
I N F O R M A T I O N A C Q U I S I T I O N I N M I N I M A L W I N D O W S E A R C H

Alexander Reinefeld t
Jonathan Schaeffer
T.A. Marsland ft

Computing Science Department,
University of Alberta,

Edmonton,
Canada TOG 2111

A B S T R A C T
The alpha-beta tree search algorithm can be

improved through the use of minimal windows.
Branches are searched with a minimal window
[α,α+l] wi th the expectancy that this wi l l show the
sub-tree to be inferior. If not, then that sub-tree
must be re-searched. In this paper, several
methods are discussed to minimize the cost of the
re-search. Two new algorithms, INS and PNS, are
introduced and their performance on practical
trees is shown to be comparable to SSS*, but wi th
considerably smaller overhead.

1 . I n t r o d u c t i o n
The use of minimal windows [l] provides an

improvement to the alpha-beta tree-searching
algorithm (AB) [2], Minimal window search is
based on the assumption that all subtrees are infe­
rior to the best subtree searched thus far, unt i l
proven otherwise. Having searched the lirst
branch with a full window [α,0], all remaining
branches are searched with a minimal window
[α,α+1], where a represents the best minimax
value found so far. If the value returned is indeed
< a, then our assumption was correct and the sub­
tree is inferior. Otherwise, this subtree is superior
and usually must be re-searched wi th a wider win­
dow.

The re-search idea originally appeared in
Pearl's Scout algorithm [3]. Subsequently, there
have been two generalizations, Principal Variat ion
Search [4] and NegaSeout [5]. Figure 1 shows the
NegaSeout (NS) algorithm for searching a tree of
width w and depth d. If a node p is terminal,
Evaluate(p) returns its value. For interior nodes,
Gencrate(p) determines the w branches from p.
Those branches whose minimal window search
produces a better minimax value of v usually must
be re-searched. Only when α < v < 0, and the
remaining depth of search is greater than 2, is a
re-search with a window [v,0] necessary.

t Current address: Universitaet Hamburg, Farhbereich
Informatik, Schlueterstr.70, D-2000 Hamburg 13, West-
Germany.
tt Research reported here was supported in part
through Canadian NSERC grants A7902 and E5722.

This paper introduces two new algorithms.
Those use information acquired from the original
search of a. subtree to minimize the cost of a possi­
ble re-search. I n f o r m e d NegaScou t (INS) uses
all available information to generate the smallest
possible trees, but does so with increased storage
overhead. P a r t i a l l y I n f o r m e d NegaScou t
(P N S) is a compromise between NS and INS. The
performance of NS, PNS, and INS is compared
with AB and SSS* [6,7]. INS searches trees of size
comparable to those traversed by SSS4', but does
so wi th lower overheads.

A. Reinefeld et al. 1041

Information gathered from the ini t ial search of
the subtree is used on a re-search to allow two new
types of cut-offs. Figure 2 illustrates the ignore
left cut-off. In Figure 2a, the subtree has been
searched with a minimal-window of [100,101]. The
descendant B returned a value of 105 causing a
normal beta cut-off. If at some future point it is
necessary to re-search this subtree, descendant A
need not be looked at again since it has already
been shown to be inferior to B, Figure 2b.

Figure 3 illustrates the prove best cut-off. At
these nodes, a beta cut-off has not occurred and all
descendants have been examined. Each of the
values returned is an upper bound on the subtree's
true value, Figure 3a. If a re-search is necessary
on this subtree, there are three things that can be
done to minimize tree size. First of all, the
branches can be re-ordered according to their
values from the ini t ial search. By sorting the
branches in descending order of value, the branch
with the highest upper bound (and therefore with
the highest probability of being the root of the
best subtree) is searched first. Figure 3b.

Secondly, since the ini t ial value for each sub­
tree represents an upper bound, the re-search can
be done wi th a narrow window instead of a
minimal-window. By doing this, no re-searches of
re-searches can ever occur.

Finally, if the search of a subtree returns a
true value that is greater than the upper bound of
any of the other descendants, then those descen­
dants can be discarded without any further work.
For example, in Figure 3b, if move B is re-searched
and returns a true value of 88, then moves A, and
C need not be searched again, since their values
can never exceed that of B.

It turns out that ignore left cut-offs are just a
special case of prove best cut-offs. Branches pro­
ven inferior can be treated as having value - and
the rest of the branches as having a +∞ value.
Retrieving this information and performing a
stable sort creates the prove best condit ion. The
cut-offs are treated differently because in an actual
implementation the ignore left cut-offs require less
storage to maintain the necessary information, e.g.
only the number i of the best descendant thus far
need be saved. On a re-search, descendants 1
through i - l are ignored and the remainder
searched. At prove best nodes, the values for all
descendants must be saved.

