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ABSTRACT 

This paper explores the issues that arise when SSS'-like 
search algorithms are implemented in parallel. There is an 
important implicit assumption regarding the OPEN list of SSS* 
(and A*-like algorithms); those states which are guaranteed 
never to become part of an optimal solution are forced down into 
the OPEN list and never rise to the top for expansion. However. 
when multiple processors are introduced in a parallel version of 
SSS*. these buried states become subject to expansion despite 
their provable suboptimality. ir such states are not identified 
and purged, they may exert an enormous drag on the parallel 
algorithm because considerable processor effort will be wasted, 
However, the pruning mechanisms of alpha-beta can be adapted 
by a parallel SSS*; the resulting algorithm HYBRID is suitable 
for searching game trees and general AND/OR trees in parallel 

1 INTRODUCTION 

A. The Alpha-Beta and SSS' Algorithms 

The alpha-beta game tree search algorithm offers 
significant potential for search speedup by "pruning", or ignoring 
game tree branches that cannot affect the final mlnimax value of 
the root. The State Space Search algorithm, or SSS* (Stockman 
1977). as originally presented, usually dominated alpha-beta by 
the "parallel" traversal of subtrees. Whereas alpha-beta was 
condemned to search strictly in a left-to-right fashion, SSS* sent 
"probes" simultaneously into the tree, and, in a manner not 
unlike A* (Nilsson. 1980), maintained an "open" list of partial 
solutions ordered by descending merits. However, SSS* could 
also be used to search general problem-reduction representations 
as well as simple game trees (Stockman and Kanal. 1983). 
Stockman's original SSS" underwent a few revisions, and the final 
version (Pearl. 1984) is admissible and always dominates alpha-
beta. (We shall henceforth assume that the reader is familiar 
with the next-state operator G of SSS* as well as list notation for 
trees.) 

B. Essential Components of SSS* 

For later comparisons, we give a high-level description of 
the SSS* algorithm: 

ALGORITHM SSS* 
(1) Place the start state (i.e., root) on the OPEN list. 

If OPEN is empty, exit with failure and halt. 
Remove the top state S from OPEN. 
If S is final, i.e.. represents a complete solution 
then return S with success and halt 
Apply the next-state operator G to S and add G(S) 
to the OPEN list (possibly with changed merits). 

(6) Go to (2). 

(2) 
(3) 
(4) 

(5) 

Additional detailed discussions of SSS* can be found in 
(Leifker and Kanal. 1985). 

Our goal is to implement a form of SSS* in parallel, using a 
generalized alpha-beta pruning process to excise suboptimal 
states from the OPEN list before any processor effort is wasted. 
This proposed algorithm, which we call HYBRID, is suitable for 
use in searching general AND/OR trees as well as game trees. 
Since any game tree can easily be transformed into an AND/OR 
tree (with strictly alternating levels of AND-nodes and OR-
nodes), general AND/OR trees are used in the discussion which 
follows, although, as in game trees, only top-down expansion of 
states will be considered Our concepts are unlike previous 
hybrid algorithms (Campbell and Marsland. 1983), in that there 
is a true coalescence of alpha-beta and SSS*. not simply a juxta­
position of the two in one program. 

II INTRODUCTION OF PARALLELISM 

A. Where to Introduce Parallelism 

The control part (or driver) of SSS* is relatively straightfor­
ward. A state is removed from the top of OPEN and examined. 
If it is final (i.e.. its root is solved), it is taken as the solution and 
the algorithm halts, If not. the "next-state" operator G is 
applied to the state and the result(s) placed back into the OPEN 
list. If the number of states in OPEN ever drops to zero, the 
algorithm halts with failure 

B. A First Possibility 

To implement a form of non-partitioned SSS* in parallel, 
multiple processors obviously must be introduced somewhere. 
One of two possible locations is shown in Figure l. where only 
the top state from OPEN is removed at a time. The processors 
V \> P 2 PN then cooperate to expand this state through the 
next-state operator G and return the results back to OPEN. If 
G were a very complex operator having many disjoint, tasks, this 
arrangement would probably be very attractive. The fundamen­
tal algorithm would not be changed, and it would still share in 
all the formal properties enjoyed by SSS*. The only difference 
would be that the actions of operator G would be accelerated 
considerably. 

This method of "operator parallelism" must be rejected Tor 
the following reasons: (l) It forces processors to assume special­
ized tasks. (2) It can create enormous bottlenecks when work 
cannot be conveniently partitioned, and (3) it has the potential 
to cause enormous congestion among the waiting processors 
because the tasks have been broken down into excessively primi­
tive components. 

