
AN I M P L E M E N T A T I O N OF A
MULT I -AGENT P L A N SYNCHRONIZER

Christopher Stuart
Department of Computer Science

Monash University
Clayton 3108 Australia

ABSTRACT
A program is described which augments plans with synchronizing

primitives to ensure appropriate conflict avoidance and co-operation
The plans are particularly suitable for describing the activity of
multiple agents which may interfere with each other The
interpretation of a plan is given as a non deterministic finite
automaton which exchanges messages with an environment for the
commencement and conclusion of primitive actions which take place
over a period of time The synchronized plan allows any and all
execution sequences of the original plan which guarantee correct
interaction

1. Introduction
All planning systems operate by combining actions or sub-plans

in some way so that the total plan satisfies some constraint usually
to achieve a goal state. Knowledge of how actions interact with each
other and the world is used to determine the appropriate
combinations In NOAH[5], for example, consideration of
interactions between sub-plans is explicit in the planning process A
plan is a partial order of sub-plans The planning technique is to
expand sub-plans into partial orderings of lower level sub-plans, and
then look for and resolve ensuing conflicts The resolution may
impose fixed orderings This can be unnecessarily restrictive, as in
the case where two sub-plans may execute in any order but not at
the same time.

This paper considers the use of synchronizing primitives to
resolve conflicts and produce a plan which is as unrestrictive as
possible The models of plan and action used are appropriate for
simple agents or robots engaged in parallel and or repetitive tasks
which may be described at a level not using sensory input to the
agents. Use could be made of this technique, for example, in
automated assembly lines Georgeff [2] has also done related work on
planning for multiple agents

2. Underlying theory.
Here we give an informal summary of a fully formalized theory

of action and the world, which is described in [6].

2.1. Actions
An agent changes the world by executing actions When

multiple agents are operating in parallel, it may be possible for two
actions to be executing simultaneously, and so actions must have a
beginning and an end. We consider an action to be decomposed into
discrete transformations of the world, which are called event??. An
event also has an associated correctness condition, which must be
true at the moment it is executed An action will be a set of possible
finite sequences of events.

2.2. The environment
The state of the environment in which actions are executed

consists of a world state, and a set of actions currently being

executed. If an agent executes an action, one of the possible
sequences of events for that action is selected non-deterministically
and added to the environment state The environment may at any
time take a currently executing action, pop the next event from the
event sequence, check for event failure, and change the world state
according to that event.

The environment defines a set of symbols called operators, and
gives each operator an interpretation as a set of event sequences
(action). These operators are the means of interaction between an
agent and the environment, and are exchanged as messages

2.3. Agents
The execution of a plan corresponds to some sequence of

messages between the environment and an agent. Let A be the set of
operators Then a sequence of messages will be denoted by a string
over the alphabet {begin,end) X A. For any a€-4, {begin a)
corresponds to the agent sending a to the environment to cause the
associated action to be executed, and {end) corresponds to the
environment sending a to the agent to indicate that the associated
action has completed We refer simply to strings and assume them to
be over this alphabet.

An agent is an acceptor for string*. The formal model for an
agent is similar to a non-deterministic finite automaton. It has a set
of nodes (agent states), and a set of arcs defining allowed state
transitions with associated messages An agent deadlocks if it is in a
state from which there are no possible state transitions involving a
{begin α) message, and the environment has finished executing all the
operators sent by the agent

An agent defines a set of possible strings, and for any string, an
environment defines some set of possible world state sequences. The
planning problem is to take information about the environment, and
find an agent which has some desired elfect on the world, such as the
ultimate achieving of a goal world state, no matter what choices the
environment makes We say two agents are equivalent if in any
environment they induce the same set of possible sequences of world
states.

An agent is bounded if there is a finite upper bound on the
number of actions which the environment can be executing at a time.
Thus a bounded agent will suffice to represent the concurrent
activity of a finite number of multiple real world agents

2.4. Plans
Given three symbol sets A, M and S being operators, memory

states and signals respectively, plans are defined recursively.
• For any αE A : α is a plan for executing an single action
• For any mE M, s£S (set m), (send s) and (guard m s) are

synchronizing primitives.
• If pl and p2 are two plans, then p1p2 is the plan to execute

them in sequence, P1||p2 is to execute them in parallel, p1\p2 is
to execute one or the other by non-deterministic selection, and
p1 executes p, an arbitrary number of times

1032 C.Stuart

The semantics for plans is given as a mapping from plans to
agents, which is described in |(6) Intuitively, the agent for the simple
plan α is an automaton accepting only the string {(begin α),(end α)}
The plan operators build automata in the conventional manner. The
synchronizing primitives correspond to arcs in the automaton which
have a side effect on plan execution without exchanging any messages
with the environment Set changes the memory statt of the plan,
and guard and send can only be executed simultaneously, and then
only when the memory is in the specified state and the signals match.
This particular form of primitive is an adaptation of synchronization
in the parallel programming language CSP[3], which uses guards
which may be a combination of an input/output operation and a
normal conditional

The following two results, given without proof, assert that there
is a one to one correspondence between plans and bounded agents.
• Any agent which is given as the semantics of a plan is bounded.
• For any arbitrary bounded agent, there is a plan which has an

interpretation equivalent to that agent.

