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ABSTRACT

The question of ,3-D shape representation is studied on the
fundamental and general level. The two aspects of the problem,

(i) the reconstuction of a 3-D shape from a given set of corr

tours, and (ii) finding "natural” coordinates on a given surface,

are treated by the same theory. We first set a few basic prin-

ciples that should guide any shape reconstruction mechanism,
regardless of its physical implementation. Second, we propose

a new mathematical procedure that complies with these princi-
ples and offers several advantages overthe existing ad hoc treat-
ments. Some general results are derived from this procedure,

which conform very well with human visual perception.

. Introduction

A major component of Image Understanding is associating
3D shapes with contours First, given a set of contours, such
as may be provided by some image processing device, one wants
to infer the shape of the surface that they most likely describe.
In the complementery problem, given the surface, one seeks its
"natural parametrization . namely contours that will convey its
essential characteristics in the most economical, yet reliable way
One known mechanism that performs these tasks well is the hu-
man visual system A few drawn lines can create a surprisingly
vivid and convincing impression of a 3-D shape [Barrow & Tan-
nenbaum. 1981

In this report, we address this problem on the fundamental
and general level of first, finding the principles that must guide
any process of representing a surface by contours, regardless of
its physical implementator!, and second, we propose a mathemat-
ical mechanism that can perform these tasks, conforming with
our principles Nevertheless, as the eye is the most su
image processing system we have, we shall test the performance
of our abstract procedure against its In the following we shall
summarize the requirements that we impose on a surface recon-
struction mechanism, and their relation to previous work

1t) A mechanism should build a surface in accordance with
the information it has available about it, like boundary or other
contours on it. but it should not add extraneous information of
its own It is qualitatively clear that information is closely re-
lated to the smoothness of the curve or the surface A straight
line can be described by the coordinates of the end points onl\.
while a more complicated shape will require more informaton
Thus it is reasonable, and mathematically convenient, to asso-
ciate minimal information with minimal curvature, and to as-
sume that a surface reconstruction mechanism will look for a
surface that will have a minimum overall curvature while fitting
the given contours.

2) The reconstruction mechanism should be invariant to ro-
tations and translation, i.e. if the input image is rotated or
translated. the output should move by the same amount but not
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4] Handhing of different scales of vanations A varation in
the tangent occurimg over a small length results i a large curva-
turi. A smaltl bump. or “roise”, will have considerable effect on
the imegral. A sharp rorner wifl totally dormnate it with the
integrals value bemng determined by the exact way the corner s
furmed. whick should be immaterial for deteemining the shape.
Thus. the energy principle is oniy applicable for very smooth
curves while the compaciness criterion is inherently guite insen-
silive Lo noise. The energy principle also tends 10 be insensitive
to slowly changing. large scale features, and it will completely
ighore straight sections of the rurve Our procedure deals wilh
both simall- and large-scale vaniations quite successiully.

5] We wauid prefer the same mechanism to handle both as-
pects of the problem mentioned above, namely hnding both the
surface and a suitable set of coordinates on - While previousiy
suggested mechanisms only attemnpt i find the surface, ours also
lead 1o a “natural” parametrization of i

This report 15 an abbreviation of a paper [to appear) which
contaiis the mathematical details.

1.  Smooth Contours

As we want Lo represent the amount of information con-
tained 10 a curve by s curvature, The natural mathenaocal
quantrtres Lo deal with are the dervatives of the tangent ver-
tor such as the curvature vector k — dt de 4% we demand
rotabional invariance, we have to use a scalar product of these
vertors This has led Lo the suggestion of the principle of -

mum energy. by which one wants Lo minimuize the integral f Eds,
with Lthe integral taken over Lthe whole curve, and Lo its 3-D gen-
eralizations. This may be implemented 1n several ways first,
piven the coorchnales and tangents of two points on the curve,
one can find the curve that will pass through them and will nun-
trize Lhos integral decond. given a clused boundary such as an
cliipse. one can LTy to interpret il as a projected image of a sur-
ince in 3-D. The human eve will usually regard an ellipse as &
wanted circle, and we would like an extremum principle Lo yield
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i errele a- an extremunn over the sel of alb curses compatihh
with the prigecied ellipse Limpting ourselves 1o planar curves
{zero tortieng thie means the set of ellipses [(produced by dif-
ferent shant aneles; winh the same maror axes a- the apparen

