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ABSTRACT 

Most paral lel planners are sensitive to the 
order in which goals and act iv i ty preconditions are 
specified. A "wrong" ordering can easily cause a 
solution to be missed. Permuting goals and 
preconditions on fa i lure in hopes of f inding a 
soluble order is in general computationally 
unacceptable. Plan spl icing is a solution to this 
problem. Splicing is a violent conf l ic t resolution 
procedure which involves the cutting of assertion 
dependencies, recursive demotion or excision of 
selected ac t iv i t ies around the cut, and reinsert ion 
of deachieved goals back into the middle of the 
planner's goal stack so that they can be replanned 
later to mend the plan around the splice. In a 
temporal planner, after an excision it is further 
necessary to relieve the "temporal stress" induced 
on surviving ac t i v i t ies by the ac t iv i t ies which 
were excised. This is an important capability for 
two reasons: f i r s t , because the order of 
achievement can of course not always be known in 
advance, and secondly because it is desirable to be 
able to present goals in pr io r i ty order. 

I INTRODUCTION 

AI planners are beginning to reach the maturity 
required for real world applications. DEVISER I 
[Vere, 1983] has been successfully applied to 
generating command sequences for the Voyager 
spacecraft. DEVISER I is on the evolutionary path 
of NOAH [Sacerdoti, 1977] and NONLIN [Tate, 1977]. 
NOAH was the f i r s t planner to deal with paral lel 
ac t i v i t i es . NONLIN is an improved paral lel planner 
which is able to recover from bad decisions and 
which implements a more sophisticated treatment of 
goal protection. A recent version with a 
consumable resource management capability [Tate and 
Whiter, 1984] has been demonstrated on a naval 
replenishment problem. DEVISER I extended the 
mechanisms of the 1977 NONLIN to permit planning in 
time, with arbitrary time constraints on 
ac t i v i t i es , preconditions, and goals. It also 

*This paper presents the results of one phase of 
research carried out at the Jet Propulsion 
Laboratory, California Inst i tu te of Technology, and 
sponsored by the National Aeronautics and Space 
Administration under contract No. NAS-918. 

handles events, scheduled events, and inferences in 
a uniform manner. Temporal planning has also 
attracted the attention of a number of other 
researchers within the last few years [Allen and 
Koomen, 1983; Cheeseman, 1983; Dean, 1984; 
McDermott, 1982]. However, time is largely 
orthogonal to the issue of goal order and spl ic ing, 
which is the focus of this paper. SIPE [Wilkins, 
1984] is another contemporary planner derived from 
NOAH which has special resource handling features. 
It has been applied to planning ac t iv i t ies on an 
a i rcra f t carr ier. 

A common d i f f i cu l t y experienced with most 
planners is the phenomenon I w i l l ca l l goal 
protection deadlock, in which the achievement and 
subsequent protection of an earl ier goal can block 
the achievement of a later goal [Dreussi, 1982, pg. 
59]. For example, suppose a robot is in front of a 
closed door leading into a room. I t ' s goals are to 
be inside the room with the door closed. Goal 
protection deadlock is experienced i f i t f i r s t 
t r ies to achieve (DOOR CLOSED) (with a nul l 
action), and then attempts to achieve (IN ROBOT 
ROOM). To enter, it must plan to open the door, but 
th is would violate the f i r s t goal, (DOOR CLOSED), 
which is achieved by the start state and is now 
protected. The problem is that the goals have been 
attempted in the "wrong" order. Previous paral lel 
planners have avoided this problem by requiring 
goals to be presented to the planner in an order in 
which they can be achieved. This problem applies 
both to the or iginal conjunctive goal set as well 
as to the ordering of the preconditions of an 
ac t i v i t y , which become subgoals during plan 
synthesis. In complex domains it may be impossible 
to know the correct order in which to attempt 
goals, and it is oomputationally unacceptable to 
t ry every possible permutation of goals and 
preconditions. 

