of available information. A final an­
swer to this question would carry many implications for the 
future design of knowledge-based vision systems. 
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