3. The interaction problem
The problem addressed here is that of ensuring that a plan does

not deadlock, or allow any event to fail. Correctness conditions on
events or actions can be used to represent many types of plan
correctness If a plan should achieve some goal state given some
initial condition, this is ensured by beginning the plan with an action
that, asserts the initial condition, and terminating it with an action
that will always fail in the absence of the goal condition. A
condition which must be maintained during a plan can be enforced
with an action in parallel that will fail in the absence of the
maintained condition.

A program has been developed which takes a plan and a
description of an environment, and generates a revised plan which
allows all and only the sequences of communication, acts of the first
plan that cannot c ause failure, and also that will never deadlock

3.1. Preventing event failure
For this program we use a very simple form of event,

corresponding to the operators of the STRIPS planner|lj. The world
is modeled as a set of propositions. Events are constrained to add or
delete propositions without reference to the current world state Also,
the correctness condition is a conjunction of propositions or negated
propositions Thus an event is four sets of propositions; a require
true set, a require false set, an add set and a delete set

It turns out in this case that to prevent event failure an action is
completely defined by five sets of atomic formulae (possibly negated
propositions). The five properties are defined by considering the
execution of the action in isolation from other actions An atomic
formula is
• asserted if it is inevitably true after the execution
• retracted if it could possibly become false after the execution
• conflicted if it could become false at some stage during the

execution.
• a precondition if it must be true immediately before the action

begins to ensure that no event will fail.
• a during condition if it must be true for some event in the

action.
The necessary and sufficient rules for ensuring no event failure

are:
• An action which has a during condition may not run in parallel

with an action that conflicts that during condition.

• An action αp which has a precondition may not begin until some
action αd which asserts that condition has completed, and also
no action αr which retracts that condition may be running from
when αa begins until αp ends.

3.2. Synchronising Plant
We synchronize a plan by inserting send operations, and running

it in parallel with a synchronization skeleton consisting only of guard
and set operations The set of possible strings for the resulting plan
is a subset of those for the original plan. Manna and Wolper describe
an algorithm for generating such a skeleton from propositional
temporal logic (PTL) formulae used to express constraints on
execution sequences of a plan.[4]

PTL is a logic for reasoning about sequences of states. The
interpretation of a PTL formula is the set of sequences for which it is
true. States give truth values to propositions and hence to non
modal formulae, and the temporal connectives of PTL (always,
eventually, until and next) have truth values depending on the
successors of a state. We also use a regular expression operator
equivalent in expressiveness to the grammar operators of Wolper.[7j
A regular expression with the basic elements being non modal
formulae translates into a set of sequences of non modal formulae,
and then to a set of sequences of states.

3.3. The algorithm
The plan synchronizer has three phases First, PTL formulae

are generated Correctness constraints, being the two rules defined
above, are expressed in standard PTL, using propositions to represent
relevant stages in plan execution A regular expression formula
corresponding to a simplification of the plan is used to express the
constraints imposed by the plan syntax on the order of the relevant
stages. The formulae are simplified or ignored depending on
orderings already enforced by the plan syntax This reduces the time
spent in the second phase without altering the interpretation of the
conjunction of all the PTL formulae generated

Second, a tableau method of theorem proving is applied
Formulae are decomposed into non modal constraints on the first
state of a sequence, and general constraints on the remainder A
graph is constructed, with arcs corresponding to states in plan
execution, and nodes labeled with PTL formulae This graph is
pruned to enforce eventuality constraints Every interpretation for
the original PTL formula is a path through the final graph, and every
finite path is the prefix of an interpretation

Finally, the graph is converted directly into a synchronization
skeleton, and send operations are inserted into the plan for every
proposition used The set of memory states used corresponds to the
set of nodes in the graph, aud each arc is represented as a guarded
command to alter the memory. The resulting plan allows all possible
execution sequences of the original which do not permit an event to
fail, and which always allow for plan termination

The current version of the program only handles restricted
classes of plans and actions (no loops, no selection, and actions
consisting of a single event sequence), but is being extended at the
moment to include these

4. An example
Consider the problem of three robots all trying to pickup a block

and move it clockwise to a location which another robot will clear as
it moves, represented by the following unsynchroni/.ed plan

((START (Rl R2 R3) ((A X) (BY) (C Z)))
(PARALLEL ((PICKUP Rl AX) (PUTDOWN Rl A V))

