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ABSTRACT 

In a temporal planning and reasoning system, 
many logical assertions w i l l have a l imited l i f e 
span: they are "terminated" by later , 
contradictory assertions. By observing assertion 
terminators, the l i fet ime of an assertion can be 
bounded within an interval called the scope. 
Assertion scopes can greatly reduce the number of 
relevant matches returned from an assertion 
database. Scopes and terminators also permit the 
more ef f ic ient determination of contemporaneous 
assertions for forward chaining of event rules. 
Window cutoff is an execution time accelerator for 
determining if two act iv i t ies are ordered in a 
plan, a high frequency, u t i l i t y operation in plan 
synthesis. The acceleration is accomplished by 
doing an early cutoff of search paths to the 
"lower" act iv i ty based on time constraints. These 
mechanisms reduced the execution time of a temporal 
planner called DEVISER by four orders of magnitude 
for 70 goals, allowing very long planning problems 
to be solved. The mechanisms described employ time 
constraints to accelerate planning, and are not 
applicable to precedence planners. DEVISER is a 
performance planner which has been applied 
experimentally in planning act iv i t ies for the 
Voyager spacecraft in i t s encounter with Uranus in 
1986. 

I INTRODUCTION 

In September 1983 I translated my temporal 
planner DEVISER I [Vere, 1983] from INTERLISP on 
the DEC-10 to ZETALISP on the Symbolics 3600 
computer. The ZETALISP version executed about ten 
times faster and no longer ran out of memory on 
larger problems. These new circumstances enabled 
me to perform some experiments to see how execution 
time Increased as a function of the number of 
goals. The experiments were for a Voyager 
knowledge base, with a set of imaging goals which 
required no backtracking. The results are given in 
Figure 1, a semilog graph. DEVISER I showed a 
steep exponential growth which soon overwhelmed the 

•This paper presents the results of one phase of 
research carried out at the Jet Propulsion 
Laboratory, California Inst i tute of Technology, and 
sponsored by the National Aeronautics and Space 
Administration under Contract No. NAS-918. 

Taster machine. Beyond 15 goals the graph is an 
extrapolation. Dissatisfaction with these results 
led me to consider time constraints as a means for 
improving performance. Since then a new version of 
the planner, DEVISER I I , has been implemented which 
exhibits a much shallower performance curve. This 
improvement amounts to an estimated four orders of 
magnitude for 70 goals, and is due to the 
mechanisms which w i l l be described. These 

apply time constraints to Improve the 
of several important low level 

of plan synthesis. About three fourths 
of the slope improvement in Figure 1 is due to 
temporal scoping, and the remaining one fourth is 
due to window cutoff. 

mechanisms 
efficiency 
operations 

In the past, temporal planners have been 
investigated because many applications require time 
as an expl ic i t parameter. The results of this 
investigation indicate that time can also serve as 
an important source of additional constraints which 
can accelerate planning. 

DEVISER II l ies along the evolutionary path of 
NOAH [Sacerdoti, 1977] and NONLIN [Tate, 1977]. 
These earl ier planners did not model time. Such a 
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program w i l l be called a precedence planner, since 
it merely establishes the precedence of act iv i t ies 
in a plan. Other approaches to incorporating time 
into a planner are to be found in [Allen and 
Koomen, 1983; Cheeseman, 1983; McDermott, 1982; and 
Salter, 1983]. These papers, with one exception, 
do not address the question of the efficiency or 
performance curves of the resulting system. Allen 
confessed that his system was rather inef f ic ient 
even on blocksworld problems. None have attempted 
to take advantage of time constraints to improve 
the efficiency of the planner. 

II REVIEW OF DEVISER WINDOW LOGIC 

In a temporal logic system, the truth of an 
assertion ( l i t e ra l ) must in effect be a function of 
time. (Throughout this paper the terms assertion 
and l i t e r a l may be used interchangeably). In the 
"window logic'' system of DEVISER, every assertion 
is associated with an ac t iv i ty , and every act iv i ty 
has associated with it a start time interval 
("window") and a duration, which may be a function 
of the act iv i ty parameters. 

In a temporal blocksworld where a PICKUP action 
requires 1 second, the action description is 

Figure 3 shows a small blocksworld plan in which 
a deadline is imposed on the goal state. The plan 
start time is 0. The three actions in the plan 
have only interval constraints on their start 
times. The dashed lines may be ignored for the 
moment. Note that each act iv i ty except for the 
start and stop nodes has a start time window, 
duration, and set of assertions. 

Figure 2 shows the temporal relat ion between 
preconditions and postconditions. The extent of 
the preconditions and postconditions are indicated 
by timelines. Preconditions must become true on or 
before the start of the act iv i ty , and persist 
through the duration of that ac t iv i ty . 
Preconditions not contradicted by postconditions 
continue to hold. Postconditions (assertions) of 
an act iv i ty become true when the act iv i ty finishes 
and continue to hold indef ini tely thereafter un t i l 
they are exp l ic i t l y contradicted by assertions of a 
later ac t iv i ty . If certain preconditions need only 
hold at the start of an act iv i ty (but not through 
the duration), that act iv i ty may be decomposed into 
subactivities whose preconditions behave as in 
Figure 2. This is explained in [Vere, 1983]. 

