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ABSTRACT

As shown in [1], we examine search as a statis-
tic sampling process. Based on some statistical
inference method the probability that a subtree
in search tree contains the goal can be decided.
Thus some weight is intentionaly added to the
evaluation function of those nodes which are un-
likely in the solution path so that the search
will concentrate on the most promising path. It
results in a new weighted algorithm-WSA.

Tn a uniform m-ary tree, we show that a goal
can be found by WSA in the polynomial time,
although the computational complexity of A
may be O(e ) for searching the same space.
N is the depth at which the goal is located.

(or A*)
Where

INTRODUCTION

Weighted techniques in heuristic search have
been investigated by several researchers (e.g.,
see [2]- (4)). Although thoes methods made the
aearch more efficiency, the improvement is rather
limitted because weights are usually added to all
nodes undicriminally, for example, in[2) the? same
weight )g is applied to each node.

The alternative weighted technique presented
here is the following. According to decisions
made by some statistic inference method during A
(or A*) search a weight will Only be added to the
evaluation of some nodes which are unlikely in
the solution path. It results in a new weighted
technique that will provide better results.

A NEW WEIGHTED METHOD

As shown in (1], under certain conditions we
examine search as a statistic sampling process so
that statistic inference method can be used dur-
ing the search. Assume the Wald sequential
probability radio test (SPRT) is used as a test-
ing hypotheses. In some searching stage, if the
hypothesis that some subtree T contains solution
path is rejected, from (1) it's known that subtree
T contains the goal with lower probability.
Rather than pruning T (as in[1] ) a fixed weight
w is added to the evaluation function of nodes in
T, i.e., f (n)=f(n)+w. If the hypothesis that the

subtree T' contains
same weight is
subtrees of T'
the root of TV.

search process

the goal
added to all
which roots are
If no decision can be made
is continued as in A search.

is accepted, the
nodes in the brother-
the brothers of
the
Thus
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concentrate on the subtrees
with higher probability

the search will
which contain the goal

due to the weighting. This new algorithm is
called the weighted SA search—WSA.
THE COMPLEXITY OF WSA
Assume the search space is a uniform m-ary
tree, the SPRT is used as the testing hypotheses
and the given significance level is {et, A} ,

&+ f=b. The complexity of an algorithm ’is
defined as the expected number of nodes expanded
by the algorithm when a goal is found. We have

proved the following theorems (the proof is
presented in the Appendix).

Theorem 1: Assume P(ﬂ)f\;o(ﬁcghd o0 C is
a known constant, N is the depth at which the
goal is located, P(A) is the complexity of algo-
rithm A when it searches the same space. Using
the weighted f u n f _(nl=fin)+w ,e r e

1 1- 1 )

w0=—?-c—: 1n b ( the optimal weight) the comple-

xity of algorithm WSA s
P{WSA) ~ O(N).
If P{a}~0{¥"), a1, using .
. . _ _2e [i-b
weighted function f,‘(n)— )\_nf(n) where 7\0— 'er .

Theorem ?: the

then the complexity of WSA s
P{WsAY~O(N).
Obviously, the new weighted method can improve

the computational complexity greatly.

Generally, P{a) is eithermo(eCN) orm(Na).
and it's unknown. When an arbitrary weight w#wﬁ
is used in WSA search, how about its complexity?

It #(A)~0(e"N), € >0 and C is
function £,(n)=t{n)+

Theorem 3:
unknown, using the weighted
Wy w#wo, and a monotonously decreased significan-

b
level k,= —5 is used
i iE’

P(WsaA) ~ O(N,1LN)
Theorem 4: If P(A)ND(NE), a *1, using the same

ce for testing Ti-—subtrees,

then

weighted function I, (n)=f(n)4w, the complexity of
WSA search remains in the polynomial time.
ALGORITHM WSA
Given an evaluation function (statistic) f(n)

and a testing hypotheses method, the WSA search
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procedure as follows:

(1) Create a list called OPEN. Expand initial
node 3 , generating its m successors, put them
on OPEN.

Create a list CLOSED, It's initially empty.
Create a list ROOTS. Put m successors of S
on it, The node in ROOIS is called a.

