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A B S T R A C T 
The alpha-beta tree search algorithm can be 

improved through the use of minimal windows. 
Branches are searched with a minimal window 
[α,α+l] wi th the expectancy that this wi l l show the 
sub-tree to be inferior. If not, then that sub-tree 
must be re-searched. In this paper, several 
methods are discussed to minimize the cost of the 
re-search. Two new algorithms, INS and PNS, are 
introduced and their performance on practical 
trees is shown to be comparable to SSS*, but wi th 
considerably smaller overhead. 

1 . I n t r o d u c t i o n 
The use of minimal windows [ l ] provides an 

improvement to the alpha-beta tree-searching 
algorithm (AB) [2], Minimal window search is 
based on the assumption that all subtrees are infe­
rior to the best subtree searched thus far, unt i l 
proven otherwise. Having searched the lirst 
branch with a full window [α,0], all remaining 
branches are searched with a minimal window 
[α,α+1], where a represents the best minimax 
value found so far. If the value returned is indeed 
< a, then our assumption was correct and the sub­
tree is inferior. Otherwise, this subtree is superior 
and usually must be re-searched wi th a wider win­
dow. 

The re-search idea originally appeared in 
Pearl's Scout algorithm [3]. Subsequently, there 
have been two generalizations, Principal Variat ion 
Search [4] and NegaSeout [5]. Figure 1 shows the 
NegaSeout (NS) algorithm for searching a tree of 
width w and depth d. If a node p is terminal, 
Evaluate(p) returns its value. For interior nodes, 
Gencrate(p) determines the w branches from p. 
Those branches whose minimal window search 
produces a better minimax value of v usually must 
be re-searched. Only when α < v < 0, and the 
remaining depth of search is greater than 2, is a 
re-search with a window [v,0] necessary. 
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This paper introduces two new algorithms. 
Those use information acquired from the original 
search of a. subtree to minimize the cost of a possi­
ble re-search. I n f o r m e d NegaScou t ( INS) uses 
all available information to generate the smallest 
possible trees, but does so with increased storage 
overhead. P a r t i a l l y I n f o r m e d NegaScou t 
( P N S ) is a compromise between NS and INS. The 
performance of NS, PNS, and INS is compared 
with AB and SSS* [6,7]. INS searches trees of size 
comparable to those traversed by SSS4', but does 
so wi th lower overheads. 
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Information gathered from the ini t ial search of 
the subtree is used on a re-search to allow two new 
types of cut-offs. Figure 2 illustrates the ignore 
left cut-off. In Figure 2a, the subtree has been 
searched with a minimal-window of [100,101]. The 
descendant B returned a value of 105 causing a 
normal beta cut-off. If at some future point it is 
necessary to re-search this subtree, descendant A 
need not be looked at again since it has already 
been shown to be inferior to B, Figure 2b. 

Figure 3 illustrates the prove best cut-off. At 
these nodes, a beta cut-off has not occurred and all 
descendants have been examined. Each of the 
values returned is an upper bound on the subtree's 
true value, Figure 3a. If a re-search is necessary 
on this subtree, there are three things that can be 
done to minimize tree size. First of all, the 
branches can be re-ordered according to their 
values from the ini t ial search. By sorting the 
branches in descending order of value, the branch 
with the highest upper bound (and therefore with 
the highest probability of being the root of the 
best subtree) is searched first. Figure 3b. 

Secondly, since the ini t ial value for each sub­
tree represents an upper bound, the re-search can 
be done wi th a narrow window instead of a 
minimal-window. By doing this, no re-searches of 
re-searches can ever occur. 

Finally, if the search of a subtree returns a 
true value that is greater than the upper bound of 
any of the other descendants, then those descen­
dants can be discarded without any further work. 
For example, in Figure 3b, if move B is re-searched 
and returns a true value of 88, then moves A, and 
C need not be searched again, since their values 
can never exceed that of B. 

It turns out that ignore left cut-offs are just a 
special case of prove best cut-offs. Branches pro­
ven inferior can be treated as having value - and 
the rest of the branches as having a +∞ value. 
Retrieving this information and performing a 
stable sort creates the prove best condit ion. The 
cut-offs are treated differently because in an actual 
implementation the ignore left cut-offs require less 
storage to maintain the necessary information, e.g. 
only the number i of the best descendant thus far 
need be saved. On a re-search, descendants 1 
through i - l are ignored and the remainder 
searched. At prove best nodes, the values for all 
descendants must be saved. 