The figure shows the start time of the act iv i ty 
as a point in time. This is generally only true 
for act iv i t ies which have been scheduled. During 
plan generation, the start time is typical ly an 
interval . This should be contrasted with the 
conventions of other temporal logic systems (e.g. 
[Allen and Koomen, 1983]) in which an interval 
specifies the l i fet ime of an assertion, and the 
start time is constrained to a point. 

Figure 3. Terminator Relations in a Blocksworld 
Plan 

St r ic t ly speaking, it is act iv i ty nodes which 
are ordered and have start times, not assertions. 
However, it w i l l be convenient to speak of 
assertions being ordered or having start times when 
in fact these relations apply to the nodes to which 
those assertions belong. 
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In a temporal logic, assertions may in the 
course of time cease to be true. However, they do 
not die naturally; instead, they are terminated by 
later contradictory asertions. 

Assertion T is defined to be a terminator for 
assertion A i f f : A and T are contradictory; T 
follows A in time; and no assertion T' exists 
satisfying the f i r s t two conditions such that T 
follows T1 in time. 

Usually an assertion has a single terminator, or 
none at a l l . However, because act iv i t ies in a plan 
are only par t ia l ly ordered, it is possible for an 
assertion to have several terminators which are 
mutually unordered. Also, as planning progresses 
and new act iv i t ies are introduced and ordered, the 
terminator(s) of an assertion may change. 

Referring back to Figure 3, the dashed lines 
connect selected assertions and their terminators. 
Thus (CLEAR A) of N4 is the terminator of (NOT 
(CLEAR A)) of N6. In the case where an assertion 
has no terminator, it holds forever. (ON A B) of 
N4 is one example of an unterminated assertion. 

The temporal scope of an assertion A is defined 
as an interval ( t 1 t2) where t1 is the earliest 
f in ish time of the assertion1s act iv i ty node and t2 
is the minimum of the latest f in ish times of the 
terminators of A, or i n f i n i t y if the assertion is 
unterminated. Thus the scope bounds the l i fet ime 
of the assertion. Since act iv i ty start times and 
terminators change as planning proceeds, so do 
temporal scopes. Each time the latest start time 
or duration of an act iv i ty is revised, a check is 
made of a l l assertions of that ac t iv i ty . If an 
assertion serves as a terminator of an earl ier 
assertion, the scope of that ear l ier assertion may 
have to be revised too. 

Again referr ing to Figure 3, we can deduce that 
the temporal scope of (NOT (CLEAR A)) in N6 is (1 
5) since the earl iest f in ish time of N6 is 1 and 
the latest f in ish time of N4, which asserts the 
terminator (CLEAR A), is 5. Figure 4 i l lus t ra tes 
the notion of temporal scopes in the abstract, and 
shows their relat ion to earl iest and latest f in ish 
times for assertions and their terminators. 

Maintaining temporal scopes for each assertion 
during plan synthesis dramatically improves the 
overall efficiency of the planner for large goal 
sets. In a planning engine such as DEVISER, 
processing of assertion retr ievals is a fundamental 
contributor to tota l execution time. Screening out 
irrelevant retr ievals with the temporal scope 
meohanism vastly shortens the number of assertion 
candidates which must be sorted and processed by 
fundamental, high frequency planning operations. 

The primary application of terminators and 
scopes is in screening retr ievals from the 
distributed assertion database. Without scopes, 
the retr ieval mechanism must return a l i s t of a l l 
l i t e ra l s matching a given pattern. The subroutine 
requesting the retr ieval must then process this 
l i s t to determine the "relevant" matches, and this 
is time consuming. The function BOUNDED.MATCHES is 
the low level function which uses scopes in 
accessing this database. BOUNDED.MATCHES takes as 
arguments an assertion and a time interval . It 
returns a l i s t of a l l assertions in the database 
which match the given assertion and whose scopes 
intersect the given interval . Thus we are able to 
f i l t e r out most irrelevant retr ievals with a quick 
numerical test. Of course this t r ick is going to 
work only in a planner which models time. 

