
TEMPORAL SCOPE OF ASSERTIONS AND WINDOW CUTOFF*

Steven Vere
Information Systems Division
Jet Propulsion Laboratory
Pasadena, California 91109

ABSTRACT

In a temporal planning and reasoning system,
many logical assertions w i l l have a l imited l i f e
span: they are "terminated" by later ,
contradictory assertions. By observing assertion
terminators, the l i fet ime of an assertion can be
bounded within an interval called the scope.
Assertion scopes can greatly reduce the number of
relevant matches returned from an assertion
database. Scopes and terminators also permit the
more ef f ic ient determination of contemporaneous
assertions for forward chaining of event rules.
Window cutoff is an execution time accelerator for
determining if two act iv i t ies are ordered in a
plan, a high frequency, u t i l i t y operation in plan
synthesis. The acceleration is accomplished by
doing an early cutoff of search paths to the
"lower" act iv i ty based on time constraints. These
mechanisms reduced the execution time of a temporal
planner called DEVISER by four orders of magnitude
for 70 goals, allowing very long planning problems
to be solved. The mechanisms described employ time
constraints to accelerate planning, and are not
applicable to precedence planners. DEVISER is a
performance planner which has been applied
experimentally in planning act iv i t ies for the
Voyager spacecraft in i t s encounter with Uranus in
1986.

I INTRODUCTION

In September 1983 I translated my temporal
planner DEVISER I [Vere, 1983] from INTERLISP on
the DEC-10 to ZETALISP on the Symbolics 3600
computer. The ZETALISP version executed about ten
times faster and no longer ran out of memory on
larger problems. These new circumstances enabled
me to perform some experiments to see how execution
time Increased as a function of the number of
goals. The experiments were for a Voyager
knowledge base, with a set of imaging goals which
required no backtracking. The results are given in
Figure 1, a semilog graph. DEVISER I showed a
steep exponential growth which soon overwhelmed the

•This paper presents the results of one phase of
research carried out at the Jet Propulsion
Laboratory, California Inst i tute of Technology, and
sponsored by the National Aeronautics and Space
Administration under Contract No. NAS-918.

Taster machine. Beyond 15 goals the graph is an
extrapolation. Dissatisfaction with these results
led me to consider time constraints as a means for
improving performance. Since then a new version of
the planner, DEVISER I I , has been implemented which
exhibits a much shallower performance curve. This
improvement amounts to an estimated four orders of
magnitude for 70 goals, and is due to the
mechanisms which w i l l be described. These

apply time constraints to Improve the
of several important low level

of plan synthesis. About three fourths
of the slope improvement in Figure 1 is due to
temporal scoping, and the remaining one fourth is
due to window cutoff.

mechanisms
efficiency
operations

In the past, temporal planners have been
investigated because many applications require time
as an expl ic i t parameter. The results of this
investigation indicate that time can also serve as
an important source of additional constraints which
can accelerate planning.

DEVISER II l ies along the evolutionary path of
NOAH [Sacerdoti, 1977] and NONLIN [Tate, 1977].
These earl ier planners did not model time. Such a

1056 S. Vere

program w i l l be called a precedence planner, since
it merely establishes the precedence of act iv i t ies
in a plan. Other approaches to incorporating time
into a planner are to be found in [Allen and
Koomen, 1983; Cheeseman, 1983; McDermott, 1982; and
Salter, 1983]. These papers, with one exception,
do not address the question of the efficiency or
performance curves of the resulting system. Allen
confessed that his system was rather inef f ic ient
even on blocksworld problems. None have attempted
to take advantage of time constraints to improve
the efficiency of the planner.

II REVIEW OF DEVISER WINDOW LOGIC

In a temporal logic system, the truth of an
assertion (l i t e ra l) must in effect be a function of
time. (Throughout this paper the terms assertion
and l i t e r a l may be used interchangeably). In the
"window logic'' system of DEVISER, every assertion
is associated with an ac t iv i ty , and every act iv i ty
has associated with it a start time interval
("window") and a duration, which may be a function
of the act iv i ty parameters.

In a temporal blocksworld where a PICKUP action
requires 1 second, the action description is

Figure 3 shows a small blocksworld plan in which
a deadline is imposed on the goal state. The plan
start time is 0. The three actions in the plan
have only interval constraints on their start
times. The dashed lines may be ignored for the
moment. Note that each act iv i ty except for the
start and stop nodes has a start time window,
duration, and set of assertions.

Figure 2 shows the temporal relat ion between
preconditions and postconditions. The extent of
the preconditions and postconditions are indicated
by timelines. Preconditions must become true on or
before the start of the act iv i ty , and persist
through the duration of that ac t iv i ty .
Preconditions not contradicted by postconditions
continue to hold. Postconditions (assertions) of
an act iv i ty become true when the act iv i ty finishes
and continue to hold indef ini tely thereafter un t i l
they are exp l ic i t l y contradicted by assertions of a
later ac t iv i ty . If certain preconditions need only
hold at the start of an act iv i ty (but not through
the duration), that act iv i ty may be decomposed into
subactivities whose preconditions behave as in
Figure 2. This is explained in [Vere, 1983].

