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ABSTRACT 
A program is described which augments plans with synchronizing 

primitives to ensure appropriate conflict avoidance and co-operation 
The plans are particularly suitable for describing the activity of 
multiple agents which may interfere with each other The 
interpretation of a plan is given as a non deterministic finite 
automaton which exchanges messages with an environment for the 
commencement and conclusion of primitive actions which take place 
over a period of time The synchronized plan allows any and all 
execution sequences of the original plan which guarantee correct 
interaction 

1. Introduction 
All planning systems operate by combining actions or sub-plans 

in some way so that the total plan satisfies some constraint usually 
to achieve a goal state. Knowledge of how actions interact with each 
other and the world is used to determine the appropriate 
combinations In NOAH[5], for example, consideration of 
interactions between sub-plans is explicit in the planning process A 
plan is a partial order of sub-plans The planning technique is to 
expand sub-plans into partial orderings of lower level sub-plans, and 
then look for and resolve ensuing conflicts The resolution may 
impose fixed orderings This can be unnecessarily restrictive, as in 
the case where two sub-plans may execute in any order but not at 
the same time. 

This paper considers the use of synchronizing primitives to 
resolve conflicts and produce a plan which is as unrestrictive as 
possible The models of plan and action used are appropriate for 
simple agents or robots engaged in parallel and or repetitive tasks 
which may be described at a level not using sensory input to the 
agents. Use could be made of this technique, for example, in 
automated assembly lines Georgeff [2] has also done related work on 
planning for multiple agents 

2. Underlying theory. 
Here we give an informal summary of a fully formalized theory 

of action and the world, which is described in [6]. 

2.1. Actions 
An agent changes the world by executing actions When 

multiple agents are operating in parallel, it may be possible for two 
actions to be executing simultaneously, and so actions must have a 
beginning and an end. We consider an action to be decomposed into 
discrete transformations of the world, which are called event??. An 
event also has an associated correctness condition, which must be 
true at the moment it is executed An action will be a set of possible 
finite sequences of events. 

2.2. The environment 
The state of the environment in which actions are executed 

consists of a world state, and a set of actions currently being 

executed. If an agent executes an action, one of the possible 
sequences of events for that action is selected non-deterministically 
and added to the environment state The environment may at any 
time take a currently executing action, pop the next event from the 
event sequence, check for event failure, and change the world state 
according to that event. 

The environment defines a set of symbols called operators, and 
gives each operator an interpretation as a set of event sequences 
(action). These operators are the means of interaction between an 
agent and the environment, and are exchanged as messages 

2.3. Agents 
The execution of a plan corresponds to some sequence of 

messages between the environment and an agent. Let A be the set of 
operators Then a sequence of messages will be denoted by a string 
over the alphabet {begin,end) X A. For any a€-4, {begin a) 
corresponds to the agent sending a to the environment to cause the 
associated action to be executed, and {end ) corresponds to the 
environment sending a to the agent to indicate that the associated 
action has completed We refer simply to strings and assume them to 
be over this alphabet. 

An agent is an acceptor for string*. The formal model for an 
agent is similar to a non-deterministic finite automaton. It has a set 
of nodes (agent states), and a set of arcs defining allowed state 
transitions with associated messages An agent deadlocks if it is in a 
state from which there are no possible state transitions involving a 
{begin α) message, and the environment has finished executing all the 
operators sent by the agent 

An agent defines a set of possible strings, and for any string, an 
environment defines some set of possible world state sequences. The 
planning problem is to take information about the environment, and 
find an agent which has some desired elfect on the world, such as the 
ultimate achieving of a goal world state, no matter what choices the 
environment makes We say two agents are equivalent if in any 
environment they induce the same set of possible sequences of world 
states. 

