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ABSTRACT 

This paper describes a mechanism for nonmonotonic tem­
poral reasoning involving counterfactuals and disjunctions. 
The mechanism supports a method for exploring alterna­
tives well suited to automatic planning. The application 
of these techniques to robot problem solving is discussed 
with an emphasis on reasoning about exclusive choices and 
monitoring the continued warrant and effectiveness of pre­
vention tasks. 

I . Introduct ion 

A critical part of planning involves selecting a plan for 
achieving a particular task. A reduction type planner (e.g. 
NOAH [7]), faced with the problem of formulating a plan 
for the conjunction of two or more nonprimitive tasks, is 
often forced to make plan selection decisions on the basis 
of incomplete knowledge. The planner cannot anticipate 
interactions with tasks whose reduction (or detailed spec­
ification) it has yet to explore. Given that there exists 
no strong warrant for choosing one plan over another why 
should a planner make a choice at all? In certain situations 
it would seem that procrastination is appropriate. 

The problem here is similar to one addressed by Sacer-
doti in developing the NOAH planner. NOAH employed a 
strategy known as least commitment and a data structure 
known as a procedural net to avoid making ordering deci­
sions until they were warranted by interactions discovered 
in the course of planning. This was a reaction to previous 
planners' use of what is called the linear assumption: the 
tasks in a conjunction of tasks to be solved are assumed to 
be independent and hence there is no harm in committing 
to some arbitrary order for the purposes of planning. The 
problem was that by committing early (and arbitrarily) the 
planner might have to explore a large number of alternative 
orderings before finding one that worked. Most planners [7] 
[9] [10] have made a similar assumption as regards plan se­
lection; namely that in the absence of information to the 
contrary any plan for achieving a task will suffice. 

In order to deal with the problems that arise as a result 
of making this assumption a number of strategies have been 
proposed. NOAH represented alternative plans for achiev­
ing a given task as a disjunction (implicitly exclusive) of 
plans. The planner expanded the current procedural net 

with each disjunct noting the type and number of inter­
actions: this information served as the basis for choosing 
among the alternatives. A more general technique employ­
ing a context mechanism was proposed by Wilkins [11]. The 
problem with both of these approaches is that the planner 
is responsible for proposing descriptions of the world which 
follow from making certain decisions (choosing among al­
ternatives). If a planner wanted to make sure it hadn't 
missed some fortuitous combination of choices it would have 
to construct and evaluate all such worlds (combinations of 
choices). The planner had no way of anticipating good and 
bad interactions without exploring the alternatives. What 
was really needed was an efficient method of discovering 
sets of choices to avoid (those that lead to problems) and 
sets of choices to consider seriously (those that consolidate 
effort). 

If you are entertaining a number of apparently inde­
pendent alternatives it seems reasonable that you are able 
to notice interactions, both advantageous and detrimental, 
involving sets of these alternatives. Suppose that I have a 
task of mailing a package and I'm considering either driving 
to the local UPS depot or using the regular mail service and 
walking to the post office. If I've recently thought about 
buying some stamps then I might want to take advantage 
of the opportunity of being at a location selling stamps 
afforded by the latter. Of course some consolidations are 
not possible. A planner must have some means of ignoring 
deductions based on effects achieved by exclusive alterna­
tives. If you are planning a weekend trip but undecided on 
whether to spend it in a rural or an urban setting it would 
be a bit silly to formulate a plan which closely couples a 
relaxing walk in the countryside with a Broadway show. 

In addition to reasoning about alternatives and aspects 
of the world that the planner has control over, a planner 
quite often finds itself in the position of reasoning about 
ways the world might have been had events turned out 
otherwise (counterfactuals). To reason about methods for 
preventing some predicted unpleasantness we have to be 
careful to distinguish the circumstances that prompted us 
to action from those brought about by our attempts to 
avoid the predicted events. I might plan to deposit a sum 
of money in my checking account to avoid the penalty from 
an overdraft. Having determined to do so it is not likely 
I will be fined but this shouldn't somehow lessen my re-
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solve to actually carry out the actions required to make the 
deposit. Silly as this may sound, it requires some sophisti­
cation to avoid just such confusions. 