The figure shows the start time of the act iv i ty
as a point in time. This is generally only true
for act iv i t ies which have been scheduled. During
plan generation, the start time is typical ly an
interval . This should be contrasted with the
conventions of other temporal logic systems (e.g.
[Allen and Koomen, 1983]) in which an interval
specifies the l i fet ime of an assertion, and the
start time is constrained to a point.

Figure 3. Terminator Relations in a Blocksworld
Plan

St r ic t ly speaking, it is act iv i ty nodes which
are ordered and have start times, not assertions.
However, it w i l l be convenient to speak of
assertions being ordered or having start times when
in fact these relations apply to the nodes to which
those assertions belong.

I l l ASSERTION TERMINATORS AND TEMPORAL SCOPES

S. Vere 1057

In a temporal logic, assertions may in the
course of time cease to be true. However, they do
not die naturally; instead, they are terminated by
later contradictory asertions.

Assertion T is defined to be a terminator for
assertion A i f f : A and T are contradictory; T
follows A in time; and no assertion T' exists
satisfying the f i r s t two conditions such that T
follows T1 in time.

Usually an assertion has a single terminator, or
none at a l l . However, because act iv i t ies in a plan
are only par t ia l ly ordered, it is possible for an
assertion to have several terminators which are
mutually unordered. Also, as planning progresses
and new act iv i t ies are introduced and ordered, the
terminator(s) of an assertion may change.

Referring back to Figure 3, the dashed lines
connect selected assertions and their terminators.
Thus (CLEAR A) of N4 is the terminator of (NOT
(CLEAR A)) of N6. In the case where an assertion
has no terminator, it holds forever. (ON A B) of
N4 is one example of an unterminated assertion.

The temporal scope of an assertion A is defined
as an interval (t 1 t2) where t1 is the earliest
f in ish time of the assertion1s act iv i ty node and t2
is the minimum of the latest f in ish times of the
terminators of A, or i n f i n i t y if the assertion is
unterminated. Thus the scope bounds the l i fet ime
of the assertion. Since act iv i ty start times and
terminators change as planning proceeds, so do
temporal scopes. Each time the latest start time
or duration of an act iv i ty is revised, a check is
made of a l l assertions of that ac t iv i ty . If an
assertion serves as a terminator of an earl ier
assertion, the scope of that ear l ier assertion may
have to be revised too.

Again referr ing to Figure 3, we can deduce that
the temporal scope of (NOT (CLEAR A)) in N6 is (1
5) since the earl iest f in ish time of N6 is 1 and
the latest f in ish time of N4, which asserts the
terminator (CLEAR A), is 5. Figure 4 i l lus t ra tes
the notion of temporal scopes in the abstract, and
shows their relat ion to earl iest and latest f in ish
times for assertions and their terminators.

Maintaining temporal scopes for each assertion
during plan synthesis dramatically improves the
overall efficiency of the planner for large goal
sets. In a planning engine such as DEVISER,
processing of assertion retr ievals is a fundamental
contributor to tota l execution time. Screening out
irrelevant retr ievals with the temporal scope
meohanism vastly shortens the number of assertion
candidates which must be sorted and processed by
fundamental, high frequency planning operations.

The primary application of terminators and
scopes is in screening retr ievals from the
distributed assertion database. Without scopes,
the retr ieval mechanism must return a l i s t of a l l
l i t e ra l s matching a given pattern. The subroutine
requesting the retr ieval must then process this
l i s t to determine the "relevant" matches, and this
is time consuming. The function BOUNDED.MATCHES is
the low level function which uses scopes in
accessing this database. BOUNDED.MATCHES takes as
arguments an assertion and a time interval . It
returns a l i s t of a l l assertions in the database
which match the given assertion and whose scopes
intersect the given interval . Thus we are able to
f i l t e r out most irrelevant retr ievals with a quick
numerical test. Of course this t r ick is going to
work only in a planner which models time.

BOUNDED.MATCHES is called with high frequency in
the planner in the following operations:

- looking for possible " t ie - ins ' ' to allow
phantom node creation;

- f inding confl icts after an expansion of a
node or instantiat ion of a l i t e r a l ;

- checking phantom node violat ion after a
l i t e r a l instant iat ion;

- checking for i n f i n i t e loops in the
backtracking process;

- checking contemporaneous l i t e ra l s for
forward chaining.