An agent is bounded if there is a finite upper bound on the 
number of actions which the environment can be executing at a time. 
Thus a bounded agent will suffice to represent the concurrent 
activity of a finite number of multiple real world agents 

2.4. Plans 
Given three symbol sets A, M and S being operators, memory 

states and signals respectively, plans are defined recursively. 
• For any αE A : α is a plan for executing an single action 
• For any mE M, s£S (set m), (send s) and (guard m s) are 

synchronizing primitives. 
• If pl and p2 are two plans, then p1p2 is the plan to execute 

them in sequence, P1||p2 is to execute them in parallel, p1\p2 is 
to execute one or the other by non-deterministic selection, and 
p1 executes p, an arbitrary number of times 



1032 C.Stuart 

The semantics for plans is given as a mapping from plans to 
agents, which is described in |(6) Intuitively, the agent for the simple 
plan α is an automaton accepting only the string {(begin α),(end α)} 
The plan operators build automata in the conventional manner. The 
synchronizing primitives correspond to arcs in the automaton which 
have a side effect on plan execution without exchanging any messages 
with the environment Set changes the memory statt of the plan, 
and guard and send can only be executed simultaneously, and then 
only when the memory is in the specified state and the signals match. 
This particular form of primitive is an adaptation of synchronization 
in the parallel programming language CSP[3], which uses guards 
which may be a combination of an input/output operation and a 
normal conditional 

The following two results, given without proof, assert that there 
is a one to one correspondence between plans and bounded agents. 
• Any agent which is given as the semantics of a plan is bounded. 
• For any arbitrary bounded agent, there is a plan which has an 

interpretation equivalent to that agent. 

3. The interaction problem 
The problem addressed here is that of ensuring that a plan does 

not deadlock, or allow any event to fail. Correctness conditions on 
events or actions can be used to represent many types of plan 
correctness If a plan should achieve some goal state given some 
initial condition, this is ensured by beginning the plan with an action 
that, asserts the initial condition, and terminating it with an action 
that will always fail in the absence of the goal condition. A 
condition which must be maintained during a plan can be enforced 
with an action in parallel that will fail in the absence of the 
maintained condition. 

A program has been developed which takes a plan and a 
description of an environment, and generates a revised plan which 
allows all and only the sequences of communication, acts of the first 
plan that cannot c ause failure, and also that will never deadlock 

3.1. Preventing event failure 
For this program we use a very simple form of event, 

corresponding to the operators of the STRIPS planner|lj. The world 
is modeled as a set of propositions. Events are constrained to add or 
delete propositions without reference to the current world state Also, 
the correctness condition is a conjunction of propositions or negated 
propositions Thus an event is four sets of propositions; a require 
true set, a require false set, an add set and a delete set 

It turns out in this case that to prevent event failure an action is 
completely defined by five sets of atomic formulae (possibly negated 
propositions). The five properties are defined by considering the 
execution of the action in isolation from other actions An atomic 
formula is 
• asserted if it is inevitably true after the execution 
• retracted if it could possibly become false after the execution 
• conflicted if it could become false at some stage during the 

execution. 
• a precondition if it must be true immediately before the action 

begins to ensure that no event will fail. 
• a during condition if it must be true for some event in the 

action. 
The necessary and sufficient rules for ensuring no event failure 

are: 
• An action which has a during condition may not run in parallel 

with an action that conflicts that during condition. 

• An action αp which has a precondition may not begin until some 
action αd which asserts that condition has completed, and also 
no action αr which retracts that condition may be running from 
when αa begins until αp ends. 

3.2. Synchronising Plant 
We synchronize a plan by inserting send operations, and running 

it in parallel with a synchronization skeleton consisting only of guard 
and set operations The set of possible strings for the resulting plan 
is a subset of those for the original plan. Manna and Wolper describe 
an algorithm for generating such a skeleton from propositional 
temporal logic (PTL) formulae used to express constraints on 
execution sequences of a plan.[4] 

PTL is a logic for reasoning about sequences of states. The 
interpretation of a PTL formula is the set of sequences for which it is 
true. States give truth values to propositions and hence to non 
modal formulae, and the temporal connectives of PTL (always, 
eventually, until and next) have truth values depending on the 
successors of a state. We also use a regular expression operator 
equivalent in expressiveness to the grammar operators of Wolper.[7j 
A regular expression with the basic elements being non modal 
formulae translates into a set of sequences of non modal formulae, 
and then to a set of sequences of states. 

