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Abstract 

This paper describes SPAN, a system designed to integrate a variety of 
problem solving tactics in a coherent package. The paper discusses some 
of the tactics that had been used in previous systems to overcome the 
combinatorial explosion that is inherent in any planning problem. It then 
continues with a description of SPAN architecture. Two case studies are 
presented. The first, from the blocks world, is already implemented, and 
the second, from the domain of bridge playing, is in the coding stage. 
SPAN'S limitations are discussed and directions for further research are 
considered. 

I INTRODUCTION 

Much of the activity in artificial intelligence can be thought 
of as problem solving, so it is not surprising that, over the 
years, a lot of effort has gone into developing automatic 
problem-solvers. These efforts at producing domain-
independent techniques usually have concentrated on solving 
simple problems. 
In a 1980 revision of an article first published in 1979, Earl 
Sacerdoti presented an overview of problem-solving tactics 
[Sacerdoti 79] [Sacerdoti 80]. In that paper he states: 

"To date, there has been no successful attempt 
known to this author to integrate a significant 
number of the tactics we have described into a 
single system." 

This failure to integrate these tactics into a coherent 
package has been one of the main reasons that general 
domain-independent planning has met with limited success 
in solving non-trivial problems. 
SPAN is a system for integrating a large variety of tactics 
into a cohesive package. The general architecture, along 
with those domain-independent parts necessary for planning 
in the relatively simple domain of the blocks world have 
been already implemented in the LOOPS programming 
language on the 1100 series XEROX personal work stations. 
Other domain-independent parts necessary for planning in 
more complex domains are currently being added. 
SPAN'S architecture allows us to combine the insights 
developed in Sacerdoti's NOAH [Sacerdoti 77], Sussman's 
HACKER [Sussman 75], and Waldinger's goal regression 
system (independently developed by Warren [Waldinger 77] 
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[Warren 74]); all of which were for ordering conjunctive 
sub-problems. The same framework is used to integrate 
these methods with tactics for choosing between alternatives. 
These techniques include splicing alternatives together (when 
neither is guaranteed to succeed), in addition to domain-
specific comparisons of probability. A generalization of 
Berliner's B* algorithm [Berliner 78] can also be integrated 
into the system, to facilitate planning in a competitive 
domain. 

II HANDLING THE COMBINATORIAL EXPLOSION 

Typically, the world is modeled by a series of propositions 
which describe what is true in the world (i.e. its state) at a 
particular time. An action is usually modeled as a 
transformation from propositions that hold in one world 
model to propositions that hold in the new world model 
after the action has been executed. These transformations 
are referred to as operators. 
It may be the case that an operator requires certain 
conditions to be true in order for its action to be 
executable. These conditions are referred to as 
preconditions. An operator can be viewed as a solved 
problem, with the initial state specified by the 
preconditions, and the goal specified by the initial state and 
the transformation of the propositions. 
In the simplest planning case, each operator corresponds to 
a single action in the real world. These operators are 
known as primitive operators. Typically, in any one state 
many different operators can be applied because their 
preconditions are true. Furthermore, it is not always clear 
which operator gets one closer to the goal state. For this 
reason, simple search techniques face a combinatorial 
explosion, and thus are unable to solve anything other than 
very elementary problems. 
Much of the history of planning has been concerned with 
getting around this combinatorial explosion, and thus 
increasing the applicability of automatic problem solvers. 
Three ideas, in particular, have been useful in dampening 
the explosion. The first of these is the concept of 
abstraction. The second is the notion that some sub-
problems (particularly the difficult ones) can constrain the 
number of solutions to other sub-problems, and so should 
be tackled first. The third is the idea that, if possible, one 
should always apply the best operator for getting from the 
initial state to the goal. 
The advantage of abstraction is quite simple. If one can 
break down a large problem into a series of smaller 
problems, then solving all of the smaller problems will be 
easier than solving the original problem. The reason for 
this is that the breakdown into smaller problems is linear, 
whereas the effort to solve any particular problem is 
exponential. 
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Many versions of abstraction exist, including ignoring some 
details in the state description, ignoring some operators, or 
combining some operators to form a macro-operator. In 
the end, all of these techniques are equivalent to creating 
abstract operators. An abstract operator is like a primitve 
operator in that it has preconditions and transformation 
rules. However, unlike primitive operators, it cannot be 
translated immediately into actions that can be carried out 
in the real world. Instead, it must be refined into a 
sequence of primitive operators. These primitive operators 
may add further preconditions of their own, and may 
specify further transformations. Thus an abstract operator 
has abstracted out some of the detail involved in solving the 
problem it addresses. This notion of abstraction is at the 
heart of criticality lists in ABSTRIPS [Sacerdoti 74] and the 
generalisation of the logic operators in GPS [Ernst 69]. 
The second point, that some problems constrain others, is 
used to determine which sub-problem to attack first. This 
is closely related to abstraction, since one of the criteria for 
defining an abstract operator is that it restrict the number 
of options available to solve other problems. Indeed, one 
can view a partial ordering of which sub-problems to attack 
first as a mapping of the initial problem into an abstract 
domain that ignores the details of the other sub-problems. 
This point forms the basis of Stefik's constraint satisfaction 
system [Stefik 80]. It also forms the basis of an even more 
extreme form of problem solving: scripts or skeletal plans 
[Friedland 79]. With scripts, once the abstract operator 