b

The cuerpy prmeaple failsan this tach a- 0 does nod extren-
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Lettimg A be the total length of the curve we can define
the dinensionless variable
5

i I
As

where « 1« the length of the curve lying between a point on the
curve and one of 1ts ends {15 4 measure of the relative position
of & pomt on the curve, regardless of the curve's length W
define the “action” . b snalogy 1o the physical quantity, as the

el
Tt di
A - / - dl
T

This 1 equivalent to mutiplying the “energy” by As  As both
i and 1 are dimensionless. so i= 4. (Unlike the physical action).
Anolher advantage of this normalization 1s related Lo the way the
extremnum is feund  1n general. one can use the Euler-Lagrangr
equations 1o obtam a differential equation for £{f). But this re-
quires that both the dependent and the independent variables
will have fixed values at the end points. Our normalization pro-
vides that, as ! always runs between 0 and 1, unlike s

The extremum problem is easily solved 1 the simple case
of & curve with two boundary poibts. JU is convenient Lo yse a
polar coordmate system. with the angle ¢ defined as the anghe
between the tangent t and (sax) the r axis. We thus have:

I 1, - SIna@

The action now readh

We shall now show that given two end poimnts with the tangem
there, the enrye that passes throough them s a circular are A
a sperial vase. extrermzing over the set of ellipser wath their
extreme points fixed. will yield a circle Our vanational vanable
=t s ot the Laannedary ranchitinns @t ey aned @1y -
¢, where o0 o are the uclhimations of the curve at the end
pannts The EL egquanions yield
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dopate the cursve apd the value of e Illll"gru] will (]l'pl'nd A
thi- exaet shape of The eoruer. with pomt-hike edges beading to
infrratess Lyven a snedi bumip wiall have a considerable imfinence,
ared v Lt the cmaller the hlllll[J. the Freater s elfeet on the in-
tewral will be theeping s shape simnlar] The mades the eniergs
prccrple anapplicabile dor curves with edges or monse. without
cliuborate filtering techmgues O the other hand  straeghn hines
are ipnored by ths prvogde regardiess of bow lonp they may
I‘l'

We propose a tiew kit of an excremum princrple. one of
whose advantages 1+ essentially solving this small {and targe)
seale varation problem fAnother advantage will become ap-
parent when wio gooover (o 3210 Feest ) we parametrize Cthe cirrve
by pew conrdinate oo runmng alonp the curve wath 1ts biane
beang M and T Then we Jeftne a new “action” A
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Intwitively one catevrepard o0 as aovariable which eoaflerood
ta two forees, penerated by the fart that the extrenuring drives o

to follow fand £ in aualagy 1o an ierts effect The seeond 1erm
i A pushes o Lo be as close as possible Lo f Tn the abaence of the
first Lermn (1o astraight bnel o will comeide with B Thic mahes
Lhe first term as elose ax possible 1o the noton of curvature On
the other hand, the lirst terin drives o 1o follow 1 {ur @) 1o svme
extenm and concentrate in regions where Afis large [such as a
curner), so that At An does nol gt oul of cuntrol.

As a “physical” analogy. one may think of 4 spring which
can e stretehed and beot unevenly along its length The van-
able "o will represent the amount of inasy from a pont on the
spring to one end {as opposed 1o the spatial length §] The aoal
ogy 1= uot perfeet | though. as an actual spring usually does o
have & dimensionless A The spring is “rdeal” i the sense 1har
itour part of it cab shrnk to an mbimitesimal lenpth ke an
idead gas]. FThis 1w what will happen in a corner. A fiite "o’
Ao will coneentrate m an imfinitesiznal corner. allowing Lhe Lnte
bending Ao to spreasd over al