C The Alternative 

The alternative, shown in Figure 2, overcomes many of 
these pitfalls and is amenable to parallel processing by N proces­
sors, even when N is not specified until runtime. The basic 
approach is to permit each processor to access the OPEN list. 
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Each processor removes the next state from the top of the OPEN 
list, expands the state by itself, and returns the resulting state(s) 
back to OPEN This is the method adopted by HYBRID. As 
one might expect. HYBRID is not simply a variation of SSS* - it 
represents a new way of heuristic control using the operator G. 
Consequently, the formal properties of SSS* do not necessarily 
hold for HYBRID. The remainder of this section defines 
HYBRID formally and discusses the ramifications of allowing pro 
cessors to manipulate stales from the interior- of the OPEN list 

A special notation must be introduced to facilitate dis-
cussion of parallel algorithms. The construction 

( OBEGIN - statement-list COEND 

indicates concurrent execution (Dijkstra, 1965) in that all state­
ments of - statement-list are executed simultaneously. The 
notation is augmented here such that processors may be specilied 
explicitly by attaching their names as labels to statements. 

The HYBRID algorithm simply assigns each of the given N 
processors a copy of the sequential SSS* program. Pormalty, the 
preliminary version can be defined as: 

FIGURE 2 
The Boolean variable. HALT serves as a global flag to initiate 
parallel processing and then to terminate it when a solution is 
found. Presumably the OPEN list and the HALT variable are 
contained in shared memory and guarded by semaphores. More 
elaborate synchronization constructs could also be used (Hoare, 
1072). but these concerns will not be addressed here. The point 
to remember is that processors must be in critical sections to 
change any data in shared memory, and that at most one proces-
sor can be in a critical section at a time. 

Ill ANOMALIES OP THE HYBRID ALGORITHM 

A Two Problems with the Proposed HYBRID 

The proposed version of HYBRID given in Section II is only 
preliminary because two interesting anomalies occur which must 
be investigated further: (1) There is no clearly defined time to 
halt should HYBRID find no solution; and ('J) The preliminary 
version of HYBRID is not admissible (i.e.. if HYBRID halts with 
a solution, that solution cannot, be guaranteed to be optimal) 

B. The First Anomaly: When to Halt? 

As defined above, the algorithm is simply allowed to enter 
an infinite loop if no solution exists for the given tree. Although 
this is hardly desirable in a practical application. It does illus­
trate a problem that occurs whenever more than one processor is 
granted access to an OPEN list. Suppose that HYBRID is exe­
cuted on a given tree with two processors, p, and pj; , and that 
the OPEN list contains one start state when execution begins. 
Processor Pi, will enter a critical section, remove the state from 
OPEN, exit the critical section, and begin generating its succes­
sors. Processor pj will then pursue a similar action, but it will 
find the OPEN list, empty because ;pi, has not finished expanding 
the state. If processor pj is sufficiently naive, it may conclude 
from the empty list that the given PRR has no solution and then 
may even attempt to force the entire algorithm to terminate with 
failure. Since this is clearly not the true state of the computa­
tion, HYBRID (as given above) merely instructs all processors to 
wait idly until (1) a "next" state arrives at the OPEN list for 
expansion, or (2) the global HALT condition is raised by the 
discovery of a true solution. 

C. The Second Anomaly: Is HYBRID Admissible? 

As N (the number of processors) increases, there is also in 
increase in the likelihood that the algorithm will halt with a 
non-optimal solution. To see this, recall that the check for ter­
mination is made when the state is removed from OPEN, not 
after it has been generated and about to be placed back onto 
OPEN. The inadmissibility of HYYBRID, then, although unex­
pected. Is easily demonstrated: as the number of processors 
increases, the total number of examined states increases, thus 
raising the probability that a non-optimal solved state hovering 
near the top of the OPEN list will be selected for expansion and 
identified as a final solution. This does not occur in sequential 



1046 D. Leifker and L. Kanal 

SSS*. for there the OPEN list is kept strictly sorted by merit, 
and only the top state is examined at a time. 

D. Correcting the Anomalies 

Both the anomalies may be easily eliminated. The first 
anomaly is corrected by halting only when the OPEN list is 
empty and all processors are idle; the second by maintaining a 
"tentative optimal merit" (i.e.. a running best solution found so 
far), and halting only when all remaining states on OPEN are 
below this threshold. Unfortunately, even with these 
modifications, HYBRID as it stands is grossly inefficient because 
of the presence of provably suboptimal states on the OPEN list. 
This issue is discussed in Section IV. 

There is an important implicit assumption regarding the 
definition of Z. Initially, Z is empty and grows as the algorithm 
evaluates more and more terminal nodes. However, once a node 
becomes provably suboptlmal. it remains provably suboptimal 
and is removed from all additional consideration. If this were 
not the case, rule (3) above would give rise to nodes with only 
transient suboptimality. 