(2) LOOP: If OPEN is empty, exit with failure
(it's impossible that OPEN is empty when there
exists a goal in the search tree).

(3) Select the first node on OPEN, remove it
from OPEN, and put it on CLOSED. Call this node
n.

(4) If n is a goal, exit successfully with the

solution obtained by tracing a path along the poin-

ters which are established in step 5.

(5) Expand node n, generating its m successors,
Put them on OPEN.Establish a pointer to n from
these successors.

(6) If some subtree T(a) is accepted according
to some testing hypothese, add a weight w to the
statistics of all nodes in the brother-subtree of
T(a), remove the root nodes of T(a) and its bro-
ther-subtrees from ROOIS and put their successors
on ROOTS.

(7) Reorder the list OPEN according to statis-
tics. Go LOOP.

CONCLUSIONS

A new weighted technique is incorporated in A
(or A*) search. While the algorithm A searches
a space using evaluation function f(n), some
weight w is added to f(n) (f (n)=f(n)+w) of the
nodes which are unlikely in "the solution path
according to decisions made by some statistic
inference method. Thus the paths that contain the
goal with higher probability will be expanded
more due to the weighting.

In a uniform m-ary tree, we show that a goal
can be found by WSA in the polynomial time, al-
though the complexity of A may be O(e ) for
searching the same space.

Both algorithm A (3] and SA are special cases
of this more general algorithm WSA Note that
when w =0 algorithm WA is idential to A search.
While w = +oo algorithm WSA degenerates into SA
search.

APPENDIX

The proof of Theorem 1:

For simplicity, we assume the search space is
a uniform 2-ary tree, m-2, in the following
discussion. There is no loss of generality in
assuming that P(A)=eCN

If a statistic decision is made in some search

stage,a weight w is added to evaluation of nodes
of the rejected subtrees. A subtree is called a
completely weighted if all its subtrees have
been decided to be rejected or accepted. The
subtree shown in Fig.1 is completely weighted
(Where the rejected subtrees are marked with
sign "X" ).

Obviously, a completely weighted subtree has
more expanded nodes than the incompletely weight-

ed one, Thus if an upper estimete of the mean
complexity of the completely welghted subtree 13
computed, it certainly is an T.
upper estimate of the mean b
complexity in general cases,

We now discusns this upper
extimate,
Let ', be a set of nodes at
depth d, Given neP_ . From
initial node & +to n there
exists A& unigqu# path conslste-
ing of 4 srca, Among thone Fig. 1.
arcs if there gre i{o £i<d)
arcs murked by "¥X", node n i3 referred to as an
i-type node or i-node,

S50 P, can be divided into the following sub=-
setls:

O-node: there in only one,

In considering the complexity for Tinding a
goal, we Tirst ignore the cost of the statistie
inference, Assume that the gonl belongs in O-node
sp that 1ts evaluation is £ (n)=N. From algori=
thm A, it's known thut ever¥ node which f{n)< N
must be expanded in the searching process,

If node n is an i-node, itz evBlustion func=-
tion is f {(n)=F{n)+iw.All nodes which evaluation
satialy tﬂa fTollowing inegquation will be expund~
ed.

f1(n)=f(n)+iv N,

1
l~node: Cd-d......

i-node: Cﬁ..... de-node: C

i,8.y Fin)< N-1w.

Using eveluation function f{n} éﬂe complexity
of & meusrch is known to be P{A}=e =, thus the
complexity corresponding(ﬁgiﬁsa evaluntion func=-

g

tion £, {n)=f{n}+iw is , The mean comple=-

ity of euch i-node {the possibility that an
J(N-iw) 04 CN

I-nude may be expanded) is _fﬂ11__*’=e"lu :ﬁ?T

The mean complexity for finding a goal Bt
depth R 15 at least N, Thus the mean complexity
of each i-node ls

C(l-iw)

N 1, O{N—iw)
+1 Ty e +N
.?N

Nl € 2N+1‘

max { 1.
2
When the goal is an O-node, the upper estimate
of the meun complexity for computing all d=th
depth nodes is the following: ON
1 g i, C{N-1iw) e -Cw.d
— 5 O (e )= ——(1ve ) +
2Nﬂ ) d 2N+1
— N
—d+1 *
2N d+