Jo extremuing, A the unknowns are the funetions {0 and
o) (or squvalently @fo)). Solving for them will give us both
alf) (the distibution of the “mass™ alonp the mass and (i)
whiclh defines the curve  These unknows funetions are not al
ways completely independent. which miay reduce the numibeer of
unkiowns on thes may depead ona parameter socle s the slant
that will become an unknown to be found by the extremzation
process. As we shall sec. the first term wallb be rather dununant
sections of the curves Laving rapid curvature changes over short
length. such as bumps, corners, or saw-weeth The second verm
will be the magor contrititer i the large-secaie Teatures. having
slow vartations i eurvalure. such as the other boundares of the
saw Thus we hive obtaimed o “natural” way of treating curves
with two very differenn scales of curvature change . without has-
ing Yo use arbitranly preset fibering widihs, as = commonds
e

A simple demonstration of the workings of this procedure
can he made for a simple corper. We shall now examine the .
Huenee of a corner un vur new A, as compared (o its cantribution
to the cuergy
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Figure 1. Loval ssmmoetry vurvee

We can buthd s corner from twa Ysticks™ of length {. making,
an angle de between themselves We keep Ads fixed. and we are
auly mnterested now e hmding the distribution of the o along
this corner This turnes omy to be s guire simple extremin
problese Fhe imerements of o along the sticks and on ther joine
e, Tesprer EIneely
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Ar we Doted before the second quantny s pdeed e o fart .
we detived 1thi- result by treaning the joim as a small crcular
arc. with length /... which tends to a point.}] Substtutimg
these quantities in A4 we obtain in the extrermum.

A= [I- ag)
which is independent of the exact shape and size of the corner,

only on the Lotal turn Ag

Ju companson, the (modified) energy principle will give for
tins eorper. .
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which terd 1o infinity as the length of the corner goes 1o zero.

A bump can be regarded as a series of relatively sharp turns
Thus, given our expression for A at a corner, it is clear that its
coniribution 1s not dominating. With filtering. that will reduce
the turns Ae siong the bump to small values, the infuence of
the bump will be quite neghgible.

IV, Skew-symmetry

We now collect 4 corners 1o form a parallelogram, which s
a skew-symmetric shape. We shall allow the Ag-s of the cormers
tu vary. in sccordance with with interpreting the paralleigram as
a shape with a slant in 3-D. We want 10 extremize A in respert
Lo these Ao-s. to find the slant. The problem is complicated
slightls by the fact that there is a consatraint, namely that the
sum aof the angle of the 4 corners is equal w0 2x. this can be
handles by the method of Legrange multiptiers. and the result i&
that gll the coruer angles are equal, namely equal to x /2. Hence,
Lhe paralielogram s interpreted by our extremum principle as a
slunved reciangle, which is consistent with human perception
This result can be extended wo general skew-symmetric shapes.

V. General Surfaces in 3-D

S0 lar we have dealt with planar surfaces that can be de-
acribed by @ one-parameter boundary curve. We now turn to

FVVHING ot

\\ Ignorable coordinatea/?;'/'

_ Tigure 2. Ribbons with symmetns corves

he general case ol a {reasonably) srbivrary surface m 2.0 such
s surlace can be parametrized o iwo coordmates oy oy Our
wruonu A will now be a double integral

A / /l S [{: ‘Ei‘ ] = (ﬂ_:f_l:. f‘l] dovydo

.
where the sniotatoen s o f = 1.0

L

Given a set of known contours, either on the boundary or
otherwise. we construct the surface that best fits these contours
as the one that extrermzes the above integral Moreover, the
a, will rov have a more tangible meaning then in the one-
parameter case they will be the natural coordinates parametriz-
ing the surface This is another advantage of the new procedure
over the energy principle It is interesting that the variables a,
can serve the dual purpose of both handling bumps (and straight
lines) and provide a set of 3-D natural coordinates.

it is easy to prove, for example, that a circular boundary will
give rise to a sphere, complete with its longitudinal and latitu-
dinal coordinates Rather then do that. we shall state a general
theorem about curves on surfaces, which will be very useful in
finding natural coordinates as well as the surfaces themselves
(including the sphere)

We first define a curve of local symmetry, T as one which
divides the surface in two parts that are symmetric in the vicinity
of the curve Put another way, a reflection, say of the surface
lying to right side of T will match the left side, near T An
example is the center line of any fold, ridge, valley or corrugation
on a surface (fig 1), if this line is planar. Another example is the
three symmetry lines on an ellipsoid (this is a global symmetry).