(ie. script) has been chosen, all that remains to be done is 
to instantiate the variables of primitive operations that 
compose it. The selection of primitive operations to 
compose the abstract operator is automatic. 
The third point is that it is not always possible to know 
which operators to choose and in what order to choose 
them, but that intelligent choice of operators can 
substantially improve the problem solving. This has led to 
a number of strategies, including the "don't choose until you 
have to" strategy of NOAH, the "make a random choice and 
fix it later" strategy of HACKER, and the "choose an 
arbitrary order but change the order of the goals as 
necessary" strategy of Waldinger's goal regression system. 
All of these insights and tactics have some merit, but is it 
possible to develop a system that unites these approaches, 
making use of each of them when appropriate? SPAN is 
such a system. 

HI SPAN ARCHITECTURE 
As mentioned earlier, a problem can be represented by an 
initial state and a goal state. Solving the problem consists 
of finding a sequence of primitive operators, whose 
consecutive application will result in a final state for which 
the goal conditions are true. 
At the top level of the SPAN planning system there is a 
scheduler with an agenda of tasks. These tasks are domain -
independent, or, more accurately, their domain of expertise 
is planning. A typical example of a task is ordering 
conjunctive sub-problems. These tasks are represented as 
objects with slots to store relevant information. For 
example, a task to order conjunctive sub-problems will have 
pointers to the sub-problems. In addition, each task has an 
attached procedure that performs the task. This procedure 
is executed when the task is selected from the agenda. 
This mechanism is similar to the meta-planning of 
MOLGEN [Stefik 80] [Stefik 81]. The agenda here 
corresponds to its design layer. The problems associated 
with the tasks correspond to the planning layer, and each 
system has a simple interpreter. However, in SPAN we have 
dispensed with a strategy level. In MOLGEN, the only 
strategy choices available were least-commitment and 
guessing. Not all the design operators are affected by 

differences in strategies, and local knowledge about the 
current state of the plan is likely to determine which 
strategy is the better choice, so this strategy knowledge is 
dispersed to the procedures that execute the design tasks. As 
in MOLGEN, preference is given to least-commitment, and 
arbitrary choices are only made as a last resort. 
The key problem with any agenda-based system is deciding 
which task to do next. Selecting the wrong task can result 
in a lot of wasted planning effort. Several schemes exist 
for solving this problem. One technique is to provide 
priorities for each of the types of tasks. Unfortunately, 
global differences in the types of tasks do not always 
provide sufficient information to get an optimal ordering. 
Another is to poll each active task on the agenda (whose 
preconditions are satisfied) to see if it should be performed 
and to choose the one that is most confident the conditions 
are right for its execution. This involves a large overhead 
each time a task is to be selected. SPAN actually uses a 
variant on this second technique: It assumes that each 
active task is confident that it can be performed, and so 
selects one at random. However, the procedure that 
performs the task has the ability to suspend its execution. 
Thus, if a task is selected and decides it should not be done 
at this time, it has the ability to tell the system to choose 
another task. This produces a close approximation to the 
polling system with much less overhead. 
As a result of the decision to randomly choose an active 
task, the agenda actually consists of three separate lists: a 
list of active tasks, a list of suspended tasks, and a history 
list of completed tasks. At each cycle the scheduler 
randomly selects an active task and performs it. If there 
are no active tasks, then the suspended ones are reactivated. 
We will now examine the various types of planning tasks in 
SPAN. 

