
SPLICING PLANS TO ACHIEVE MISORDERED GOALSs

Steven A, Vere
Information Systems Division
Jet Propulsion Laboratory
Pasadena, California 91109

ABSTRACT

Most paral lel planners are sensitive to the
order in which goals and act iv i ty preconditions are
specified. A "wrong" ordering can easily cause a
solution to be missed. Permuting goals and
preconditions on fa i lure in hopes of f inding a
soluble order is in general computationally
unacceptable. Plan spl icing is a solution to this
problem. Splicing is a violent conf l ic t resolution
procedure which involves the cutting of assertion
dependencies, recursive demotion or excision of
selected ac t iv i t ies around the cut, and reinsert ion
of deachieved goals back into the middle of the
planner's goal stack so that they can be replanned
later to mend the plan around the splice. In a
temporal planner, after an excision it is further
necessary to relieve the "temporal stress" induced
on surviving ac t i v i t ies by the ac t iv i t ies which
were excised. This is an important capability for
two reasons: f i r s t , because the order of
achievement can of course not always be known in
advance, and secondly because it is desirable to be
able to present goals in pr io r i ty order.

I INTRODUCTION

AI planners are beginning to reach the maturity
required for real world applications. DEVISER I
[Vere, 1983] has been successfully applied to
generating command sequences for the Voyager
spacecraft. DEVISER I is on the evolutionary path
of NOAH [Sacerdoti, 1977] and NONLIN [Tate, 1977].
NOAH was the f i r s t planner to deal with paral lel
ac t i v i t i es . NONLIN is an improved paral lel planner
which is able to recover from bad decisions and
which implements a more sophisticated treatment of
goal protection. A recent version with a
consumable resource management capability [Tate and
Whiter, 1984] has been demonstrated on a naval
replenishment problem. DEVISER I extended the
mechanisms of the 1977 NONLIN to permit planning in
time, with arbitrary time constraints on
ac t i v i t i es , preconditions, and goals. It also

*This paper presents the results of one phase of
research carried out at the Jet Propulsion
Laboratory, California Inst i tu te of Technology, and
sponsored by the National Aeronautics and Space
Administration under contract No. NAS-918.

handles events, scheduled events, and inferences in
a uniform manner. Temporal planning has also
attracted the attention of a number of other
researchers within the last few years [Allen and
Koomen, 1983; Cheeseman, 1983; Dean, 1984;
McDermott, 1982]. However, time is largely
orthogonal to the issue of goal order and spl ic ing,
which is the focus of this paper. SIPE [Wilkins,
1984] is another contemporary planner derived from
NOAH which has special resource handling features.
It has been applied to planning ac t iv i t ies on an
a i rcra f t carr ier.

A common d i f f i cu l t y experienced with most
planners is the phenomenon I w i l l ca l l goal
protection deadlock, in which the achievement and
subsequent protection of an earl ier goal can block
the achievement of a later goal [Dreussi, 1982, pg.
59]. For example, suppose a robot is in front of a
closed door leading into a room. I t ' s goals are to
be inside the room with the door closed. Goal
protection deadlock is experienced i f i t f i r s t
t r ies to achieve (DOOR CLOSED) (with a nul l
action), and then attempts to achieve (IN ROBOT
ROOM). To enter, it must plan to open the door, but
th is would violate the f i r s t goal, (DOOR CLOSED),
which is achieved by the start state and is now
protected. The problem is that the goals have been
attempted in the "wrong" order. Previous paral lel
planners have avoided this problem by requiring
goals to be presented to the planner in an order in
which they can be achieved. This problem applies
both to the or iginal conjunctive goal set as well
as to the ordering of the preconditions of an
ac t i v i t y , which become subgoals during plan
synthesis. In complex domains it may be impossible
to know the correct order in which to attempt
goals, and it is oomputationally unacceptable to
t ry every possible permutation of goals and
preconditions.