Theorem | A curve of local symmetry is planar

proof: Trivial A reflection of the right side of T will not
match the left side if T is not planar, (fig 1)

Theorem 2 A local network of coordinates, consisting of a
local symmetry curve T and curves that are orthogonal to it,
locally extrermzes the action A

By "locally extremize" we mean that an infinitesimal varia-
tion of these curves, in the vicinity of P, will leave A unchanged

We shall discuss consequences of the last theorem. (The
proof is ommited.) A very interesting dlass of surfaces to which
our theorem is easily applicable is the one having an "ignorable
coordinate", namely, its curvatures will not change as we move
along this coordinate As sub-dlasses one can mention (a) strips,
or pipes, of arbitrary cross section, whether straight, circularly
or helically bent, (fig 2), in which the ignorable coordinate is the
length of the pipe, and (b) surfaces of revolution, in which the
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Ignorable coordinates
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Symmetry curves

Figure 3. A surface ol reyolution

azimuth @is "ignorable” (fig 3) The coordinate orthogonal to
the the ignorable one can be regarded as a local symmotry curve.
as the surface stays the same on its sides Thus, this curve and
the curves in the ignorable direction that intersect it. foom a
local network of curves that satisfy the condition- of theorem J .
and thus it extremzes A

As we can s from the figures these curves are exactly the-
ones that our visual intuition would expect as natural so that
we are justified in calling the curves extremizing 4 the 'natural
coordinates'

A further consequence of theorem 2 is the ability to make
predictions about surfaces when they are not known in advance,
without having to actually extremize A using the EL equations
It is clear that generally, the greater the number of extremal
local sections a surface has, the more "extremal" the global 2-
dimensional integral A will be (This would be clearer if this
"externum" were a "minimum", which it usually is, but as we
have not examined here the seoond derivatives, we shall stick
to the term "extremunY'.) Thus, a surface that extremizes A
will contain as many symmetry curves as are compatible with
the initial data As a consequnce, we will tend to obtain sur-
faces containing planar, spherical or cylindrical parts, exact or
approximate, rather than bumpy ones As a particular example,
we can use this general result to conclude, without having to
solve the EL equations, that a circular boundary will give rise
to a sphere. This is because a sphere is the most symmetric
surface, thus having the greatest amount of symmetry curves
More generally, boundary contours such as of fig. 3 will give rise
to a surface of revolution, as this surface consists of a collection
of local networks (the meridians and parallels) which fits those
contours, and similarly for other surfaces

It is reasonable to assume, that when the conditions of the
theorem are satisfied only approximately, e.g. when the curve
is only approximately symmetric, a similar parametrization will
still take place, with the natural coordinates approximately fol-
lowing the quasi-symmetry curves Thus our theory is appli-
cable to shapes like generalized cones as long as the flutings
vary slowly on the lenth-scale of the cone's radius This also is
consistent with human perception.

VI. Relation to Other Work

We have already noted the intrinsic flaws of the energy prin-
ciple, and its derivatives (such as Bamow and Tenenbaum's), as
surface reconstruction mechanisms The compaciness measure
of Brady and Yuille [1984] does not suffer from these deficiencies
It has been applied successfully to dosed planar curves, but it
is hard to see how it can be made a general theory It should be
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pest viewed. perbape, as a poud measure of global symmers.

Brath & dsada 19K4 have studied local symimeLries o pla-
nar shapes  sincthy speaking. our defimtion of “local” apphes
to an mbinesitual viennty around a curve In this sehse . everny

stratght e on o plane = a local syvinelry corve, exerpl at
1t edper. Brady exannued larper vionnties that extend 14 the
nieattn banndaries of 1he eurve soowe shall elevate Lthe 1ype of

syminetry he treated twoa reqonal’ symmetrs The fact that
Brady's curves are glso hatural coordinates imdieate that the
noton ol ssmmerry 1= of lundamental mnportance at all spatial
scajes (plobal. regional. and local) of shape representation