BOUNDED.MATCHES is called with high frequency in 
the planner in the following operations: 

- looking for possible " t ie - ins ' ' to allow 
phantom node creation; 

- f inding confl icts after an expansion of a 
node or instantiat ion of a l i t e r a l ; 

- checking phantom node violat ion after a 
l i t e r a l instant iat ion; 

- checking for i n f i n i t e loops in the 
backtracking process; 

- checking contemporaneous l i t e ra l s for 
forward chaining. 
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To i l l us t ra te , we w i l l examine the f i r s t 
operation in more deta i l . If the assertion of a 
goal node matches an assertion true in the plan 
"above" the goal node ( i . e . ear l ie r ) , that goal 
node can be converted to a phantom node, which 
indicates that no action is required to satisfy the 
precondition. The situation is shown in Figure 5. 
B is a goal node for act iv i ty C, and B's assertion 
is (P). We want to know if there is some act iv i ty 
node A above which asserts (P) and if (P) s t i l l 
holds down at C. A necessary condition is that the 
scope of a matching l i t e r a l , such as (P) of node A, 
have a scope intersecting the c r i t i ca l interval 
bounded by the earl iest f in ish time and latest 
f in ish time of C. The result is that 
BOUNDED.MATCHES is able to return just the few 
matches overlapping the c r i t i c a l interval , rather 
than the hundred or more that might exist in a long 
plan. Of course, these bounded matches must s t i l l 
be further screened to select those l i t e ra l s which 
satisfy a l l requirements for a t i e - i n . 

contemporaneous, their scopes may be intersected, a 
computationally cheap operation. If this 
intersection is nu l l , the l i t e r a l s cannot be 
contemporaneous. However, a non-null intersection 
unfortunately is not suf f ic ient . Figure 6 shows a 
segment of a plan diagram which i l lus t ra tes th is . 
Clearly assertions (A) and (B) are not 
contemporaneous, since the terminator of (A) is a 
predecessor of (B). Yet their scopes intersect: 
(A), (2 11); (B), (7 INFINITY). 

This example i l lus t ra tes the need for a second 
condition: for a set of l i t e ra l s to be 
contemporaneous, no l i t e r a l in the set may follow 
the terminator of another l i t e r a l in the set. 

Li terals are contemporaneous if they are 
simultaneously true at some instant of time. In a 
dynamic temporal logic system, to determine if a 
forward-chaining event rule should f i r e , i t is 
necessary to determine if there are contemporaneous 
l i t e ra l s which match the rule antecedent. The 
situation is more complex than in conventional 
forward chaining systems such as 0PS5 [Forgy, 
1982], in which there is a single set of assertions 
a l l simultaneously true. In a paral lel plan, the 
assertions are sprinkled throughout the plan and it 
oan be an expensive computational process to f ind 
contemporaneous matches for the antecedent. Here 
too the concepts of scope and terminators can help 
to accelerate the computation. 

To determine if a set of candidate l i t e r a l s is 

Window cutoff is a mechanism for accelerating 
the determination of whether one act iv i ty "follows" 
another in a plan , i .e . whether the act iv i t ies 
are ordered. This is a fundamental, high-frequency 
u t i l i t y operation in plan synthesis which 
contributes heavily to the tota l execution time of 
the planner. The ordering relat ion is the 
transit ive closure of the successor relat ion, which 
is denoted by the solid directed arcs in a plan 
diagram such as Figure 3. Successors of an 
act iv i ty are stored exp l i c i t l y in DEVISER I I , but 
the ordering relat ion must be computed. (To store 
the ordering relat ion exp l ic i t l y would be 
unthinkable since successors are constantly 
changing as the plan develops). For a precedence 
planner, determining if one act iv i ty follows 
another is straightforward but expensive. You Just 
begin at one node and do a blind search down 
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through the plan diagram looking for the other 
node. In a temporal planner, window cutoff 
provides a mechanism for early termination of 
search paths based on time constraints which must 
hold between ordered nodes. 

Suppose we are trying to determine if act iv i ty 
node NB follows act iv i ty node NA in a plan. We 
begin by examining the successors of NA to see if 
NB is among them. If not, we must search among the 
successors of the successors . . ., keeping a 
record of nodes v is i ted, un t i l NB is found or a l l 
nodes reachable from NA have been v is i ted. Suppose 
that we arrive at node NC somewhere below NA, that 
NC has not already been v is i ted, and that NC is not 
NB. In a precedence planner we must now search the 
plan below NC. However, in a temporal planner we 
may be able to cut off the search at NC if the 
windows of NC and NB are such that NB could not 
possibly l i e below NC. 

Following is a tu to r ia l version of the function 
ORDERED? which i l lus t ra tes window cutoff: 

V I I CONCLUSION 

The notions of temporal scopes and terminators 
contribute to the screening of assertion 
retr ievals, and to the determination of 
contemporaneous assertions for forward chaining in 
a temporal planner. Window cutoff oan accelerate 
the determination of the ordering relat ion on 
ac t i v i t i es . These features dramatically improved 
the execution time performance of DEVISER, enabling 
it to solve in a few hours large planning problems 
for the Voyager spacecraft consisting of over one 
hundred goals. This is at least an order of 
magnitude faster than human performance. The 
mechanisms for this performance improvement apply 

only to temporal planners, since they are based on 
time constraints. 
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