There are reasons other than ignorance for
wanting a planner to be Insensitive to goal
ordering. A greedy person may try to give a
planner many more goals than are logical ly
achievable, due to time or resource l imi tat ions.
If goal deadlook can be avoided, it then becomes
attract ive to order the goals by decreasing
p r io r i t y . The most Important goals can be planned
f i r s t and allowed f i r s t claim to the f i n i t e
resources. If possible, ac t i v i t ies to achieve
goals lower on the l i s t are f i t t e d into the plan
la ter . Otherwise the lower pr io r i ty goal is
discarded. In this way the planner is able to
generate a par t ia l solution for insoluble goal sets

S. Vere 1017

instead of just just giving up.

It is for these two reasons, to avoid goal
deadlock and to allow goal p r io r i t i za t ion and
discard, that I have investigated and implemented
spl icing in a new version of my planner designated
DEVISER I I I .

For tu to r ia l purposes, the plan splicing process
w i l l be i l lus t ra ted in this paper on blocksworld
and abstract examples. However, splicing has been
applied in practice on large plans constructed with
a very detailed knowledge base for the Voyager
spacecraft consisting of 1800 l ines and describing
about 140 di f ferent actions, inferences, and
events.

II PLAN SPLICING

Plan spl icing may be regarded as a new variety
of conf l ic t resolution in a paral lel planner.
Figure 1 i l lus t ra tes a prototypical conf l ic t
s i tuat ion. During paral lel plan synthesis, a
conf l ic t is said to occur when two paral lel nodes,
such as Node A and Node B, assert contradictory
l i t e r a l s , represented by P and "P. (You are
cautioned not to confuse this usage of "conf l ic t "
with the completely unrelated notion of "conf l ic t
sets" in forward chaining production rule systems
such as 0PS5). The dashed l ines show that Node C
depends on the assertion P from Node A, and Node D
depends on the assertion "P of Node B. These w i l l
be called assertion dependencies. They indicate
that the truth of the assertion must be protected
in the region of the plan between the two nodes.
Tate cal ls these dependency relationships the goal
structure. Of course there may be many nodes l i ke
Node C depending on P in Node A and many nodes l i ke
Node D.

violated, neither of these two conf l ic t resolutions
can overcome the problem of goal protection
deadlock.

Figure 2a. One Non-Violent Conflict Resolution

Figure 1. A Conflict Situation in a Plan
Figure 2b. The Other Non-Violent Conflict

Resolution

There are two possible conf l ic t resolutions, as
performed in NONLIN (and DEVISER I) : either D must
be ordered before A, or C must be ordered before B,
so that the assertion dependencies are respected
and preserved. This is i l lus t ra ted in Figures 2a
and 2b. Because assertion dependencies are never

Plan spl icing is a violent form of conf l ic t
resolution which is only t r ied as a last resort,
after nonviolent conf l ic t resolution has fa i led .
There are two possible splicings for every

1018 S. Vere

conf l ic t , just as there are two possible ordering
resolutions. Figures 3a and 3b i l l us t ra te these
two alternatives. Because of symmetry! only Figure
3a w i l l be discussed. There the assertion
dependency between A and C has been cut, and B has
been ordered between A and C. Simultaneously, C has
been "demoted." Node demotion is a generic term
for an involved process whose detai ls depend on
whether C is a phantom or an ac t iv i ty . (A phantom
node is a nul l action which signif ies that a
precondition has "already'' been achieved above in
the plan; an act iv i ty node is everything else—an
action, an inference, or a (forward chaining)
event). Thus splioing l i t e r a l l y cuts the Gordian
knot in a goal deadlook si tuat ion. The (reoursive)
demotion prooess is responsible for ensuring that
the plan w i l l mend properly around the splice. At
one extreme, demotion may involve simply changing a
phantom node back to a goal. At the other extreme,
demotion may trigger the erasure of large sections
of the plan around and below the splice, with many
goals being Inserted at a variety of positions
within the goal staok for later replanning. Most
of th is paper is in fact concerned with the detai ls
of the demotion process.

Figure 3b. The Other Possible Splice

Loosely speaking, one or more goals below the
splice were achieved too early. Demotion sends
these back into the goal stack in exactly the
position which allows interfer ing later goals a
chance. A solution is then obtained as though the
goals had or ig inal ly been attempted In the r ight
order. In effect, inter fer ing goals are
dynamically reordered during plan synthesis, and
th is is accomplished without erasing any more of
the exist ing plan than is logical ly necessary.