IV PLANNING TASKS 
Solving a problem (when only the initial stale and goal are 
known) 
The system first checks to make sure that the initial state is 
completely defined. This means that there is a direct link 
from the intial state of the original problem to the initial 
state of this sub-problem, and that this link does not go 
through unsolved sub-problems. The reason for this is to 
guarantee that what could be known about the initial state is 
known. This is not to say that everything about the initial 
state is known; there might be information that is hidden 
from the planner, but it does guarantee the system is 
detecting real differences between the initial state and the 
goal. If this is not true then the task suspends itself, until 
such time as it becomes true. 
Assuming the initial state is defined, this general problem is 
approached using means-ends analysis. Means-ends analysis 
is used because it is more flexible than forward or backward 
chaining. The goal is compared to the initial state and 
differences are determined. A sub-problem is proposed for 
each difference detected. These sub-problems are treated as 
an unordered set of conjunctive goals, whose collective 
solution constitutes a solution to the original problem. For 
each of these sub-problems a task is posted to find a 
sequence of operators that eliminates its difference. This is 
also known as reducing the difference detected. In addition, 
if more than one difference was detected, then a task is 
proposed to order the sub-problems. Obviously, if only one 
such difference was detected, then there is only one sub-
problem to be ordered. 
Reducing a detected difference 
When a difference is detected, a task is posted to reduce 
that difference. This task indexes a procedure that uses 
domain-specific knowledge about how to reduce the detected 
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difference. The procedure may do many things. One 
possibility is to delay its execution (by suspending the task) 
until further information becomes available from other 
parts of the plan. If it does execute, it may use a special 
purpose algorithm (eg. a routing algorithm in a robot 
planner). Alternatively, the procedure may propose an 
operator or a set of alternative operators. 
Proposed operators may be abstract or primitive, and may 
be related to each other in any one of a number of ways. 
They may be an unordered set, or in a strict sequence as in 
a script. 
Refining an abstract operator 
When an abstract operator is proposed it needs to be 
refined. This refinement process invokes a domain-
dependent procedure. The options available at this time are 
very similar to the options available when reducing a 
detected difference. Further tests may be performed, or a 
sequence of sub-operators may be proposed. These sub-
operators may or may not be ordered, and there may or may 
not be alternative choices available. Whenever an unordered 
sequence is proposed, a task to order the sequence is posted. 
Similarly, whenever a collection of alternatives is proposed, 
a task to select an alternative is posted. 
Ordering sub-problems 
This task corresponds to the problem most often considered 
in early planning research. The body of its procedure 
consists of a number of rules for ordering sub-problems. It 
will suspend itself if none of the rules is applicable, in the 
hope that eventually information will become available that 
will aid in this decision. If, since there are no other tasks 
left to perfom, it is forced to make a choice when no other 
rules apply, it will do so in an arbitrary manner. 
This task has much the same flavour as the techniques used 
by Sacerdoti in NOAH, but it also incorporates other 
techniques (see Case Study 1 below). 
Choosing from amongst alternatives 
Pretty much ignored by mainstream planning, this task 
becomes crucial when some domain information is 
inherently uncertain, and thus no plan can be guaranteed to 
work. In these cases, one must consider strategies involving 
the gathering of further information, and issues of 
recoverability from failed plans, rather than just taking the 
one most likely to succeed. 

V CASE STUDIES 
We will now present two case studies. The first of these is 
an English-language trace of one of the blocks world 
examples that is already running on the system. The second 
is an example from the domain of declarer play in bridge 
and whose implementation has not been completed. This 
second example is more difficult than the blocks world 
examples, and demonstrates some of the additional issues 
that a domain-independent planner must address in more 
complex domains. 

Case Study 1: Blocks World 
Consider the following problem from the blocks world: The 
initial state consists of the block configuration where C is 
on top of A and block B is sitting separately on the table. 
This is represented by the conjunction: (On C A) (Clear B) 
(Clear C). The goal is a state in which the conjunction (On 
A B) (On B C) is true. Given the operators Stack and 
Unstack the solution for this problem is the sequence of 
actions: (Unstack C A) (Stack B C) (Stack A B). 