In differemtial geometry terms our local symmetry curves
sre planar geodesic ones. Brady of of 1984, bave shown that pla-
nar geodesics are usually “ratural” coordinates However. not
sll natural coordinates are planar geodestes For example. the
paralleis o & surface of revolution. and the spirals ob a helicoad
{tig 4}. are not planar geodesice The question why these jook
natural was left open. as they did not seem to it any consis
tent rule Im our theory. these curves are natural coordinates by
virtue of their being arthogenel al evack point of their length lo
planar geodesies, namely Lthe mendians and the rulings, respec-
tively  Moreover. unlike the previous works. our results come
oul as b part of & general theory of shape representaton derived
from sound first principles
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SPECULAR STEREO
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ABSTRACT

A glossy highlight, viewed stereoscopically, can
provide information about surface shape. For
example, hlg.h|I?htS aPpear to lie behind convex
surfaces but in front of concave ones.

_ A highlight is a distorted, reflected image of a
light source. A ray equation is developed to predict
the stereo disparities generated when a point source
of light is reflected in a smooth, curved surface.
This ~equation can_ be inverted to infer surface
curvature properties from observed stereo
disparities of the highlight. To obtain full
information  about surface curvature in the
neighbourhood of the highlight, stereo with two
different baselines or stereo with motion parallax
is required

The same ray equation can also be used to
predict the monocular appearance of a distributed
source. A circular source, for instance, may produce
an elliptical specular patch in an image, and the
dr|1men3|ons of the ellipse help to determine surface
shape.

1 INTRODUCTION

When the reflectance of a surface has a specular
as well as a diffuse component, the viewer may see
highlights. ~ Highlights can give extra information
about surface S aFe Ikeuchri [8] uses photometric
stereo with specular surfaces to” determine surface
orientation eck [I] notes that stereo vision might
be able to perceive "highlights on a convex surface
as lying eneath the “surface Grirnson  [7]
incorporated lambertian and sPecuIar components of
reflectance into stereo But he found that the
computation of surface orientation could be
numerically unstable. ) )

Here a computation is proposed that is less
ambitious than Crimson's, in that it. attempts to
determine only local surface geometry, at specular
points  But it avoids relying on precise assumptions
a b o u tsurface reflectancé

Instead, the only assumption is that a
specularity can be detected in an image, and its
position measured For instance a method_like that
of Ulltnan [ 15] could be used Thereafter
specularities are matched in the same way _as
features in conventional stereo [6,9.10]. ~ The
disparity of a stereo-matched specular point is then
comparéd with the disparity of any nearby surface
features ) o

The basic principle of the surface shape

estimation relies on the properties of curved
mirrors (fig 1). )

To interpret, specular stereo, both horizontal and
vertical disparities are used. Ideally, three non-
collinear eyes are needed to obtain full information
about local curvature. Alternatively, parallax from
a known vertical motion of a viewer, combined with
conventional stereo geometry, is just as good |If
o_nIP/ a static, stereo view is_available then this still
yields partial information This could be combined
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Figure 1: Viewing geometry. In a
convex mirror (a) the image of a distant point
source appears_behind the mirror surface 'In a
concave onhe (6) the image ma appear in
front Study "of the ordinary domestic soup
spoon should confirm this

with a priori knowledge or measurements from
other sources  (stereo, = shape-from shading or
specular reflection of a distributed source) to fully
determine local surface shape )

Finally, observe that the path of a light ray from
source to viewer can be reversed Analysis developed
to show the effect of moving the viewer also serves
for movement, of the source  The resulting equation
is. used to predict the appearance in an image of a
distributed source under specular reflection in a
curved surface.  For instance a circular source
generally_ produces an elliptical specularity in the
image. " The orientation and length of its major and
n?1|nor axes, in principle, determine local ‘surface
shape.

2 IMAGING EQUATIONS

Equations are given to describe the process of
formation of images of specular reflections Details
of derivations are given in [3] These predict the
dependence of observed stereo disparities on surface
and viewing geometry Certain assumptions about
the geometries are. made, for the sake of
mathematical simplicity Then the equations are
inverted so that, given viewing geometry and
disparities, local surface geometry can be inferred
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21 Viewing, surface and reflection geomelry

The steren viewing geomelry 1s shown in fig 2.