The advantage of splioing is that it renders the
planner insensitive to goal and subgoal ordering.
However, a certain penalty is incurred. The size of
the planner's search tree is enlarged, since there
are now four possible resolutions to every conf l ic t
s i tuat ion rather than two. In DEVISER this is
mitigated by discarding the two spl icing
alternatives if one of the two nonviolent
resolutions is successful. Otherwise, in
backtracking the two spl icing alternatives can lead
into irrelevant sections of the search tree and
waste time.

As already mentioned, the detai ls of demotion
depend on whether the demoted node is a phantom or
an aot iv i ty . These two oases w i l l now be
Investigated in turn.

I l l DEMOTING A PHANTOM NODE

Demotion of a phantom node is potential ly the
simplest case. If the assertion of the phantom is
P, we simply oonvert the node baok to a goal, and
enter P at the "appropriate place" in the planner's
goal staok. The appropriate place is generally not
the top of the goal stack, but somewhere in the
middle. Details of the procedure for entering a
goal baok in the goal staok w i l l be presented
la ter , in Section V.

Figure 3a. One Conflict Resolution by Splicing

This simple picture is complicated if a
substitut ion was applied at the time the phantom
node was created. For example, suppose the goal
assertion was (ON .x C). In creating the phantom
node, suppose that the substitut ion {B/.x} was
applied to oause the goal assertion to match (ON B
C) asserted by an ear l ier action. This means that
to demote the phantom we must restore the goal
assertion to i t s or iginal unlnstantlated form, (ON
.x C).

S. Vere 1019

A further, more serious complication is
encountered if the substitution was in fact also
applied to other l i t e ra l s in the plan. If we cannot
somehow restore these l i t e ra l s to their
uninstantiated state, existing parts of the plan
may remain unnecessarily constrained, preventing us
from finding a solution plan when in fact one
exists. However, in DEVISER it is effectively
impossible to deinstantiate an arbitrary l i t e r a l .
Suppose the instantiated l i t e r a l is (P A A) and the
substitut ion was {A/ .x} . Restoring the l i t e r a l to
(P ,x .x) can be incorrect if the original l i t e r a l
was actually (P A , x) . The alternative of
"rememberingn precisely which terms were replaced
for each substitut ion application was judged to be
unacceptable. The approach I have adopted is to
demote a l l plan nodes having a l i t e r a l Instantiated
by the substi tut ion. This only requires
"remembering", for each phantom, the l i s t of nodes
affected by the substitution (i f any) applied when
that phantom is created. Thus the demotion of one
phantom may in turn ca l l for the demotion of
several additional "affected nodes", i . e . , those
affected by that phantom's substitution. If an
affected node is also a phantom it is in turn
treated in the manner just described. If the
affected node is an ac t iv i t y , it is demoted as
described in the next section.

IV DEMOTING AN ACTIVITY NODE

As seen above, spl icing may require the demotion
of an act iv i ty node N back to a goal, either
because N is Node C in Figure 3a, or because N was
affected by the substitution of a demoted phantom.
This in turn cal ls for the excision (erasure) of
selected nodes above N in the plan. The nodes
which must be excised are those which exist in the
plan exclusively to satisfy preconditions of
N. These w i l l be called the act iv i ty pyramid above
N.

Consider the blocksworld plan in Figure 4.
Assertion dependencies are not shown to avoid
c lut ter ing the diagram. This plan was generated to
achieve the goals (ONTABLE C) (ON B C), given the
i n i t i a l state (CLEAR C) (ON C A) (ONTABLE A) (CLEAR
B) (ONTABLE B). N4 aohieves the f i r s t goal; N5
achieves the second. Suppose that in the course of
planning to achieve other additional goals (not
shown), we wish to do a splice and demote N5.
Should we excise a l l the nodes above N5 in the
plan? No. Nodes N6, N7, and N8 exist to enable
the putdown action of N4 , and should be retained.
We should excise only nodes N9, N10, N11, and N12.
These were backchained into the plan to enable the
stack action of N5. Nodes N9, N10, N11, and N12
constitute the act iv i ty pyramid above node N5,
because they form an inverted pyramid of nodes
backchained above N5, with N5 at the apex.
Similarly, N6, N7, and N8 form the act iv i ty pyramid
above N4. Consequently, to demote N5 we must f i r s t
excise N9, N10, N11, and N12, and then convert N5
back to a goal and insert it into the goal stack.

