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Abstract. The method of differences refers to a tech­
nique for image matching that uses the intensity gradient 
of the image to iteratively improve the match between the 
two images. Used in an iterative scheme combined with 
image smoothing, the method exhibits good accuracy and 
a wide convergence range. In this paper we show how the 
technique ran be used to directly solve for the parameters 
relating two cameras viewing the same scene. The result­
ing algorithm can be used for optical navigation, which has 
applications in robot arm guidance and autonomous roving 
vehicle navigation. Because of the regular structure of the 
algorithm, the prospects of carrying it out with special-
purpose hardware for real-time control of a robot seem 
good. We present experimental results demonstrating the 
accuracy and range of convergence that can be expected 
from the algorithm. 

1. Introduction 

Optical navigation refers to the determination of the 
position and orientation of a camera analysis of the picture 
taken by the camera. The objective of such analysis is to 
determine some or all of the six parameters (three of posi­
tion and three of orientation) that determine the position 
of that camera relative to some fixed frame of reference. In 
our method and in many others the fixed frame of reference 
is that of a second camera, so that the problem is that of 
image comparison. 

Optical navigation has a number of applications in 
robotic tasks that require a knowledge of the position and 
orientation of the robot. This is because mechanical imper­
fections and environmental uncertainty make it impossible 
to know exactly how a robot will move in response to the 
commands sent to it and exactly what it will encounter in 
its surroundings. Such applications include navigation of 
autonomous roving vehicles and navigation of a robot arm 
relative to the object on which it is performing its task. 
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The approaches to matching for optical naviga­
tion may be divided into three categories; sparse two-
dimensional matching, continuous two-dimensional match­
ing, and three-dimensional matching. The sparse two-
dimensional approach starts with a discrete set of matching 
points in the two images, and from them deduces the cam­
era motion. The question of how many points are nec­
essary to uniquely solve for the camera parameters has 
been addressed by Tsai & Huang (1981). With more 
points, the problem is overspecihed and a least squares ap­
proach is required (Gennery, 1980). The continuous two-
dimensional matching approach starts with a whole image 
field of matches (the "optical flow field"); Brass &' Horn 
(1983) have shown how how to determine the camera mo­
tion from the optical flow field, again using a least-squares 
formulation. Obtaining the optical flow field has been in­
vestigated by, for example, Horn & Schunck (1981) and 
Cornelius k Kanade (1983), among others. In the three-
dimensional matching approach, corresponding points in 
three dimensions (obtained e.g. by stereo) are used to de­
termine the camera motion; this technique was used by 
Moraver (1980) to navigate a rover. 

These approaches all split the process into two steps: 
finding the matches and using those matches to solve for 
the camera parameters. In this paper we show how to 
combine the two steps into one, by applying a generalized 
image matching technique that we term the method of dif­
ferences. The method of differences directly computes the 
six camera parameters, or any desired subset of them, much 
as standard matching techniques compute two parameters 
(the :r and i/ displacements). That is, the camera param­
eters are explicitly included in the matching process. The 
method takes advantage of the fact that, in many applica­
tions the approximate position and orientation of the cam­
era are known. Starting from that estimate we compute a 
better estimate by using the image intensity gradient as a 
guide. By using an iterative scheme our estimates converge 
to the correct value. The result is a technique that is fast 
and free of search. 

In the remainder of the paper, we first describe the 
method of differences in a one-dimensional case, which 
serves to illustrate many of the issues. Then we show how 
the same technique can be used for multi-parameter esti­
mation. Finally, we present some experimental results and 
draw some conclusions. 
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We have shown elsewhere (Lucas, 1985) how this 
method is easily extended to multi-parameter estimation, 
as required for navigation. Briefly, the scalar disparity h 
is replaced by a vector of camera parameters; the deriva­
tives become gradients, and the division becomes a matrix 
inversion. The stability of the matrix inversion is investi­
gated in the work cited above, with the conclusion that the 
matching points should be well-distributed in three-space 
to guarantee good numerical accuracy. 

Iteration and smoothing. Two modifications are 
required to make the method work. First, because the 
method yields only an approximation h to the disparity 
h, we must use an iterative scheme to obtain an accurate 
result. The idea is to calculate an estimated disparity, move 
I2 by that amount, and calculate again. 

Second, to improve the accuracy and range of valid­
ity of the linear estimate used in (2), we must smooth the 
image. This can be thought of as smoothing out purely lo­
cal bumps and wrinkles in the image intensity profile that 
would make a linear estimate accurate only over a small 
range. This can be made more precise by a Fourier anal­
ysis of (3); this shows that removing the high frequency 

components of the image by smoothing does indeed extend 
the range of convergence, in rough proportion to the size of 
the smoothing window (Lucas, 1985). This is because con­
vergence to the correct value with an image consisting of a 
pure sine wave is possible only for disparities up to one-half 
the wavelength of the sine wave; for larger disparities, the 
algorithm will converge to the wrong value. 

Since smoothing the image also reduces the accuracy 
of the method, it is necessary to use an iterative approach 
in which each successive step uses a less smoothed image, 
in a sort of coarse fine approach. This allows the algorithm 
to tolerate a large disparity yet yield an accurate answer. 