We now present an English-language trace of SPAN solving 
this problem. This trace assumes that tasks will be chosen 
from the agenda in the worst possible order, thus 
demonstrating the system's ability to delay the execution of 
tasks until an appropriate time. 
Initially, the only task on the agenda is to solve this 
problem. This task is selected and the body of the 
procedure associated with this task performs means-ends 
analysis on the problem. The two detected differences are 
that both (On A B) and (On B C) are initially false and 
need to be true in the goal state. Thus, the procedure 
creates a sub-problem for each difference detected, and adds 
to the agenda a corresponding task for each sub-problem to 
reduce the detected difference. Since there is more than one 
sub-problem, an additional task is posted to order the sub-
problems. It is the execution of this third task (or its delay 
in execution) that determines the strategy taken in ordering 
conjunctive sub-goals. Both Sacerdoti's and Sussman's 
approach can be implemented this way. merely by changing 
the body of the procedure associated with this task. As 
implemented, this procedure in SPAN emphasizes Sacerdoti's 
approach. 
Assume the task of ordering the sub-problems is now 
selected. It will examine the preconditions and goals of the 
two sub-problems and decide it has no basis for choosing 
which to do first. It thus defers this decision and is placed 
on the suspended list. SPAN will try again to order 
subproblems when there are no other tasks to perform. 
Assume that the next task selected is the one associated with 
the sub-problem of making (On A B) true. The associated 
procedure uses the On function as an index to any operators 
that possibly could make (On A B) true. The only one 
suggested is the Stack operator, which has preconditions that 
A and B both be clear initially. This produces two sub-
problems: first to get from the initial state to one in which 
(Clear A) (Clear B) is true and second to get from the state 
where (Clear A) (Clear B) is true to the goal where (On A 
B) is true. The second problem is solved by the primitive 
operator Stack. The first results in the posting of a task to 
solve the problem. 
Assume this new task is the next one selected. The initial 
state of the sub-problem is unknown, since we do not know 
what actions will be taken from the initial state of the 
original problem before this sub-problem is tackled. This is 
a result of leaving unordered the sub-problems of making 
(On A B) and (On B C) true. The strategy adopted is to 
delay making a decision by suspending the task. 
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The procedure invoked to make (On B C) true opperates in 
the same way. It suggests the Stack operator with 
preconditions that B and C both be clear; which results in 
two sub-problems (one solved) and one task. The task (to 
make the preconditions true) is suspended because the initial 
state is not completely defined. 
At this point, there are no more active tasks so the three 
suspended tasks are reexamined. If one of the tasks 
involving the preconditions is selected, it gets suspended, so 
we can assume that the ordering sub-problem is the next 
task selected and actually performed. The associated 
procedure examines the preconditions of making (On B C) 
true and notes that this conflicts with the goal of making 
(On A B) true. Thus it decides to order the (On B C) sub-
problem before the (On A B) problem. 
However, the procedure on ordering sub-problems does 
more. Since stacking B on C is a primitive operation, and 
thus its exact actions are known, and since the preconditions 
of (On A B) don't conflict with the goal of (On B C), these 
preconditions may be regressed back through the body of 
(Stack B on C). The heuristic used is to apply this 
technique of goal regression whenever possible. The reason 
is that it allows the earlier steps to reason with a more 
accurate picture of the complete goal. The result of this 
goal regression is to change the precondition for making 
(On B C) true to the conjunct: (Clear B) (Clear C) (Clear 
A). Now that an ordering for the sub-problems has been 
established, (On B C) is the first sub-problem and its initial 
state is known to be the initial state of the original 
problem. Thus when the task to solve the problem of 
making the conjunct (Clear B) (Clear C) (Clear A) true is 
selected, the initial state is properly defined. Means-ends 
analysis is applied and the difference detected is that (Clear 
A) is false initially, since (On C A) is true. A task is 
posted to make (Clear A) true. 
Clearly this task must make (On C A) false in order to 
make (Clear A) true. (On C A), which is implemented as 
an object, knows the Unstack operator is a way of making 
the clause false. The task indexes this operator via the On 
clause. The Unstack operator is applied without anv hitches 
and leads to the final plan: (Unstack C A) (Stack B C) 
(Stack A B). 
The process of finding this solution applied some of the 
insights developed by Sacerdoti along with the goal 
regression techniques developed by Waldinger (also 
independently by Warren). The reason this system was able 
to combine these methods was a flexible control structure 
which allowed procedural information specific to the type 
of task being performed to be invoked at the correct 
moment. The efficiency of using meta-level reasoning 
about planning depends on the tradeoff between the benefits 
of executing the best task and the costs of (a) reasoning at 
this level plus (b). partially executing tasks that are later 
suspended plus (c) deciding to suspend tasks. Although this 
example in the blocks world is too simple to justify the 
overhead, we believe that, in general, the tradeoff will favor 
meta-level planning. 