There are reasons other than ignorance for 
wanting a planner to be Insensitive to goal 
ordering. A greedy person may try to give a 
planner many more goals than are logical ly 
achievable, due to time or resource l imi tat ions. 
If goal deadlook can be avoided, it then becomes 
attract ive to order the goals by decreasing 
p r io r i t y . The most Important goals can be planned 
f i r s t and allowed f i r s t claim to the f i n i t e 
resources. If possible, ac t i v i t ies to achieve 
goals lower on the l i s t are f i t t e d into the plan 
la ter . Otherwise the lower pr io r i ty goal is 
discarded. In this way the planner is able to 
generate a par t ia l solution for insoluble goal sets 
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instead of just just giving up. 

It is for these two reasons, to avoid goal 
deadlock and to allow goal p r io r i t i za t ion and 
discard, that I have investigated and implemented 
spl icing in a new version of my planner designated 
DEVISER I I I . 

For tu to r ia l purposes, the plan splicing process 
w i l l be i l lus t ra ted in this paper on blocksworld 
and abstract examples. However, splicing has been 
applied in practice on large plans constructed with 
a very detailed knowledge base for the Voyager 
spacecraft consisting of 1800 l ines and describing 
about 140 di f ferent actions, inferences, and 
events. 

II PLAN SPLICING 

Plan spl icing may be regarded as a new variety 
of conf l ic t resolution in a paral lel planner. 
Figure 1 i l lus t ra tes a prototypical conf l ic t 
s i tuat ion. During paral lel plan synthesis, a 
conf l ic t is said to occur when two paral lel nodes, 
such as Node A and Node B, assert contradictory 
l i t e r a l s , represented by P and "P. (You are 
cautioned not to confuse this usage of "conf l ic t " 
with the completely unrelated notion of "conf l ic t 
sets" in forward chaining production rule systems 
such as 0PS5). The dashed l ines show that Node C 
depends on the assertion P from Node A, and Node D 
depends on the assertion "P of Node B. These w i l l 
be called assertion dependencies. They indicate 
that the truth of the assertion must be protected 
in the region of the plan between the two nodes. 
Tate cal ls these dependency relationships the goal 
structure. Of course there may be many nodes l i ke 
Node C depending on P in Node A and many nodes l i ke 
Node D. 

violated, neither of these two conf l ic t resolutions 
can overcome the problem of goal protection 
deadlock. 

Figure 2a. One Non-Violent Conflict Resolution 

Figure 1. A Conflict Situation in a Plan 
Figure 2b. The Other Non-Violent Conflict 

Resolution 

There are two possible conf l ic t resolutions, as 
performed in NONLIN (and DEVISER I ) : either D must 
be ordered before A, or C must be ordered before B, 
so that the assertion dependencies are respected 
and preserved. This is i l lus t ra ted in Figures 2a 
and 2b. Because assertion dependencies are never 

Plan spl icing is a violent form of conf l ic t 
resolution which is only t r ied as a last resort, 
after nonviolent conf l ic t resolution has fa i led . 
There are two possible splicings for every 
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conf l ic t , just as there are two possible ordering 
resolutions. Figures 3a and 3b i l l us t ra te these 
two alternatives. Because of symmetry! only Figure 
3a w i l l be discussed. There the assertion 
dependency between A and C has been cut, and B has 
been ordered between A and C. Simultaneously, C has 
been "demoted." Node demotion is a generic term 
for an involved process whose detai ls depend on 
whether C is a phantom or an ac t iv i ty . (A phantom 
node is a nul l action which signif ies that a 
precondition has "already'' been achieved above in 
the plan; an act iv i ty node is everything else—an 
action, an inference, or a (forward chaining) 
event). Thus splioing l i t e r a l l y cuts the Gordian 
knot in a goal deadlook si tuat ion. The (reoursive) 
demotion prooess is responsible for ensuring that 
the plan w i l l mend properly around the splice. At 
one extreme, demotion may involve simply changing a 
phantom node back to a goal. At the other extreme, 
demotion may trigger the erasure of large sections 
of the plan around and below the splice, with many 
goals being Inserted at a variety of positions 
within the goal staok for later replanning. Most 
of th is paper is in fact concerned with the detai ls 
of the demotion process. 