L

FROM SOLRCE

W

i d <

Figure 2: Sierea wviewing geomelry.
fHlutnimation comes from a distand poinl source,
o direcheon L Hays tv  teft and right eyrs bic
altong wvecters V.F, and slrike the  surfave al
pointy AR resprobively Surfore normaly al
A ore NN vespectively The vecior from A to
Bowx v, oand (he boseline {wes along wvertor o A
syurface  feature ix essumed (o be  presend
nearby, el C, with position vecior P relobive fo
the Left eye

Tt iy wssoemed that the curved surfoce iy focally well
approxuvneted by terms up to 2M order in o Taylor

arrirs {see g (4)) The werlors Vd-F.r form a
vivpsed loop, so that
V+«d ¥ - D (1}

A creordinale frume s chosen with origin al A,
willy N{0.0. 1), and with LV iying m the r-2 plane,
su that

¥V = {Vsine 0 Veoso), L = [-sing.0,coso) (2}

where o 1s Lthe slant of the Langent plune st 4 lis
tilt direction lies 1n the z-7 plane. Note thet if
viewing geometry and light source direction L are
known {and Lhe latler could be obtained as in [11]}
then surface slant and LIt are known the surface
normel lies i the plane of ¥.L and bisects Lhem

[t is assumed that semce fealure at point € on
the surface, is available near to the specular pointx
AH (fig ) and thal stereo is able to establish Lhe
posilion eof Its position vector F ooz used Lo
estimele V. ihe length of the veclor ¥ Assuming
thal  1s nat too lTar awey from 4, so thatl O lijes,
Aapprexitmately, im the tangenl plane ol A,

(V M N 0 sv thut

Vocosg ~ PN (3]

Bince the choice of covordinele fraume ensures
thal  gradients vanish (dz/0x-0a=2/0y4-0), the
surfoece, in Lhe peighbourheod of A, is described by

zlxy) = (1/2)z (Hz) + O(=z]?) (1)
where r-(r.y.z). - (ry) and A 12 the (symmetric)
hessian mualrix (4] of the surface Nole that r.d
ele  are  U-dimensional veclors but £ is a  2-
dimensional vector, in Lhe ry-plune  Similarly Jf is
a 2«2 melrix opereting on = '

The lew of reflection at 4 is Lhat

2(VAN -V | L. (5)

where || denotes “is parollel to
vlher eye, at A,

ar

Similerly for Lhe

HIENIN - W | L (6)
Combaning (1) {8} (B) gives (see |3] for details)
MHz = z + w (7)

where - -detddung, wy— oy and
(2(Vsm-rr+d.,+ d;tenv) 2d,lang ) {#)
M -

0 2{Veoso+d,)

The approximations used above hold good
provided |dN|<<cose und |r|<Veaso. This mesus Lhal
surface slanl ¢ must nol be close Lo 80% and thal
hoth vergence angle and {angular] disparily should
be small It can be shown that these conditions will
usually be sulishied when the stereo baseline s
shorl, so that |d|<Vooso

To salve equation (7). we note also that

det{M) = Af{Vsecoidyidleng){Venso+d,)

so thul. provided surface slant o ix not near 909 as
pbove, mnd provided |d«<{1/2)V {baseline length less
thun halfl viewing distance) Lhen det(M)A0 In that
case, cquolion (7) van be inverted Lo give

Hr - v where v M '{w+x} (R3]

which, in general, can be ecxpecled to impose 2

constraints on the 4 varjables of H. I sometlung is
Known already aboul M - say, thaet Lhe surfare =
lecally cylindrical at 4 - then it mght be possible
to delermine H completely.

2.2 Disporily measuremeni

The equations just derived require the vector =
1o be determuned from disparily meesurements, as
shown in fig 1.