Oon the other hand, if o+ A =b is a constant,
from (1) for making the statistic inference of a
nade, the mean computationel cvoat of SPRT is a
constant Q. wWhen the goml i85 an O-node, account-
ing for this coat, the mesn complexiiy inm

—Cw.d N

o
e
{1+a 1+ JN_-GWJ‘

2N+1

P (wWsa) £ af

Similerly, i1f the goal belongs in i~ncde, the
mean complexity for computing all d-th hodes is
CH _iwC

X -Cwy,d__ N
P, {WSA) € e {1+e ") 2N__d+1) .



From slgorithm Lk (1] ' t]‘JLNf_,&'f} falls into on
i-rode with probability (1-b) , 1f the given

level is (&, A), o +@ =b. At depth N there are
C; iwnodes, so the probability that the goal
belongs in l-node ia

o (1 b)N-i 1

Accounting for all possible canes of the goel
node, the mesan complexlty for computing all d-th
depth nodea isa

N-1 GJ.( ,l_b)]-l—ill;.,j,:ﬁ

i=0,1,...,8-1.

i {ans)
"

1=0
—w, d Cw, N i
. _[.CN Ll_&__J_il_hﬂm:‘J_]
& “‘1 [ ?N-d+1
e M
Let Flw)={1-e ("‘).(1—1=+1-‘c' ) {1)
F{w) oittigins 1% nirikiis Tor a value of w given
by
1 1~k
Youer My

Flw )=1+3]b(1—b) .
Under the optimal weight, the upper bound of
the mean camplexity of algarit.‘hrn LT

oy 2(1 ['b(T-h,: \lri ——_—]
o -k

1+2]b{1=h", K+
E J -

P{VCA YL 2[

e (2)

Assume 0< (1< In?, we shall s‘low thnt thers

(‘
exists an h such thot <ln(1+£’]—(——-———5).

Let = lﬁf(ln‘, i,e2., <2,
—_ .
3 (3)

From - < 1nf >
obtain H‘jbg“'boj
f ? X
5 1+?|_—_(i-b ) or 2 b [1=b )<f..| > 0ff e 2)

Let ,4(—_1) =h, h(1 b ) =n

Ir dh'} 1, given any 0< bo-.’,. 1, Form (3) holds.

1- |1_4hf'

If 4h°-1€0, as long as 0% R

{3) holis

Substitute (3) intu (?). have +?rb- T3 3
((‘-vln ‘-—'_—Q'-—'—"'o-—)N
I'( We 1\) LA 4’1—1}—(1__)- g
+O{N) jr¢U{N) (4)

wimilarly, Theorem 2 can be proved,

The proof of Thecrem 3:

We discuas P(.\)mO(ecN) and C is unknown. 3o
the optimal weight w is Rlso unKnown.
hagumeae w=w_+ Aw,
-ow  ~C
AT

E-C aw
~C aw "

et u=a

—Cw)“__b+h('.'w) (11u )(1 b+1.z

=1+{u+ —-) I b{1=b}
1+ {0+ ) b{1=b)

2{u+ —) .,'bh-hi
("+ln 1+(1+ ——),.lh(1 b)
- +N]

Thus (1-e {1-b))

P{WSA) €O [

(5)
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In order to obtain P{W3aA)~0{N), value b must
be so smoll that

2
C g 1n {6)
= 1
1+(u+—5)Ib(1—b)
But ¢ iz unknown, 1t is unahle to select m
fixed b so that Form (6} is =satisfied. If we usze
8 monotonously daceased value bi for testing Ti_

subtrees as we did tn (1)J[6). Due to the gradual

decrement of b,= @ 4+ 'ﬂi' in =some search stage,
Form (&) musot ?‘mld
For example, 1if hisiz—, b 19 & constant, for
i

muking the statistic inference(SPRT) once, the
mean complexity W ias 0{ln W) at most, From (5)
obtain P{W3a)~ O(N.1lnN},

The proocf of Theorem 4 ia omitted.
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