3 . A l g o r i t h m s
NegaScout can be enhanced to use informa­

tion from the ini t ia l search of a subtree to aid in
any re-searches. Every time a node is visited, a
record is kept of the results obtained from search­
ing each descendant subtree. Either a beta cut-off
occurs, and ignore left information is available for
a re-search, or all descendants are examined, and

prove best information is available. In both cases,
this information can be linked together to form a
map of the subtree just searched. If a re-search is
necessary, the map data can be used to achieve
ignore left and prove best cut-offs that are not pos­
sible in NegaScout. Informed NegaScout (INS),
see Appendix, does exactly this for all nodes in a
tree.

The storage overhead in saving all this infor­

mation is proportional to w* entries, which is
less than for SSS*. Nevertheless this may be too
much, even if one reclaims storage whenever possi­
ble. As an alternative, Partially Informed
NegaScout (PNS) has been implemented, provid­
ing a compromise between the complete informa­
tion of INS and the zero information of NS. One
can devise many different compromise algorithms,
our version of PNS only retains information about
prove best cut-offs near the root of each subtree and
maintains the principal variation, the path to the
terminal node that the ini t ial search considered
best. This algorithm tries to provide many of the
benefits of INS without the storage overhead.

An important point to note is that the infor­
mation used by INS is not a hash table or a tran­
sposition table [4). Whereas transposition tables
are most useful in directed graphs, the methods
described here are applicable to any tree structure
and do not depend on the properties of the appli­
cation.

1042 A. Reinefeld al

4. Resu l ts
Figures 4 and 5 illustrate some results compar­

ing AB, NS, PNS, INS, and SSS*. The number of
leaves se are lied by each algorithm is normalized to
the size of the minimal game tree [2]. Each data
point represents an average over 20 runs. Random
trees, where each descendent has an equal proba­
bil i ty of being best, and strongly ordered trees [4],
where the first descendent has a 60% probability
of being the best, were searched by all algorithms.
In Figure 5, data at depths 7 and 8 are not avail­
able for SSS* and INS, because of memory con­
straints.

The graphs provided, as well as results for
other widths not reported here, show that the
curves oscillate, with SSS* varying the least. The
oscillation is normal and occurs because the for­
mula for the minimal tree size depends on whether
the tree is of even or odd depth. SSS* fluctuates
least since it is a best first search algor i thmt; the
other algorithms are (partly) directional. For even
search depths SSS* visits fewer nodes than INS,
but for odd search depths INS is usually better,
because INS postpones node expansion unt i l it is
proven that the principal variation lies in this part
of the tree. Of course, minimal window techniques
are favored in strongly ordered trees, since re­
searches are less probable. Here even a modest
amount of information is enough to allow PNS to
outperform SSS* at odd depths.

Nodes visited is not the only consideration
when comparing tree searching algorithms. SSS*
and INS have significant overheads when com­
pared to AB and NS. Obviously, any t iming
results are implementation dependent. Our
experience is that a call to INS is, on the average,
about twice as expensive as a call to AB, NS, or
PNS, and that SSS* is 10 times slower than INS.
Whether this overhead is significant or not
depends on the application.

5. Conc lus ions
INS has been shown to be competitive wi th

SSS* in terms of leaf nodes searched. However the
data structure to support INS is more efficient.
Not only is it slightly smaller, but it can be pro­
cessed in one tenth the time required by SSS*.
Perhaps more importantly, by storing the
information acquired during the minimal window
search in a hash table, rather than as a map of the
re-search tree, the memory needs can be reduced
to the space available. The cost for use of such
reduced memory is increased search overhead, but
the search time is bounded below by NS.

PNS represents a good compromise, yielding
significant reductions in tree size with l i t t le time
and space overhead. In our experience, PNS is the
preferred algorithm for large trees, especially
under conditions of well ordered interior nodes.

The results reported here show the relative
properties of the algorithms. Experiments are
continuing to obtain a better measure of the stan­
dard deviation. Current work includes empirical
performance analyses of these algorithms in prac­
tical game playing programs.

A. Reinefeld et al. 1043

T.A. Mars!and and M.S. Campbell, Parallel
search of strongly ordered game trees, ACM
Computing Surveys 14, 1 (11)82), 533-552.
A. Reinefeld, An improvement of the Seoul
tree search algorithm, ICC A Journal 6, \
(1983), 1-H.
G O . Stockman, A minim ax algorithm better
than alpha-beta, Artificial Intelligence 12, 2
(1979), 179-196.
M. Campbell and T.A. Marsland, A
comparison of minimax tree search
algorithms, Artificial Intelligence 20, (1983),
347-367.