Figure 3b. The Other Possible Splice 

Loosely speaking, one or more goals below the 
splice were achieved too early. Demotion sends 
these back into the goal stack in exactly the 
position which allows interfer ing later goals a 
chance. A solution is then obtained as though the 
goals had or ig inal ly been attempted In the r ight 
order. In effect, inter fer ing goals are 
dynamically reordered during plan synthesis, and 
th is is accomplished without erasing any more of 
the exist ing plan than is logical ly necessary. 

The advantage of splioing is that it renders the 
planner insensitive to goal and subgoal ordering. 
However, a certain penalty is incurred. The size of 
the planner's search tree is enlarged, since there 
are now four possible resolutions to every conf l ic t 
s i tuat ion rather than two. In DEVISER this is 
mitigated by discarding the two spl icing 
alternatives if one of the two nonviolent 
resolutions is successful. Otherwise, in 
backtracking the two spl icing alternatives can lead 
into irrelevant sections of the search tree and 
waste time. 

As already mentioned, the detai ls of demotion 
depend on whether the demoted node is a phantom or 
an aot iv i ty . These two oases w i l l now be 
Investigated in turn. 

I l l DEMOTING A PHANTOM NODE 

Demotion of a phantom node is potential ly the 
simplest case. If the assertion of the phantom is 
P, we simply oonvert the node baok to a goal, and 
enter P at the "appropriate place" in the planner's 
goal staok. The appropriate place is generally not 
the top of the goal stack, but somewhere in the 
middle. Details of the procedure for entering a 
goal baok in the goal staok w i l l be presented 
la ter , in Section V. 

Figure 3a. One Conflict Resolution by Splicing 

This simple picture is complicated if a 
substitut ion was applied at the time the phantom 
node was created. For example, suppose the goal 
assertion was (ON .x C). In creating the phantom 
node, suppose that the substitut ion {B/.x} was 
applied to oause the goal assertion to match (ON B 
C) asserted by an ear l ier action. This means that 
to demote the phantom we must restore the goal 
assertion to i t s or iginal unlnstantlated form, (ON 
.x C). 
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A further, more serious complication is 
encountered if the substitution was in fact also 
applied to other l i t e ra l s in the plan. If we cannot 
somehow restore these l i t e ra l s to their 
uninstantiated state, existing parts of the plan 
may remain unnecessarily constrained, preventing us 
from finding a solution plan when in fact one 
exists. However, in DEVISER it is effectively 
impossible to deinstantiate an arbitrary l i t e r a l . 
Suppose the instantiated l i t e r a l is (P A A) and the 
substitut ion was {A/ .x} . Restoring the l i t e r a l to 
(P ,x .x) can be incorrect if the original l i t e r a l 
was actually (P A , x ) . The alternative of 
"rememberingn precisely which terms were replaced 
for each substitut ion application was judged to be 
unacceptable. The approach I have adopted is to 
demote a l l plan nodes having a l i t e r a l Instantiated 
by the substi tut ion. This only requires 
"remembering", for each phantom, the l i s t of nodes 
affected by the substitution ( i f any) applied when 
that phantom is created. Thus the demotion of one 
phantom may in turn ca l l for the demotion of 
several additional "affected nodes", i . e . , those 
affected by that phantom's substitution. If an 
affected node is also a phantom it is in turn 
treated in the manner just described. If the 
affected node is an ac t iv i t y , it is demoted as 
described in the next section. 

IV DEMOTING AN ACTIVITY NODE 

As seen above, spl icing may require the demotion 
of an act iv i ty node N back to a goal, either 
because N is Node C in Figure 3a, or because N was 
affected by the substitution of a demoted phantom. 
This in turn cal ls for the excision (erasure) of 
selected nodes above N in the plan. The nodes 
which must be excised are those which exist in the 
plan exclusively to satisfy preconditions of 
N. These w i l l be called the act iv i ty pyramid above 
N. 