This initial discussion was meant to outline some prob­
lems which have not been handled adequately by previous 
planning systems. The examples were meant to illustrate 
a class of situations which require reasoning about alter­
native, possibly exclusive, descriptions of the world. In the 
remainder of this paper I will describe a temporal reasoning 
module designed as part of a planning system which sup­
ports this sort of hypothetical reasoning. This short paper 
cannot hope to satisfy the curiosity of all and I encourage 
the interested reader to refer to [2] for a more complete 
exposition. 

I I . Planning and temporal reasoning 

This section outlines the module used for temporal rea­
soning in the FORBIN planner [6]. This module is referred 
to as a time map manager (TMM) [1] and is loosely based 
on the representation described in [4]. A time map is a data 
structure which captures what is known about events occur­
ring over time (e.g. their duration and relative ordering) 
and the effects of processes and actions (e.g. the persis­
tence or the period of time over which such effects can be 
said to endure). The time map itself consists of a network 
whose nodes are points corresponding to the begin and end 
of what are called time tokens. A time token denotes an 
interval associated with the occurrence of an event or an 
instance of a fact being believed to become true and persist 
for some period. The points in the network are connected 
by arcs indicating constraints on the distance separating 
points. A constraint is represented as an interval on the 
real number line denoting an upper and lower bound on 
the distance separating two points in the time map. 

The TMM p>erforms a rather simple sort of temporal 
reason maintenance. The system uses data dependencies 
and constraint propagation to ensure that whenever two 
time tokens asserting contradictory facts (or mutually ex­
clusive states) are ordered as to their beginning points the 
earlier will be constrained (or clipped) to end before the 
later. 

Plans generally have prerequisites or facts which must 
be true in order that the plan be applicable in a given sit­
uation. Plan choice involves selecting a plan and an inter­
val in which that plan's prerequisites are predicted to be 
true. Having made such a selection the planner creates to­
kens corresponding to the plan steps (subtasks) and their 
effects, adds them to the time map along with associated 
constraints, and asserts that the plan is plausible. This as­
sertion is however defeasible. Other tasks might be intro­
duced during subsequent planning that clip the persistence 
of a prerequisite fact thereby invalidating the plan. The 
TMM monitors the continued validity of plausibility as­
sertions by setting up nonmonotonic data dependency jus­
tifications composed of assertions called called protections 

(after [8]). A fact Q is said to be protected throughout an 
interval, p t l to pt2, just in case there exists a time token 
asserting Q that begins before pt l and it's consistent to 
believe that it doesn't end before pt2. 

If a protection fails then the TMM notifies the planner 
of any plans threatened by the failed protection. The fail­
ure is annotated in such a way as to facilitate corrective 
action. The TMM also anticipates possible protection fail­
ures and suggests ordering constraints to avoid undesirable 
interactions. 

H I . Handling disjunctions 
Still the machinery outlined above won't allow us to 

represent protections of the form "a task T for preventing 
an event E is warranted just in case E would occur if T 
didn't". Neither will it allow us to consider more than one 
reduction for a given task at a time. The latter involves 
reasoning about disjunctions. 

The techniques supporting this sort of reasoning rely 
upon a method for computing the choices warranting as­
sertions in the time map. Choices (e.g. alternative plans 
or ordering decisions) are represented as boolean variables. 
Each assertion is labeled with a boolean formula indicat­
ing under which choices the assertion is believed. Labels 
are computed using a method similar to that employed in 
McDermott's context mechanism [5]. McDermott's system 
was designed to reason about a large number of contexts 
sequentially. It demands that the user specify a partic­
ular context (set of choices) to consider. It is essential to 
our problem that we be able to reason about many sets 
of choices simultaneously. The mechanism must also be 
able to ignore certain sets of choices (e.g. those including 
exclusive alternatives). The TMM employs techniques sim­
ilar to those used by deKleer [3] to reason about exclusive 
alternatives and disregard sets of choices no longer deemed 
worth considering. The algorithms are described in detail 
in [2]. 