Having obleined from the sterec images the
angular dixperily 4 of the specularily nx an fig 3,1l
can br "bhuack projecled” onto the =urface to obian
the tength = The vssumplien thal [N s smali s
used nguin Lo oblain

Figure O Disparity measuremenids,  The
specular puinl iy imaged al angwlar pesifions
S8 tn the left and right wmages respeciively
A mearby surface fewlure is tmoaged ol ApAg
end provides o disparily reference poind ot
the surface  From these measured posifions inl
the image, 8 - (Sp AR)-(S. Ag) is compuled
- the diffuerence beiween lhe angutlar dispurilies
of the 2 points Then x - (2.4} - V{dseca dy)

z = (z,y) - VP8, where {10)

RO o
po- (
o] 1

2.3 Focusing eflecls

Equelion (7)) predicls that imaging of a
speculurity can become degenerate (fig 4) The
equation can be rewritien es



(MH-I)x - w (11)
and the condition for degeneracy is that
det(MH-/)-0. ) )

he focusing effect may produce either a line or
a blob in the image:

1 If the rank of (MH-1) is 1 _the specularity will
appear in the image as a, line, r else, there
may be no solution for x in (7), and nothing of
the” specularity will be  visible.  Stevens 113
observes that, with infinitely distant source an
V|ewer,.an¥ line specularity "'must_lie on a plane
curve in the surface a special cose of the
rank 1 focusing effect.

2 If the rank of MH | is zerg, that is MH-/-0.
then either the specular reflection is_ invisible
as above, or it is focussed in 2 dimensions onto
the imaging aperture, and appears in the image
as a large bright blob

3 It can be shown_ that if the surface patch_is
convex, the effect cannot. occur This
corresponds to physical intuition Only concave
mirrors focus distant light sources

24 A source at a finite distance

if the source is at a finite distance L, rather
than infinite as assumed so far, the imaging
equation (7) becomes

(MH  (I+p))x = w (12)
The constant p = (d;seeo + V) /L and clearly, as L->,

25

Figure 4-: Degenerateimaging of a
specularity. Norma
a degeneratée because ofthe

ocusing action ofthe curved surface. The
surface may focus ontothe viewing aperture

(b) to produce a bright blob orlinejnthe

image, oraway from the aperture (c) in which

case nothingis visible inthe image
P~ *0which gives the infinite souroce equation

Spooe the  infinite sa,meoorfanctjma&
sufaoes“a:es , when in the souce
is at a finite di L, hrowv great is the resulting
error’ The asaer is that the enmor in the curvature
(eiongo?%'\_lg‘igecﬁm_inﬂ'\er_ _f)isqfihe
oder of £V . enor is i if. a
not o be dose to 90°, either Fede ey

3
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- the lighl source distance iz large compared with
the viewing distance: f >V, or

- the surface has kigh curueture for both

principal curvatures, &, 1 /L i=1.8
The first cese is inluitively reascneble: if the light
source 8 dislant compared with the observer
distance V, Llhen rquations for an infinite light
sopurce can be used with little error. What is
perhaps less obvious is the second condition that,
for highly curved cohjects, the source need not be
further away then the observer.

2.5 Distribuled sources

The mathematical model thet has been used so
far sssumes a poinl source. In practice Lhe source
muay be distribuled, so that it subtends some nen-
zero solid angle, at the surface

Equetion {12), for a scurce al a finile distence,
is used bul source and viewer posilions are
interchanged The light ray is reversed Vector o
now represenls the movemenl of source for a fixed
viewer position. After some rearrangerment, this
vields a new equelion, locking rather like (J2) but
with a facior V/L on the righl hand side

(MH - (14pihx - (V/L)w {13}

L would be mozt convenient tv express Lhe shape of
the imege specularity (using angular position n the
imege, 8) in terms of source dislribution {using a
new angular variable a). From {10} z=VP4, and il 1y
straightforward to show Lhat w-LPa 5o now

Té - a where T=PIMHP - (1p)] {143

¥hat egquation {14) says iz that Lhe viewer sces
an image of Lhe source Lhat has undergone s linear
transformation ! The effect of the transfermeation
depends on surface shupe. For s planar mirror for
example, H=0 so that &= «/(l1+p) an isolropc
zcaling that preserves Lhe shape of the source Note
that if the source is very distenl, zpz0 and the
scaling faclor is unity.