Consider the blocksworld plan in Figure 4. 
Assertion dependencies are not shown to avoid 
c lut ter ing the diagram. This plan was generated to 
achieve the goals (ONTABLE C) (ON B C), given the 
i n i t i a l state (CLEAR C) (ON C A) (ONTABLE A) (CLEAR 
B) (ONTABLE B). N4 aohieves the f i r s t goal; N5 
achieves the second. Suppose that in the course of 
planning to achieve other additional goals (not 
shown), we wish to do a splice and demote N5. 
Should we excise a l l the nodes above N5 in the 
plan? No. Nodes N6, N7, and N8 exist to enable 
the putdown action of N4 , and should be retained. 
We should excise only nodes N9, N10, N11, and N12. 
These were backchained into the plan to enable the 
stack action of N5. Nodes N9, N10, N11, and N12 
constitute the act iv i ty pyramid above node N5, 
because they form an inverted pyramid of nodes 
backchained above N5, with N5 at the apex. 
Similarly, N6, N7, and N8 form the act iv i ty pyramid 
above N4. Consequently, to demote N5 we must f i r s t 
excise N9, N10, N11, and N12, and then convert N5 
back to a goal and insert it into the goal stack. 

One key aspect of act iv i ty demotion is then the 
excision of a l l nodes in the act iv i ty pyramid above 

Figure 4. A Blocksworld Plan I l lus t ra t ing Act iv i ty 
Pyramids 

the demoted node. Excision of a set of nodes 
involves erasure of the nodes from the plan by 
modification of the successor and predecessor l i s t s 
of nodes which w i l l remain, removal of the 
assertions of the excised nodes from the assertion 
database, and similar bookkeeping ac t i v i t ies . Note 
that th is erasure must be reversible, so that if 
the planner must backtrack, these excised nodes are 
"unerased" and restored to the plan. In addition, 
a l l phantom nodes outside the pyramid which depend 
on an assertion of an excised node must be demoted, 
because that assertion is going to disappear. 

Having excised the act iv i ty pyramid above an 
act iv i ty node, that node is converted back to a 
goal. Side effect assertions of the act iv i ty are 
deleted, and any nodes below it which depend on one 
of these side effect assertions must be demoted 
too. The original goal assertion must be restored 
as the single assertion of the goal node, and the 
node must be inserted back into the goal stack as 
in the case of phantom demotion. Also, as in 
phantom demotion, other nodes affected by 
substitutions applied to the act iv i ty node or i t s 
pyramid must be demoted too. 

One minor problem with splicing is that the 
planner may occasionally go into a search loop 
consisting of demotion, replanning, demotion, 
replanning, etc. In my implementation this was 
cured by keeping a record of demoted nodes and and 
the act iv i ty which caused the demotion. If the 
demotion subroutine is about to try to demote a 
node a second time for the same reason, th is 
information causes the demotion to f a i l , breaking 
the loop and forcing the planner to backtrack. 
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Final ly, in a temporal planner it is necessary 
to relieve the temporal stress induced on remaining 
nodes by those which have been excised. The 
situation is l i ke a crowded elevator: when some 
people get of f , those that remain can space 
themselves out more comfortably. In the same way, 
in a temporally crowded plan the start time windows 
of many nodes are compressed by the durations of 
adjacent ac t i v i t i es . When some nodes are excised, 
the remaining nodes may be able to expand their 
start time windows. One possible approach would be 
to simply open the windows of a l l remaining nodes 
to the maximum interval , and then recompute a l l the 
start times based on the ordering and consecutivity 
constraints. However, this is unacceptable because 
excisions w i l l be done frequently, and in practice 
only a small percentage of the nodes in a plan w i l l 
be under stress from a set of excised nodes. A 
much more e f f ic ient technique is to follow stress 
chains from nodes on the boundary of the excised 
pyramid. Two sequential nodes, NA and NB, in a 
plan are temporally stressed i f : 

1. they are constrained to be consecutive 
(cf. [Vere, 1983]), or 

2. the earl iest f in ish time of NA equals 
the earl iest start time of NB, or Figure 5. A Temporal Stress Chain 

3. the latest f in ish time of NA equals the 
latest start time of NA. 