To illustrate how the TMM works in reasoning about 
choices I'll provide an abbreviated example drawn from the 
machine shop domain. Suppose that the robot operator in 
a job shop is contracted to machine a special order flange 
from a blank casting. The task requires that a certain di­
ameter hole be drilled and one side of the casting be faced 
(i.e. cut or milled flush). These two subtasks can be per­
formed in any order. Both drilling and facing can be done 
on either the vertical mill or on the engine lathe. Suppose 
that the robot chooses to expand the drilling task using two 
exclusive plans, one using the mill and another using the 
lathe. I'll ignore all subtasks except for prerequisite tasks 
responsible for installing attachments. Initially the mill has 
the face milling attachment installed and the lathe has a 
collet chuck. Drilling on the mill will require a fly cutting 
attachment while a four jaw chuck is required for drilling on 
the lathe. The facing task is expanded next and the robot, 
aided by the TMM, chooses to explore two options: use the 
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lathe, taking advantage of the fact that the four jaw chuck 
is already in place or use the mill (in this case requiring the 
collet chuck) and schedule the facing task before the task 
to install the fly cutter. At the time the facing task alter-
natives are submitted to the TMM it sets up the necessary 
protections to monitor the tasks' plausibility, and suggests 
a number of constraints to help avoid protection violations. 
Notice that while the two tasks, drilling and facing, are still 
independent, the plans chosen for them are now very much 
interlinked. To face using the lathe requires that the robot 
choose to drill using the lathe. If the robot chooses to both 
drill and face using the mill then it must do the facing task 
first in order to avoid a protection failure. 

This just begins to demonstrate the utility of tempo­
ral reasoning about choices. The TMM handles dependent 
choices (nested decisions) and provides considerable assis­
tance at plan selection time in pointing out options that 
give rise to advantageous or disadvantageous interactions. 
This same machinery is also used for reasoning about coun-
terfactuals and we'll consider how in the next section. 

IV . Complex protections 
For the most part, in reasoning about hypothetical sit-

uations, what we want is a virtual copy of some existing 
situation with just a few changes. For instance suppose 
that I'm concerned about a situation in which I ignore a 
dozen or so parking tickets and the city tows my car. So 
I consider another situation in which I bribe a city official 
to indefinitely postpone action on my case. My warrant 
for paying the bribe depends upon the immediate threat of 
having my car towed. If that threat evaporates (e.g. the 
news reports a backlog in the handling of traffic violations 
which has forced the city to issue amnesty for all offenders) 
then I should definitely question my motivation for giving 
money to that official. On the other hand if I discover that 
my method for handling the situation is ineffectual (e.g. the 
official has been dismissed having been indicted for accept­
ing bribes) then I had better consider alternative methods. 

This sort of reasoning has often been modeled along the 
lines of a conditional proof where introducing and discharg­
ing assumptions is considered analogous to pushing and 
popping contexts. There are a number of problems with 
this, most of them stemming from the nonmonotonic char­
acter of reasoning about beliefs changing over time. From 
a computational point of view conditional proofs cache de­
ductions in order to ease the computational burden in­
curred by continually rederiving the same formulae. Once 
one allows nonmonotonicity the process of caching is con­
siderably complicated, as all deductions are potentially de­
feasible. A conditional proof in these circumstances must 
be represented as an ongoing computation. The TMM han­
dles this in terms of reasoning about choices. 

Let's consider the plight of a maintenance robot in a 
factory who is informed at 8:00 AM that OSHA (the U.S. 
government agency concerned with occupational health and 

safety) will make an inspection of his factory sometime after 
12:00. The robot makes a critical assessment of his work 
space, mindful of the OSHA rules, notices that the main 
corridor is cluttered with scrap metal, and predicts that he 
will be fined for the safety hazard. The robot then deter­
mines to clean the aisles before noon in order to avoid the 
fine. In order to monitor the warrant for and effectiveness 
of the task to clean the aisles the TMM tags the token for 
the clean-up task as a choice. If the robot schedules work 
that will result in the corridor getting cluttered after the 
clean-up but before the inspection then the TMM will no­
tice that the clean-up task is no longer effective. If on the 
other hand someone else cleans the corridor or the OSHA 
visit is called off then the clean-up task will no longer be 
warranted. The TMM monitors the continued warrant for 
prevention tasks essentially by considering a world in which 
the prevention task was never executed. 
V. Conclusion 

The TMM is applicable in planning domains in which 
for most tasks the planner has a number of alternative plans 
and the choice of alternative can make a significant differ­
ence in the efficiency of the composite plan. 
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