3.3. The algorithm 
The plan synchronizer has three phases First, PTL formulae 

are generated Correctness constraints, being the two rules defined 
above, are expressed in standard PTL, using propositions to represent 
relevant stages in plan execution A regular expression formula 
corresponding to a simplification of the plan is used to express the 
constraints imposed by the plan syntax on the order of the relevant 
stages. The formulae are simplified or ignored depending on 
orderings already enforced by the plan syntax This reduces the time 
spent in the second phase without altering the interpretation of the 
conjunction of all the PTL formulae generated 

Second, a tableau method of theorem proving is applied 
Formulae are decomposed into non modal constraints on the first 
state of a sequence, and general constraints on the remainder A 
graph is constructed, with arcs corresponding to states in plan 
execution, and nodes labeled with PTL formulae This graph is 
pruned to enforce eventuality constraints Every interpretation for 
the original PTL formula is a path through the final graph, and every 
finite path is the prefix of an interpretation 

Finally, the graph is converted directly into a synchronization 
skeleton, and send operations are inserted into the plan for every 
proposition used The set of memory states used corresponds to the 
set of nodes in the graph, aud each arc is represented as a guarded 
command to alter the memory. The resulting plan allows all possible 
execution sequences of the original which do not permit an event to 
fail, and which always allow for plan termination 

The current version of the program only handles restricted 
classes of plans and actions (no loops, no selection, and actions 
consisting of a single event sequence), but is being extended at the 
moment to include these 

4. An example 
Consider the problem of three robots all trying to pickup a block 

and move it clockwise to a location which another robot will clear as 
it moves, represented by the following unsynchroni/.ed plan 

( (START (Rl R2 R3) ((A X) (BY) (C Z))) 
(PARALLEL ( (PICKUP Rl AX) (PUTDOWN Rl A V)) 

( (PICKUP R2 B V) (PUTDOWN R2 BZ)) 
( (PICKUP R3 C Z) (PUTDOWN R3 C X)))) 
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(IF (AND (EQ N 5) (RECV (END 2 1 1))) 
THEN (SETQ N 6))))))) 

The syntax is close to CSP, and can be translated directly into 
plans as we have defined them A large section of the 
synchronization skeleton has been removed in the example, since it 
contains 42 guarded commands one for each arc in the model for 
the PTL formulae The final plan has the desired result of holding 
any putdown until the appropriate pickup has completed Each 
pickup is followed by a send which indicates a block is clear, and 
each putdown is preceded by a send which is delayed until the 
appropriate destination block is clear. 

5. Conclusion and Future Work 
There are some optimizations possible in the general method by 

pruning the graph, which in the above example would have reduced 
the size of the synchronization skeleton, and removed redundant 
references to (DEGIN 1). It is also worthy of investigation to consider 
how synchronization primitives could be inserted in the main plan 
without adding a new parallel branch with the synchronization 
skeleton, or how the synchronization skeleton could be made more 
modular, with distinct components to handle particular constraints. 

The definition of actions and environments given here enables 
very strong properties to be given to the synchronized plans: in 
particular that all and only the correct executions of the initial plan 
are permitted. This is in contrast to previous means of synchronizing 
plans which prohibit some execution sequences that would succeed. 

By extending the definition of actions to include general state 
transformations in events, a similar algorithm could generate a plan 
which is still less restrictive than that produced by previous plan 
modifying techniques, but might still disallow certain correct 

executions There is no simple action description capturing all the 
essential properties in the same way as can be done in the simple 
case with five sets of atomic formulae Also, the PTL formulae 
might need to reference propositions reflecting world state as well as 
the stages of plan execution. This problem could be considered in 
more detail. 