One key aspect of act iv i ty demotion is then the
excision of a l l nodes in the act iv i ty pyramid above

Figure 4. A Blocksworld Plan I l lus t ra t ing Act iv i ty
Pyramids

the demoted node. Excision of a set of nodes
involves erasure of the nodes from the plan by
modification of the successor and predecessor l i s t s
of nodes which w i l l remain, removal of the
assertions of the excised nodes from the assertion
database, and similar bookkeeping ac t i v i t ies . Note
that th is erasure must be reversible, so that if
the planner must backtrack, these excised nodes are
"unerased" and restored to the plan. In addition,
a l l phantom nodes outside the pyramid which depend
on an assertion of an excised node must be demoted,
because that assertion is going to disappear.

Having excised the act iv i ty pyramid above an
act iv i ty node, that node is converted back to a
goal. Side effect assertions of the act iv i ty are
deleted, and any nodes below it which depend on one
of these side effect assertions must be demoted
too. The original goal assertion must be restored
as the single assertion of the goal node, and the
node must be inserted back into the goal stack as
in the case of phantom demotion. Also, as in
phantom demotion, other nodes affected by
substitutions applied to the act iv i ty node or i t s
pyramid must be demoted too.

One minor problem with splicing is that the
planner may occasionally go into a search loop
consisting of demotion, replanning, demotion,
replanning, etc. In my implementation this was
cured by keeping a record of demoted nodes and and
the act iv i ty which caused the demotion. If the
demotion subroutine is about to try to demote a
node a second time for the same reason, th is
information causes the demotion to f a i l , breaking
the loop and forcing the planner to backtrack.

1020 S. Vere

Final ly, in a temporal planner it is necessary
to relieve the temporal stress induced on remaining
nodes by those which have been excised. The
situation is l i ke a crowded elevator: when some
people get of f , those that remain can space
themselves out more comfortably. In the same way,
in a temporally crowded plan the start time windows
of many nodes are compressed by the durations of
adjacent ac t i v i t i es . When some nodes are excised,
the remaining nodes may be able to expand their
start time windows. One possible approach would be
to simply open the windows of a l l remaining nodes
to the maximum interval , and then recompute a l l the
start times based on the ordering and consecutivity
constraints. However, this is unacceptable because
excisions w i l l be done frequently, and in practice
only a small percentage of the nodes in a plan w i l l
be under stress from a set of excised nodes. A
much more e f f ic ient technique is to follow stress
chains from nodes on the boundary of the excised
pyramid. Two sequential nodes, NA and NB, in a
plan are temporally stressed i f :

1. they are constrained to be consecutive
(cf. [Vere, 1983]), or

2. the earl iest f in ish time of NA equals
the earl iest start time of NB, or Figure 5. A Temporal Stress Chain

3. the latest f in ish time of NA equals the
latest start time of NA.

For cases 2 and 3 above it seems natural to say
that their windows touch. Figure 5 i l lus t ra tes a
stress chain for an abstract plan. Suppose that
node 1 is an act iv i ty node to be demoted. An
act iv i ty pyramid with 1 at i t s apex is indicated by
the dashed l ines. Thus nodes 2, 3, 4, 5, and 6 are
going to be excised. Nodes 1, 3, 4, 5, and 6 are
on the boundary of the pyramid, i . e . , they are
adjacent to nodes not in the pyramid. The bold
l ines connect temporally stressed nodes leading
away from the pyramid and beginning at boundary
nodes. Note that a zig-zag pattern is possible,
since nodes 15, 9, 8, 7, and 6 may be a chain of
nodes with touching windows. The chain can
continue in another direct ion since nodes 9 and 20,
and 22 and 21 are assumed to be consecutive. The
"C" label on the arcs indicates a consecutivity
constraint. The subgraph connected by the bold
l ines is the stress chain in th is diagram. It is
only necessary to recompute start time windows for
nodes in th is stress chain. The windows of a l l
other nodes outside the pyramid, such as 10, are
not affected by the excision of the pyramid nodes.
Of course it is possible for a stress chain to
exist below the pyramid as well as above i t , as in
th is example.