((PICKUP R2 B V) (PUTDOWN R2 BZ))
((PICKUP R3 C Z) (PUTDOWN R3 C X))))

C.Stuart 1033

(IF (AND (EQ N 5) (RECV (END 2 1 1)))
THEN (SETQ N 6)))))))

The syntax is close to CSP, and can be translated directly into
plans as we have defined them A large section of the
synchronization skeleton has been removed in the example, since it
contains 42 guarded commands one for each arc in the model for
the PTL formulae The final plan has the desired result of holding
any putdown until the appropriate pickup has completed Each
pickup is followed by a send which indicates a block is clear, and
each putdown is preceded by a send which is delayed until the
appropriate destination block is clear.

5. Conclusion and Future Work
There are some optimizations possible in the general method by

pruning the graph, which in the above example would have reduced
the size of the synchronization skeleton, and removed redundant
references to (DEGIN 1). It is also worthy of investigation to consider
how synchronization primitives could be inserted in the main plan
without adding a new parallel branch with the synchronization
skeleton, or how the synchronization skeleton could be made more
modular, with distinct components to handle particular constraints.

The definition of actions and environments given here enables
very strong properties to be given to the synchronized plans: in
particular that all and only the correct executions of the initial plan
are permitted. This is in contrast to previous means of synchronizing
plans which prohibit some execution sequences that would succeed.

By extending the definition of actions to include general state
transformations in events, a similar algorithm could generate a plan
which is still less restrictive than that produced by previous plan
modifying techniques, but might still disallow certain correct

executions There is no simple action description capturing all the
essential properties in the same way as can be done in the simple
case with five sets of atomic formulae Also, the PTL formulae
might need to reference propositions reflecting world state as well as
the stages of plan execution. This problem could be considered in
more detail.

There is also the problem of types of non-determinism The
current selection operator corresponds to the case where a plan may
proceed in one of two directions, and the synchronizer is permitted to
chose one over the other. This is angelic non-determinism However,
it may be the case for some plans that the choice is critical, but
made at execution time, in which ease the synchronizer must allow
both cases or none at all This is demonic non-determinism, and
implies some additional structure to a plan which restricts the ways
in which it may be synchronized. For added complexity, the decision
may be based on the state of the world model, and so the
synchronizer can determine the choices it must leave open, depending
on the possible world models it derives for the moment of choice

Loops often have a termination condition which is a function of
all the activity in the loop, and yet may not easily be derived from
the given information. Such a termination condition could be
specified if a plan segment were treated as a single hierarchical
action, and given properties similar to those for individual actions
Consider a loop of an action that removes a single item from a box
until none are left To represent this in the formalism given here, the
entire loop would be given an assert condition that the box become
empty To guarantee termination, the entire loop could be given a
during condition that no one places anything in the box.

A version of the program is being designed which will take as
input an arbitrary plan as defined above, and will also handle both
types of non-determinism, and conditions attached to sub-plans as
hierarchical actions. The theoretical justification is being pursued
concurrently.

ACKNOWLEDGEMENTS
Much of this investigation was conducted at the AI center at

SRI International, Thanks are due to the center and especially to
Michael GeorgerT for helpful discussion; and to Monash University for
financial assistance, and where the work is proceeding.

REFERENCES
|J] Fikes, R.E., Nilsson, N.J "STRIPS: A new approach to the

application of theorem proving in problem solving " Artificial
Intelligence 2 (1971), pp 189-208

[2] Georgeff, MP. "Communication and Interaction in Multi-Agent
Planning." In Proc. AAAISS, (1983) ppl25-129.

[3] Hoare, CAR. "Communicating Sequential Processes." In
Communications of the ACM 21:8 (1978), pp 666-677.

|4] Manna, Z.; Wolper, P. "Synthesis of Communicating Processes
from Temporal Logic Specifications." Report STAN-CS-81-872,
Stanford University Computer Science Dept, September 1981.

[5] Sacerdoti, ED "A Structure for Plans and Behaviour " Tech
Note 109, SRI AI Center, Menlo Park, CA 1975.

|f>) Stuart, C..J. "An Implementation of a Multi-Agent Plan
Synchronizer Using a Temporal Logic Theorem Prover " Report
under development, SRI Al Center, Menlo Park, CA, 1985.