1058 S Vere

To i l l us t ra te , we w i l l examine the f i r s t
operation in more deta i l . If the assertion of a
goal node matches an assertion true in the plan
"above" the goal node (i . e . ear l ie r) , that goal
node can be converted to a phantom node, which
indicates that no action is required to satisfy the
precondition. The situation is shown in Figure 5.
B is a goal node for act iv i ty C, and B's assertion
is (P). We want to know if there is some act iv i ty
node A above which asserts (P) and if (P) s t i l l
holds down at C. A necessary condition is that the
scope of a matching l i t e r a l , such as (P) of node A,
have a scope intersecting the c r i t i ca l interval
bounded by the earl iest f in ish time and latest
f in ish time of C. The result is that
BOUNDED.MATCHES is able to return just the few
matches overlapping the c r i t i c a l interval , rather
than the hundred or more that might exist in a long
plan. Of course, these bounded matches must s t i l l
be further screened to select those l i t e ra l s which
satisfy a l l requirements for a t i e - i n .

contemporaneous, their scopes may be intersected, a
computationally cheap operation. If this
intersection is nu l l , the l i t e r a l s cannot be
contemporaneous. However, a non-null intersection
unfortunately is not suf f ic ient . Figure 6 shows a
segment of a plan diagram which i l lus t ra tes th is .
Clearly assertions (A) and (B) are not
contemporaneous, since the terminator of (A) is a
predecessor of (B). Yet their scopes intersect:
(A), (2 11); (B), (7 INFINITY).

This example i l lus t ra tes the need for a second
condition: for a set of l i t e ra l s to be
contemporaneous, no l i t e r a l in the set may follow
the terminator of another l i t e r a l in the set.

Li terals are contemporaneous if they are
simultaneously true at some instant of time. In a
dynamic temporal logic system, to determine if a
forward-chaining event rule should f i r e , i t is
necessary to determine if there are contemporaneous
l i t e ra l s which match the rule antecedent. The
situation is more complex than in conventional
forward chaining systems such as 0PS5 [Forgy,
1982], in which there is a single set of assertions
a l l simultaneously true. In a paral lel plan, the
assertions are sprinkled throughout the plan and it
oan be an expensive computational process to f ind
contemporaneous matches for the antecedent. Here
too the concepts of scope and terminators can help
to accelerate the computation.

To determine if a set of candidate l i t e r a l s is

Window cutoff is a mechanism for accelerating
the determination of whether one act iv i ty "follows"
another in a plan , i .e . whether the act iv i t ies
are ordered. This is a fundamental, high-frequency
u t i l i t y operation in plan synthesis which
contributes heavily to the tota l execution time of
the planner. The ordering relat ion is the
transit ive closure of the successor relat ion, which
is denoted by the solid directed arcs in a plan
diagram such as Figure 3. Successors of an
act iv i ty are stored exp l i c i t l y in DEVISER I I , but
the ordering relat ion must be computed. (To store
the ordering relat ion exp l ic i t l y would be
unthinkable since successors are constantly
changing as the plan develops). For a precedence
planner, determining if one act iv i ty follows
another is straightforward but expensive. You Just
begin at one node and do a blind search down

S. Vere 1059

through the plan diagram looking for the other
node. In a temporal planner, window cutoff
provides a mechanism for early termination of
search paths based on time constraints which must
hold between ordered nodes.

Suppose we are trying to determine if act iv i ty
node NB follows act iv i ty node NA in a plan. We
begin by examining the successors of NA to see if
NB is among them. If not, we must search among the
successors of the successors . . ., keeping a
record of nodes v is i ted, un t i l NB is found or a l l
nodes reachable from NA have been v is i ted. Suppose
that we arrive at node NC somewhere below NA, that
NC has not already been v is i ted, and that NC is not
NB. In a precedence planner we must now search the
plan below NC. However, in a temporal planner we
may be able to cut off the search at NC if the
windows of NC and NB are such that NB could not
possibly l i e below NC.

Following is a tu to r ia l version of the function
ORDERED? which i l lus t ra tes window cutoff:

V I I CONCLUSION

The notions of temporal scopes and terminators
contribute to the screening of assertion
retr ievals, and to the determination of
contemporaneous assertions for forward chaining in
a temporal planner. Window cutoff oan accelerate
the determination of the ordering relat ion on
ac t i v i t i es . These features dramatically improved
the execution time performance of DEVISER, enabling
it to solve in a few hours large planning problems
for the Voyager spacecraft consisting of over one
hundred goals. This is at least an order of
magnitude faster than human performance. The
mechanisms for this performance improvement apply

only to temporal planners, since they are based on
time constraints.

REFERENCES

[1] Allen, J. F. and J. A. Koomen, "Planning
Using a Temporal World Model.'' In Proc. IJCAI-83,
741-747.

[2] Cheeseman, P. "A Representation of Time for
Planning," Tech. Note 278, AI Center, SRI
International, Menlo Park, California, Feb. 1983.

[3] Forgy, C. L. "Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match Problem."
A r t i f i c i a l Intel l igence, Vol. 19, No. 1,
September 1982, 17-37.

[4] McDermott, D. "A Temporal Logic for
Reasoning About Processes and Plans." Cognitive
science, Vol. 6, 1982, 101-155.

[5] Sacerdoti, E. D. A Structure for_ Plans .and
Behavior. Elsevier, New York. 1977.

[6] Salter, R. M. "Planning in a Continuous
Domain—An Introduction." Robotlcar Vol. 1, 1983,
85-93.

[7] Tate, A. "Generating Project Networks." In
Proc. IJCAI-77, 888-893.

[8] Vere, S. A. "Planning in Time: Windows and
Durations for Act iv i t ies and Goals." IEEE trans.
on Pattern Analysis and Machine intel l igence, vo l .
PAMI-5, No. 3, May 1983, 246-267.