V INSERTING A DEACHIEVED GOAL INTO THE GOAL STACK

We have seen that demotion of both phantoms and
ac t iv i t ies leads to the creation (or, more
accurately, the recreation) of one or more goals,
which must then be inserted into the goal stack of
the planner. How should such a goal be positioned
relat ive to the existing goals in the stack? The
answer is found in an analysis of why a node is
demoted: it is demoted to "give another goal a
chance.'' Stated d i f ferent ly , the planner decides
that, in effect, the order of two goals must be
reversed. Referring back to Figure 3a, Node C was
demoted because of Node B. From the diagram we can
infer that the goal of C was attempted f i r s t and
then la ter the goal of B. If we are compelled to
attempt a splice, it means that the goal of B
should be "completely achieved" f i r s t before going
back to work on the goal of C. By completely
aohieved I mean that a l l backward chaining above B
must be completed before going back to work on
C. This can be ensured if the goal of C is inserted
into the goal stack just below the lowest goal node
in the act iv i ty pyramid above B.

Figure 6 i l lus t ra tes with an example. It shows
Figure 3a redrawn with an act iv i ty pyramid above B,
as well as the associated goal stack. GC is the
goal node created by demoting C. G1 and G2 are goal
nodes in the pyramid above B. (Here the pyramid
serves for analysis, and is not excised). G1
happens to be the lowest in the stack. If we
insert GC just below G1 in the stack, then the
planner w i l l have completed the section of the plan
above Node B before it starts to work on GC.

S. Verc 1021

[4] Dreussi, J. F. The Detection and Correction
of Errors in Problem-solving Systems. Ph.D.
dissertation, Univ. of Texas at Austin, 1982.

[5] McDermott, D. A. "A Temporal Logic for
Reasoning About Processes and Plans.'' Cognitive
Science, Vol. 6, 1982, 101-155.

[6] Sacerdoti, E. D. A Structure for Plans and
Behavior. Elsevier North-Hoiland, 1977.

[7] Tate, A. "Generating Project Networks" In
Proc. IJCAI-77f 888-893.

[8] Tate, A. and A. M. Whiter, "Planning with
Multiple Resource Constraints and an Application to
a Naval Planning Problem" In Proc. 1st. Conf. £n.
AI Applications, 198*4, 410-415.

[9] Vere, S. A. "Planning in Time: Windows and
Durations for Act iv i t ies and Goals." IEEE trans.
Pattern Analysis and. Machine Intell igence, Vol.
PAMI-5, No. 3, May 1983, 246-267.

[10] Wilkins, D. E. "Domain-independent
Planning: Representation and Plan Generation."
A r t i f i c i a l Intel l igence, Apri l 1984, 269-301.

VI SUMMARY

Planning is inherently sensitive to the order in
which goals are accomplished, with fa i lure the
possible result of attempting goals in the wrong
order. Splicing is a way, in effect, to reorder
goals "on the f l y " as planning proceeds. It is
attempted only when normal conf l ict resolution
f a i l s . A portion of the plan which accomplishes an
earl ier goal is erased, and the earl ier goal is put
back into the planner's goal stack in a position
which allows the later goal to be accomplished
without interference. Through the stack mechanism,
the planner's attention later returns to
achievement of the demoted goal. The result is
that actions to achieve the later goal are spliced
into the middle of the plan, and some ac t iv i t ies
around the splice are replanned. This permits a
solution to be found in goal protection deadlock
situations where the planner would otherwise f a i l .

REFERENCES

[1] Allen, J. F. and J. A. Koomen, "Planning
Using a Temporal World Model" In Proc. IJCAI-83.
741-747.

[2] Cheeseman, P. "A Representation of Time for
Planning," Tech. Note 278, AI Center, SRI
International, Menlo Park, California, Feb. 1983.

[3] Dean, T. "Planning and Temporal Reasoning
under Uncertainty" In Proc. IEEE Workshop on
Principles of Knowledge-Baaed system, Denver,
Colorado, 1984.

Figure 6. Goal Insertion During Demotion