[7J Wolper, P. "Temporal Logic Can Be More Expressive." In Proc.
of the 22nd Symposium on Foundations of Computer Science.
Nashville, TN, (1981)

1036 R. Korf

that A* is optimal, in terms of number of nodes
generated, over the class of admissible best-first
searches with monotone heuristics A monotone
heuristic function is one which never decreases along a
path This is not a serious restriction since given an
admissible heuristic, we can trivially construct a
monotone one by taking the maximum value along the
path so far as the value of each succeeding node on
the path [Mero 84] Therefore, IDA* is asymptotically
optimal in terms of time over the class of admissible
best-first tree searches

Finally, we consider the space used by IDA* Since
IDA* at any point is engaged in a depth-first search,
it need only store a stack of nodes which represents
the branch of the tree it is expanding Since it finds
a solution of optimal cost, the maximum depth of this
stack is d, ana hence the maximum amount of space
is O(d)

To show that this is optimal, we note that any
algorithm which uses f(n) time must, use at least, klog
f(n) space for some constant k [Hopcroft 79] The
reason is that the algorithm must proceed through f(n)
distinct states before looping or terminating, and hence
must be able to store that many states Since storing
f(n) states requires log f(n) bits, and log ba is d log b,
any brute-force algorithm must use kd space, for some
constant k Q.ED

As mentioned above, most heuristics in practice
exhibit at least constant relative error Thus, we can
conclude that heuristic depth-first iterative-deepening is
asymptotically optimal for most best-first tree searches
winch occur in practice An additional benefit of
IDA* over A* is that it is simpler to implement since
there are no open or closed lists to be managed A
simple recursion performs the depth-first search, and
an outer loop handles the iterations

As an empirical test of the practicality of this
algorithm, both IDA* and A* were implemented for
the Fifteen Puzzle The implementations were in
Pascal and were run on a DEC 2060 The heuristic
function used for both was the admissible Manhattan
distance heuristic for each movable tile, the number of
grid units between the current position of the tile and
its goal position are computed, and these values are
summed for all tiles The two algorithms were tested
against 100 randomly generated, solvable initial states
IDA* solved all instances with a median time of 30
CPU minutes, generating over 1.5 million nodes per
minute The average solution length was 53 moves and
the maximum was 66 moves A* solved none of the
instances since it ran out of space after about 30,000
nodes were stored As far as we know, this is the first
algorithm to find optimal solutions to randomly
generated instances of the Fifteen Puzzle within
practical resource limits An additional observation is
that in experiments with the Eight Puzzle, even
though IDA* generated more nodes than A*, it
actually ran faster than A* on the same problem
instances, due to the reduced overhead per node The
actual data from these experiments are reported in
[Korf 85]

4 . C o n c l u s i o n s
The best known admissible search algorithm, A*, is

severely limited by its exponential space requirement
An iterative-deepening version of A* uses only linear
space, and is asymptotically optimal in terms of cost
of solution, running time, and space required for
exponential tree searches Since almost all heuristic
searches have exponential complexity, lterative-
deepemng-A* is an optimal admissible tree search in
practice. In addition, it was easier to implement and
ran faster than A* in our experiments

A c k n o w l e d g m e n t s
1 would like to acknowledge the helpful comments of

Mike Lebowitz, Andy Mayer, and Mike Townsend who
read an earlier draft of this paper, and several helpful
discussions with Hans Berliner and Judea Pearl
concerning this research In addition, Andy Mayer
implemented the A* version that was compared with
IDA*

R e f e r e n c e s

[Berliner 84] Berliner, Hans, and Gordon Goetsch
A quantitative study of search methods and the effect
of constraint satisfaction technical report CMU-
CS-84 147 Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, Pa , July, 1984
[Dechter 83] Dechter, Rina, and Judea Pearl The
optimality of A* revisited Proceedings of the
National Conference on Artificial Intelligence,
Washington. D C , August, 1983, pp 95-99
Hart 68] Hart, Peter E , Nils J Nilsson, and
Bertram Raphael. "A formal basis for the heuristic

determination of minimum cost paths " IEEE
Transactions on Systems Science and Cybernetics
SSC-4, 2 (19f)8)
[Hopcroft 79] Hopcroft, John E, and Jeffrey
D Ullman Introduction to Automata Theory,
Languages, and Computation Addison-Wesley,
Reading, Mass , 1979
[Korf 85] Korf, Richard E "Depth-first iterative-
deepening An optimal admissible tree search "
Artificial Intelligence to appear (1985)
[Mero 84] Mero, Laszlo "A heuristic search
algorithm with modifiable estimate" Artificial
Intelligence 28 (1984)
[Pearl 84] Pearl, Judea Heuristics. Addison-Wesley,
Reading, Mass , 1984
Slate 771 Slate, David J , and Lawrence R Atkin
-HESS 4 *> - The Northwestern University chess

program In Frey, Peter W , Ed , Chess Skill in
Man and Machine, Springer-Verlag, New York, 1977
[Stiekel 85] Stickel, Mark E , and W Mabry Tyson
An analysis of consecutively bounded depth-first search
with applications in automated deduction Proceedings
of the International Joint Conference on Artificial
Intelligence (IJCAI-85), Los Angeles, Ca , August, 1985