3 . A l g o r i t h m s 
NegaScout can be enhanced to use informa­

tion from the ini t ia l search of a subtree to aid in 
any re-searches. Every time a node is visited, a 
record is kept of the results obtained from search­
ing each descendant subtree. Either a beta cut-off 
occurs, and ignore left information is available for 
a re-search, or all descendants are examined, and 

prove best information is available. In both cases, 
this information can be linked together to form a 
map of the subtree just searched. If a re-search is 
necessary, the map data can be used to achieve 
ignore left and prove best cut-offs that are not pos­
sible in NegaScout. Informed NegaScout (INS), 
see Appendix, does exactly this for all nodes in a 
tree. 

The storage overhead in saving all this infor­

mation is proportional to w* entries, which is 
less than for SSS*. Nevertheless this may be too 
much, even if one reclaims storage whenever possi­
ble. As an alternative, Partially Informed 
NegaScout (PNS) has been implemented, provid­
ing a compromise between the complete informa­
tion of INS and the zero information of NS. One 
can devise many different compromise algorithms, 
our version of PNS only retains information about 
prove best cut-offs near the root of each subtree and 
maintains the principal variation, the path to the 
terminal node that the ini t ial search considered 
best. This algorithm tries to provide many of the 
benefits of INS without the storage overhead. 

An important point to note is that the infor­
mation used by INS is not a hash table or a tran­
sposition table [4). Whereas transposition tables 
are most useful in directed graphs, the methods 
described here are applicable to any tree structure 
and do not depend on the properties of the appli­
cation. 
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4. Resu l ts 
Figures 4 and 5 illustrate some results compar­

ing AB, NS, PNS, INS, and SSS*. The number of 
leaves se are lied by each algorithm is normalized to 
the size of the minimal game tree [2]. Each data 
point represents an average over 20 runs. Random 
trees, where each descendent has an equal proba­
bil i ty of being best, and strongly ordered trees [4], 
where the first descendent has a 60% probability 
of being the best, were searched by all algorithms. 
In Figure 5, data at depths 7 and 8 are not avail­
able for SSS* and INS, because of memory con­
straints. 

The graphs provided, as well as results for 
other widths not reported here, show that the 
curves oscillate, with SSS* varying the least. The 
oscillation is normal and occurs because the for­
mula for the minimal tree size depends on whether 
the tree is of even or odd depth. SSS* fluctuates 
least since it is a best first search algor i thmt; the 
other algorithms are (partly) directional. For even 
search depths SSS* visits fewer nodes than INS, 
but for odd search depths INS is usually better, 
because INS postpones node expansion unt i l it is 
proven that the principal variation lies in this part 
of the tree. Of course, minimal window techniques 
are favored in strongly ordered trees, since re­
searches are less probable. Here even a modest 
amount of information is enough to allow PNS to 
outperform SSS* at odd depths. 

Nodes visited is not the only consideration 
when comparing tree searching algorithms. SSS* 
and INS have significant overheads when com­
pared to AB and NS. Obviously, any t iming 
results are implementation dependent. Our 
experience is that a call to INS is, on the average, 
about twice as expensive as a call to AB, NS, or 
PNS, and that SSS* is 10 times slower than INS. 
Whether this overhead is significant or not 
depends on the application. 

5. Conc lus ions 
INS has been shown to be competitive wi th 

SSS* in terms of leaf nodes searched. However the 
data structure to support INS is more efficient. 
Not only is it slightly smaller, but it can be pro­
cessed in one tenth the time required by SSS*. 
Perhaps more importantly, by storing the 
information acquired during the minimal window 
search in a hash table, rather than as a map of the 
re-search tree, the memory needs can be reduced 
to the space available. The cost for use of such 
reduced memory is increased search overhead, but 
the search time is bounded below by NS. 

PNS represents a good compromise, yielding 
significant reductions in tree size with l i t t le time 
and space overhead. In our experience, PNS is the 
preferred algorithm for large trees, especially 
under conditions of well ordered interior nodes. 

The results reported here show the relative 
properties of the algorithms. Experiments are 
continuing to obtain a better measure of the stan­
dard deviation. Current work includes empirical 
performance analyses of these algorithms in prac­
tical game playing programs. 
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