Case Study 2: Bridge 
The proposed architecture handles the previous example very 
smoothly, but it has been solved by other systems with much 
less overhead. The justification for the system proposed is 
the ease with which it can handle more complex problems. 
Consider the following declarer play problem from the game 
of bridge: 

The contract is 3 no trump by South. The opening lead by 
West is the king of hearts. 
The declarer, South, needs to win at least nine of the 
thirteen available tricks to make his contract. He has eight 
immediate winners; three top spades, three top diamonds, the 
ace of hearts and the ace of clubs. There are two possible 
sources for the ninth trick. If the missing diamonds are 
split 3-3, then the first three rounds of diamonds will force 
them all to be played and the fourth diamond in the 
dummy (North) will be high. If the diamonds are not split 
evenly this plan fails. 
Alternately, if East is holding the king of clubs, then South 
can lead a club from the dummy, winning the trick with the 
queen if East plays low and capturing the king with the ace 
(thus setting up the queen) if East plays the king. If West 
has the king then this plan fails. 

Using techniques similar to those in the previous example 
(only the operators change), the planning process produces 
these two alternative plans. In addition, a task is posted to 
select between the alternatives. The associated procedure 
with this task first tries to order the alternatives so that if 
one branch fails the other can still be tried. In this 
particular case, the system determines that if the diamonds 
are tried first and don't split, then the club finesse can still 
be attempted. However, if the club finesse is tried first and 
fails the declarer may never get a chance to test the 
diamonds, since, if the hearts are not split 4-4, the 
defenders will win at least four hearts in addition to the 
king of clubs. Thus a hybrid plan, to test the diamonds 
and, if they don't split 3-3, to take the club finesse, is 
produced. 
If this attempted hybridization had failed, the sytem would 
have looked at the relative probabilities of success for each 
alternative. This comparison could have been made using 
whatever method of uncertainty measurement was relevant 
for the particular domain (probably table look-up in this 
case). 

VI LIMITATIONS 
The system developed does have some inherent limitations. 
It assumes the world can be modeled as a series of discrete 
states and that operations on the world can be modeled as a 
transformation between these states. This discrete time 
assumption is basic to the model. 
Furthermore, the strategies that have been developed have 
assumed that planning time is free. There is no 
consideration of limitations on planning resources. There 
has also been no consideration of the possibility that the 
world may change while the planning process is going on. 
These assumptions are not fundamental to the model, but I 
have not concentrated my efforts on handling these 
problems. 
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VII FUTURE WORK 
As mentioned earlier, this system has been developed in the 
blocks world domain, and is currently being extended to 
handle the domain of declarer play for the game of bridge. 
Actual implementation in this domain may suggest better 
selection criteria for tasks, instead of the random selection 
now used. It may also confirm (or invalidate) the decision 
not to bother with an explicit strategy space. 
More importantly, more difficult examples within this 
domain will push on the strategies for choosing amongst 
alternative plans. These strategies have not yet been 
implemented because, in the blocks world domain, there has 
been no need. 
There will also be an opportunity to expand the types of 
tasks to include the collection of data and the execution of 
a partial plan. This interaction with the world will 
probably necessitate the establishment of priorities within 
the agenda, since execution tasks should be delayed until 
after the planning has been done, and some planning should 
be delayed until after new information that becomes 
available during the execution process is checked for 
relevance. 
As a final point, research in the bridge domain will bring 
the techniques specific to competitive planning into the 
fold. In particular, the B* algorithm can be adapted to the 
analysis of interacting hierarchical plans. In some cases it 
is even possible by graphical analysis of hierarchical plans 
to determine the critical paths along which two competing 
plans interact, and thus to avoid most of the combinatorics 
involved in competitive planning. 

Epilog 
Danny Berlin died in early 1985. He had already analyzed 
the applicability of the B* algorithm and the technique of 
graphical analysis of interacting plans, but he did not get to 
complete the implementation of the second example. This 
paper was written by him. The camera-ready copy was 
prepared by Lucy M. Berlin and his advisor Bruce 
G. Buchanan. 
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