3. Experimental results 

Our experimental data consisted of three views of the 
same scene taken by a camera mounted on the Stanford cart 
(Moravec, 1980); they are shown in Figure 1. The camera 
was mounted on a slider, so we had accurate knowledge of 
the relative positions of the cameras. The three views were 
pictures taken by the camera at the left, middle, and right 
slider positions, with 26 cm separating each position. The 
left picture was used as the reference image, and a num­
ber of points p were selected from this image as reference 
points. These points correspond to the points x that the 
sum in (I) runs over. 'Then the right picture was used as 
the second image of a stereo pair to obtain (essentially by 
hand) the distances -(p) of the reference points p. The 
method of differences was then used to determine position 
of the middle camera. Since the exact position of the mid­
dle camera was known, we could assess the accuracy of the 
method. Moreover, we could determine the range of conver­
gence by varying the initial estimate of the middle camera's 
position around the correct value. 

Convergence range. The convergence range for both 
the one-dimensional case and the multi-dimensional case 
was investigated using these pictures. As predicted, the 
convergence ranged was found to increase in rough propor­
tion to the size of the smoothing window. The range for x 
and y motions was roughly ±1 meter, and somewhat more 
in the z direction. The range for pan and tilt was approxi­
mately i 10 degrees, and about .1.30 degrees for roll. Except 
for roll, these parameters are limited more by the angle of 
view of the camera than by the technique. For example, 
no matching technique could work if there angle of view 
is so small and the motion between the cameras so large 
that there is no overlap between the pictures. When this 
point is reached, the smoothing window required would be 
so large that each picture would be smoothed to a uniform 
gray. Nevertheless, these results are useful in that they ver­
ify that a useful range of convergence is obtainable using 
the method. 

What is the relationship between these convergence 
ranges and the convergence ranges in the multi-parameter 
case? This is shown in Figure 2. We see that if we solve 
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for two parameters (pan and tilt, top graph), the range 
is smaller than the range that would he expected on the 
basis of the one-parameter results for pan and tilt alone; 
and if we solve for all six parameters (bottom graph), it is 
smaller still. Nevertheless, the range is still quite adequate 
for the continuous feedback mode. Whether it is adequate 
for (he stopand-go mode, which involves a larger motion 
at each step, depends on the accuracy of the aim and on 
the accuracy of other navigational aids that can provide the 
initial estimates. 

Accuracy. To assess the accuracy under a variety 
of conditions, we select reference points using a variety of 
methods, including by hand and by computer, resulting in 
several sets of data points of various sizes. Then we dou­
bled the number of sets of reference points by either apply­
ing or not applying a pruning process to the sets we had. 
This pruning process, which is described elsewhere (Lucas, 
1985), was based on the method of differences and served 
to improve the accuracy of the stereo matches. It also elim­
inated some points as being unlit for use by the method, 
for example because they were in a region of small gradient. 
The results are shown in Figure 3. Several general trends 
are observable. First, using more points produces more ac­
curate results. Second, the pruning process can to improve 
the results, as evidenced by the left endpoints of the lines 
in the figure being lower than the right endpoints. These 
two factors are of course in conflict, and the improvement 
due to the pruning process is apparent only provided the 
number of points is not reduced too much, finally, the ac­
curacy does not seem to he affected much by the number 
of parameters solved for. 

Implementation. The implementation may be di­
vided into two parts: smoothing and camera parameter 
estimation. The smoothing must be done over a relatively 
large window, up to G5 x 65 in our experiments. It is the 
most time-consuming, part even though we implemented it 
as uniform smoothing over a rectangular region, which by 
a well known algorithm takes a constant number of oper­
ations (two additions and two subtractions) per pixel, re-
gardless of the size of the smoothing window. However, it 
is fairly well understood how to build special-purpose hard­
ware for doing smoothing quickly, essentially in real time. 

The parameter estimation step is more interesting. 
Our implementation, in which no attention was paid to 
efficiency, requires approximately 3 to 4 ms per reference 
point per iteration on a VAX 11/780. In the continuous 
feedback mode, only one iteration per time step would be 
used since only an approximate answer is needed. Thus 
50 reference points (the largest number used in the exper­
iments reported above) would require less than 200 ms per 
time step. This figure could probably be improved several-
fold by more careful coding and taking account of the fact 
that some of the entries in the matrices to be inverted are 
known a priori to be zero. This information, together with 
the fact that the algorithm has a regular structure free of 

decision points that could easily be implemented in special-
purpose hardware, suggests that it is feasible for real-time 
control of a robot. 

4. Conclusions 

We have demonstrated that the method of differences 
provides a useful technique for optical navigation. We have 
shown that the algorithm can successfully determine all six 
camera parameters. It converges to the correct position 
given an estimate within something on the order of a meter 
(less if more parameters are solved for), and converges to 
a result accurate to a centimeter or so (regardless of the 
number of parameters solved for). Moreover, it can do so 
using 50 or less reference points. Because of the regular 
structure of the algorithm, the prospects of carrying out 
the calculations in real time with special-purpose hardware 
seem good. 
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Figure 1. Experimental data. Left, middle, and right view: 
shown on left, (reference) image. 

of the same scene. Reference points are 

Figure 2. Left graph shows, for each initial value of pan and tilt, whether the algorithm converged 
to the correct value (large boxes), converged to the wrong value (small circles), or failed to converge 
(pluses). Solid dot is correct value, big rectangle indicates range predicted by single-parameter results. 
Right graph is a two dimensional slice of a similar six-dimensional solid, in which all six parameters were 
solved for. 

Figure 3. Graph shows the absolute error in x position on images smoothed with 9 x 0 window. Each 
point represents the result with a different set of reference points, distinguished by resulting error (in 
cm) on the vertical axis, and by number of points in the reference set on the horizontal axis. Triangles 
indicate the case where three parameters were solved for, circles six. The point at the left end of each 
line represents a reference set in which a pruning process was carried out on the points represented by 
the right end of the line. Large points represent image pair discussed in text, small points represent a 
different image pair. 