If Lhe mngular dimensions of the source are
knewn Lhen, in prineiple, surface shape may be
recaovered complelely by monorular observetion.
For a c¢ircular source with slant o- 0, Lhe ellipse
axes coincide with the principal curvature directions
of the surface In general, when o0, measuring the
length and direction of cllipse axes enables T and
hence H to be found frem (14) Nole Lhul for a
circular source, hecause of its symmetry, principal
vurvatures are determined only up te sign inversion
{approximately)

3 INFERRING LOCAL SURFACE SHAPE
3.1 Locally cylindrical surface

On a surface that is known to be locall
cylindrical, equation (7) is sufficient to recover bot
parameters of local surface shape. For instance,
when the source is distributed, a strip shape image-
specularity indicates that the surface may be
cylindrical - or at least that one principal curvature
may be much larger than the other (This can be
deduced from (14))

The parameters to be determined are the
direction of the cylinder axis 9 and the radius R
Using (9):

tendl ~ wy/ v

R = {rcos?@+ysinfcosh) /v,

3.2 Spherical surface

The knowledge that the surface is locall
spherical could be derived monocularly, from (14}/,
as in the cylindrical case except that rather more
must be known about the source for example, that
it is_circular ) )

On a spherical surface there is only one
parameter to specify - the radius of curvature R,
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and frem {9).

Ro=xfue = y/vy

the second equality being available us a check for
consistency of sssumptions

1.3 Known orientation of principal axes

If the orientation of principal axes about the
surfece normal, is known then the compleie local
surface geometry can be obtained. Orientation
could be derived monocularly (essuming source
shape known} from (14}

Hoteting coordipetes about Lhe z axis, & prirmed
{") frame can be chtained 1n which X in (9) becomes
diagonal:

Hzx = v
Now, 1n general, Lthe two diagohal components of A
can be obtained immediately. Experiments wilh

computer generated images have obimined curvature
te an accuracy of 10%.

3.4 General casze

In the general case, the surfece curvalure at the
specular peint is described by 3 paramelers, bul the
speculer sterec  messurements  yields  only 2
conslrainty However iwo additional consiruints - 4
in all - are aveilable il & second baseline iz used
The extra baseline could be derived either from &
third senszor, suitehly positioned, or froem known
molion of the viewer (yparallaxj.

Suppose now that there are 2 baselines dii=1.2
with corresponding z M) wiid) oW Now equation (9},
applied once for each bhaszeline, gives

HX = ¥ where {15)

2 @) (vi‘) vi?
X =
y(l) y(?} U"ll] yLP}

and H can he recovered provided X is non-singular
It appears to be impossible Lo suggest baselines
that guaranlee to generate o non-singular X, for ail
viewing geometries and surfaces. This iy bercause
det{X) depends on the surface &and the viewing
geomelry, as well as on the baselines This 135
prebebly best achieved (see [3]) by meking the
basehines d% fairly near orihogonul. and certainly
nowhere near collinear
The disparity messuremenkts give 4 constraints
If H is Lhe only unknewn, it is now overdetermined
One could either
1. Test whether the X obleined from (15) is indeed
symmetric %] a check on validity of
assumplions (fer exemple, the validity of the
locs]l epproximation of {4), over the ran§e of
movement of the specular peoint on Lhe surface)
2. Use a leasi-sguares error method to find the
symmelric M that fits Lthe data best Then H is
the solution of linear equaticns:

HXXT + XX - VXT + XVT

The error measure |[HX-V||, if it is too large,
indicales thet some sussumptions were not valid

4 CONCLUSION

[s specular sterec actually useful? We argue that
it is Of course the presence of specularities in Lhe
image cennci be gueranteed; specular siereo is nol
en  autonomous process in the sense Lhet
conventijonal slereo is. Indeed specular stereo itself
relies oh convenlional steree te provide a dispority

reference. In the case of a densely textured
surface, conventional stereo with surface fitting
[2,5,6,12,14) would be able to give an accurate
estimate of surface shape. But for a smooth
surface, stereo features may be relatively sparse,
and fitting a surface to disparity measurements may
be difficult and inaccurate. Then, provided at least
one nearby surface feature is available as a
disparity reference, specular stereo, together with
monocular analysis of specularity, provides valuable
surface shape information
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