There is also the problem of types of non-determinism The 
current selection operator corresponds to the case where a plan may 
proceed in one of two directions, and the synchronizer is permitted to 
chose one over the other. This is angelic non-determinism However, 
it may be the case for some plans that the choice is critical, but 
made at execution time, in which ease the synchronizer must allow 
both cases or none at all This is demonic non-determinism, and 
implies some additional structure to a plan which restricts the ways 
in which it may be synchronized. For added complexity, the decision 
may be based on the state of the world model, and so the 
synchronizer can determine the choices it must leave open, depending 
on the possible world models it derives for the moment of choice 

Loops often have a termination condition which is a function of 
all the activity in the loop, and yet may not easily be derived from 
the given information. Such a termination condition could be 
specified if a plan segment were treated as a single hierarchical 
action, and given properties similar to those for individual actions 
Consider a loop of an action that removes a single item from a box 
until none are left To represent this in the formalism given here, the 
entire loop would be given an assert condition that the box become 
empty To guarantee termination, the entire loop could be given a 
during condition that no one places anything in the box. 

A version of the program is being designed which will take as 
input an arbitrary plan as defined above, and will also handle both 
types of non-determinism, and conditions attached to sub-plans as 
hierarchical actions. The theoretical justification is being pursued 
concurrently. 
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that A* is optimal, in terms of number of nodes 
generated, over the class of admissible best-first 
searches with monotone heuristics A monotone 
heuristic function is one which never decreases along a 
path This is not a serious restriction since given an 
admissible heuristic, we can trivially construct a 
monotone one by taking the maximum value along the 
path so far as the value of each succeeding node on 
the path [Mero 84] Therefore, IDA* is asymptotically 
optimal in terms of time over the class of admissible 
best-first tree searches 

Finally, we consider the space used by IDA* Since 
IDA* at any point is engaged in a depth-first search, 
it need only store a stack of nodes which represents 
the branch of the tree it is expanding Since it finds 
a solution of optimal cost, the maximum depth of this 
stack is d, ana hence the maximum amount of space 
is O(d) 

To show that this is optimal, we note that any 
algorithm which uses f(n) time must, use at least, klog 
f(n) space for some constant k [Hopcroft 79] The 
reason is that the algorithm must proceed through f(n) 
distinct states before looping or terminating, and hence 
must be able to store that many states Since storing 
f(n) states requires log f(n) bits, and log ba is d log b, 
any brute-force algorithm must use kd space, for some 
constant k Q.ED 

As mentioned above, most heuristics in practice 
exhibit at least constant relative error Thus, we can 
conclude that heuristic depth-first iterative-deepening is 
asymptotically optimal for most best-first tree searches 
winch occur in practice An additional benefit of 
IDA* over A* is that it is simpler to implement since 
there are no open or closed lists to be managed A 
simple recursion performs the depth-first search, and 
an outer loop handles the iterations 

As an empirical test of the practicality of this 
algorithm, both IDA* and A* were implemented for 
the Fifteen Puzzle The implementations were in 
Pascal and were run on a DEC 2060 The heuristic 
function used for both was the admissible Manhattan 
distance heuristic for each movable tile, the number of 
grid units between the current position of the tile and 
its goal position are computed, and these values are 
summed for all tiles The two algorithms were tested 
against 100 randomly generated, solvable initial states 
IDA* solved all instances with a median time of 30 
CPU minutes, generating over 1.5 million nodes per 
minute The average solution length was 53 moves and 
the maximum was 66 moves A* solved none of the 
instances since it ran out of space after about 30,000 
nodes were stored As far as we know, this is the first 
algorithm to find optimal solutions to randomly 
generated instances of the Fifteen Puzzle within 
practical resource limits An additional observation is 
that in experiments with the Eight Puzzle, even 
though IDA* generated more nodes than A*, it 
actually ran faster than A* on the same problem 
instances, due to the reduced overhead per node The 
actual data from these experiments are reported in 
[Korf 85] 

4 . C o n c l u s i o n s 
The best known admissible search algorithm, A*, is 

severely limited by its exponential space requirement 
An iterative-deepening version of A* uses only linear 
space, and is asymptotically optimal in terms of cost 
of solution, running time, and space required for 
exponential tree searches Since almost all heuristic 
searches have exponential complexity, lterative-
deepemng-A* is an optimal admissible tree search in 
practice. In addition, it was easier to implement and 
ran faster than A* in our experiments 
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