D. The Final Version of HYBRID 

The efficient final version of HYBRID is essentially the 
same as corrected HYBRID at the end of Section III, with the 
exception that as each processor in HYBRID removes a state 
from OPEN, it verifies that no node in the state is a member of 
Z. If there is such a node, the entire state is discarded and the 
processor returns to OPEN for another state. 

IV PROVABLY SUBOPTIMAL STATES 

A. Efficient Use of Processor Effort 
Very often in the course of execution of SSS* the interior of 

the OPEN list may contain states which are guaranteed not. to 
be subsumed by any optimal solution. This never causes a prob­
lem in sequential SSS*, for there only the top state is examined. 
However, considerable processor effort will be wasted if any pro-
cessor is permitted to fetch and expand any of these provably 
suboptlmal states. It is therefore clear that any efficient version 
of HYBRID requires a decision procedure to "test" states as 
they are taken off the OPEN list. If the state is provably subop­
tlmal. it is discarded. It is expanded only if it has any potential 
of becoming an optimal solution. 

B. Another Look at Alpha-Beta 

The alpha-beta algorithm, suitably generalized, can be 
adapted for use in an efficient version of HYBRID. Although 
alpha-beta evaluates nodes in a strict left-to-right fashion, the 
use of alpha values and beta values captures very neatly the con­
cept of suboptimality. If these attributes can be managed by 
HYBRID, they will provide a quick decision procedure for identi­
fying provably suboptimal branches of the search tree. However, 
for mnemonic purposes, we shall use the names "floor" and "ceil­
ing" in place of "alpha value" and "beta value"; when discussing 
the attributes of problem #k. It is convenient to write "floor(k)" 
and "ceiling(k)". It should be emphasized that this notation is 
not a function In the mathematical sense, but is rather an attri­
bute which can be accessed and changed. 

C. Definitions 

Formally, if node #n is terminal and solved with merit m, 
then floor(n) = celling(n) = m. ir terminal node #n has not yet 
been expanded, then floor(n) = 0.0 and ceillng(n) = 1.0. If 
non-terminal node #n has AND successors, then floor(n) is 
defined as the minimum of its successors' floors, and ccillng(n) is 
defined as the minimum of its successors' ceilings. If non­
terminal node #n has OR successors, then floor(n) is defined as 
the maximum of Its successors' floors, and ceillng(n) is defined as 
the maximum of its successors' ceilings. For any given PRR hav­
ing nodes p1 pn , we define the set Z of provably suboptimal 
nodes as follows: 

(1) If any node pk has an ancestor pj- such that pj is 
In Z, then pk is In Z. 

(2) If any node pk has an ancestor p; such that 
floor(p, ) Is greater than ceiling(pk ), then pk 
is In Z. 

(3) If any OR node pk has an ancestor py and sibling node 
Pi such that floor(p,) Is greater than floor(pk ), 
and floor(p,) is greater than ceillng(p; ). then pk Is 
in Z (a "don't-care" cutoff). 

V REMARKS 

This is only a high-level description of the HYBRID con­
cept. The detailed mechanisms for practical implementations 
and the design of appropriate data structures and algorithms to 
detect provably suboptimal states are current topics of our 
research. 

REFERENCES 

[l] Campbell, M. and Marsland, T. A. "A Comparison of 
Mlnimax Game Tree Search Algorithms", Artificial 
Intelligence, Volume 20, No. 4, July 1983. p. 347. 

[2] Dijkstra, E. "Cooperating Sequential Processes". 
Technical Report EWP-123. Technological University, 
Eindhoven. The Netherlands, 1065. 

[3] Hoare, C. A. R.. and Perrot, R. "Toward a Theory of 
Parallel Programming", Operating Systems Techniques, 
Academic Press, London, 1972. 

[4] Leifker. D, B., and Kanal, L. N. "Design and 
Analysis of Parallel SSS* Algorithms". Technical 
Report (in preparation), Department of Computer 
Science, University of Maryland. 

[51 Nilsson, N. "Principles of Artificial Intelligence", 
Tioga Publishing Co.. Palo Alto, California. 1980. 

[6] Pearl, J. "Heuristics: Intelligent Search Strategies 
for Computer Problem Solving", Addlson-Wesley 
Publishing Co., Reading, Massachusetts, 1984. 

[71 Stockman, G. "A Problem-Reduction Approach to the 
Linguistic Analysis of Waveforms", Ph.D. disserta­
tion, TR-538, Department of Computer Science, 
University of Maryland, 1977. 

[8] Stockman, G.. and Kanal, L. N. "Problem-Reduction 
Representation for the Linguistic Analysis of 
Waveforms", IEEE Transactions on Pattern Analysis 
Machine Intelligence, May 1983. 