For cases 2 and 3 above it seems natural to say 
that their windows touch. Figure 5 i l lus t ra tes a 
stress chain for an abstract plan. Suppose that 
node 1 is an act iv i ty node to be demoted. An 
act iv i ty pyramid with 1 at i t s apex is indicated by 
the dashed l ines. Thus nodes 2, 3, 4, 5, and 6 are 
going to be excised. Nodes 1, 3, 4, 5, and 6 are 
on the boundary of the pyramid, i . e . , they are 
adjacent to nodes not in the pyramid. The bold 
l ines connect temporally stressed nodes leading 
away from the pyramid and beginning at boundary 
nodes. Note that a zig-zag pattern is possible, 
since nodes 15, 9, 8, 7, and 6 may be a chain of 
nodes with touching windows. The chain can 
continue in another direct ion since nodes 9 and 20, 
and 22 and 21 are assumed to be consecutive. The 
"C" label on the arcs indicates a consecutivity 
constraint. The subgraph connected by the bold 
l ines is the stress chain in th is diagram. It is 
only necessary to recompute start time windows for 
nodes in th is stress chain. The windows of a l l 
other nodes outside the pyramid, such as 10, are 
not affected by the excision of the pyramid nodes. 
Of course it is possible for a stress chain to 
exist below the pyramid as well as above i t , as in 
th is example. 

V INSERTING A DEACHIEVED GOAL INTO THE GOAL STACK 

We have seen that demotion of both phantoms and 
ac t iv i t ies leads to the creation (or, more 
accurately, the recreation) of one or more goals, 
which must then be inserted into the goal stack of 
the planner. How should such a goal be positioned 
relat ive to the existing goals in the stack? The 
answer is found in an analysis of why a node is 
demoted: it is demoted to "give another goal a 
chance.'' Stated d i f ferent ly , the planner decides 
that, in effect, the order of two goals must be 
reversed. Referring back to Figure 3a, Node C was 
demoted because of Node B. From the diagram we can 
infer that the goal of C was attempted f i r s t and 
then la ter the goal of B. If we are compelled to 
attempt a splice, it means that the goal of B 
should be "completely achieved" f i r s t before going 
back to work on the goal of C. By completely 
aohieved I mean that a l l backward chaining above B 
must be completed before going back to work on 
C. This can be ensured if the goal of C is inserted 
into the goal stack just below the lowest goal node 
in the act iv i ty pyramid above B. 

Figure 6 i l lus t ra tes with an example. It shows 
Figure 3a redrawn with an act iv i ty pyramid above B, 
as well as the associated goal stack. GC is the 
goal node created by demoting C. G1 and G2 are goal 
nodes in the pyramid above B. (Here the pyramid 
serves for analysis, and is not excised). G1 
happens to be the lowest in the stack. If we 
insert GC just below G1 in the stack, then the 
planner w i l l have completed the section of the plan 
above Node B before it starts to work on GC. 
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VI SUMMARY 

Planning is inherently sensitive to the order in 
which goals are accomplished, with fa i lure the 
possible result of attempting goals in the wrong 
order. Splicing is a way, in effect, to reorder 
goals "on the f l y " as planning proceeds. It is 
attempted only when normal conf l ict resolution 
f a i l s . A portion of the plan which accomplishes an 
earl ier goal is erased, and the earl ier goal is put 
back into the planner's goal stack in a position 
which allows the later goal to be accomplished 
without interference. Through the stack mechanism, 
the planner's attention later returns to 
achievement of the demoted goal. The result is 
that actions to achieve the later goal are spliced 
into the middle of the plan, and some ac t iv i t ies 
around the splice are replanned. This permits a 
solution to be found in goal protection deadlock 
situations where the planner would otherwise f a i l . 
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Figure 6. Goal Insertion During Demotion 


