
A n A n a l y s i s o f C o n s e c u t i v e l y B o u n d e d D e p t h - F i r s t S e a r c h 

w i t h A p p l i c a t i o n s i n A u t o m a t e d D e d u c t i o n 

Mark E. Stickel and W. Mabry Tyson 

Artificial Intelligence Center 
SRI International 

Menlo Park, California 94025 

A b s t r a c t 

Consecutively bounded depth-first search involves repeatedly 
performing exhaustive depth-first search with increasing depth 
bounds of 1, 2, 3, and so on. The effect is similar to that of 
breadth-first search, but, instead of retaining the results at level 
n - 1 for use in computing level n, earlier results are recom­
puted. Consecutively bounded depth-first search is useful when­
ever a complete search strategy is needed and either it is desirable 
to minimize memory requirements or depth-first search can be 
implemented particularly efficiently. It is notably applicable to 
automated deduction, especially in logic-programming systems, 
such as PROLOG and EQLOG, and their extensions. Consec­
utively bounded depth-first search, unlike unbounded breadth-
first search, can perform cutoffs by using heuristic estimates of 
the minimum number of steps remaining on a solution path. 
Even if the possibility of such cutoffs is disregarded, an anal­
ysis shows that, in general, consecutively bounded depth-first 
search requires only b/b-1 times as many operations as breadth-
first search, where 6 is the branching factor.1 

1 I n t r o d u c t i o n 

In this paper, we investigate the properties of consecutively 
bounded depth-first search. In this method, exhaustive depth-first 
search is repeatedly performed with increasing depth bounds of 
1, 2, 3, and so on. The effect is similar to that of breadth-first 
search, but, instead of retaining the results at level n — 1 for use 
in computing level n, earlier results are recomputed.2 

Although this may appear to be a naive and costly search 
method, it is not necessarily so. It is sometimes advantageous 
to perform consecutively bounded depth-first search instead of 
the breadth-first search it imitates. One reason for this is that 
depth-first search requires much less memory. 

Consecutively bounded depth-first search can also make use 
of heuristic information, in contrast to unbounded breadth- and 
depth-first search—the latter are uninformed search strategies 
that do not take into account heuristic estimates of the remain­
ing distance to a solution. Informed search strategies such as 
the A* algorithm use such heuristic information to order the 

'This research was supported by the Defenie Advanced Research Projects 
Agency under Contract N00039-84-K-0078 with the Naval Electronic Sys­
tems Command. The views and conclusions contained in this document 
are those of the authors and should not be interpreted as representative of 
the official policies, either expressed or implied, of the Defense Advanced 
Research Projects Agency or the United States government. Approved for 
public release. Distribution unlimited. 

2We assume a basic familiarity with standard breadth-first, depth-first, and 
A* search strategies (e.g., see Nilsson [4]). 

search space. Consecutively bounded depth-first search does not 
do that, but can use an estimate of the minimum number of re­
maining steps to a solution to perform cutoffs if the estimate ex­
ceeds the number of levels left before the depth bound is reached. 
If the number of remaining levels is uniformly exceeded by these 
estimates by more than one level, then one or more levels can be 
skipped when the next depth bound is set. As with the A* algo­
rithm, admissability the guarantee of finding a shortest solution 
path first is preserved provided the heuristic estimate never ex­
ceeds the actual number of remaining steps to a solution 

Another advantage of consecutively bounded depth-first 
search stems from the fact that, in some applications, depth-
first search can be implemented with much higher efficiency than 
breadth-first search; consecutively bounded depth-first search 
combines this efficiency with the completeness of breadth-first 
search. In these applications, the greater efficiency of depth-
first search more than compensates for the effort of recomputing 
earlier-level results in consecutively bounded depth-first search. 

A specific instance of this is PROLOG-style automated deduc­
tion. PROLOG's use of depth-first search contributes significantly 
to its performance. If depth-first search were not used, more than 
one derived clause would have to be represented simultaneously 
and variables would have more than a single value simultane­
ously, i.e., different values in different clauses. This would imply 
the need for a more complex and less efficient representation for 
variable bindings than the one PROLOG currently uses. 

One of our interests is in adapting PROLOG implementation 
technology to the design of high-performance general automated-
deduction systems [6]. For general deduction, PROLOG'S depth-
first search is incomplete and of limited utility. But to adopt 
breadth-first search would result in losing the efficiency advan­
tages of PROLOG'S representation for variable bindings. Per-
forming bounded depth-first search would preserve the depth-
first character of the search while allowing exhaustive searching 
of the space to a specified level. 

There is still the problem of selecting the depth bound. In an 
exponential search space, searching with a higher-than-necessary 
depth bound can waste an enormous amount of effort before the 
solution is found. This is because the cost of searching level tt in 
an exponential search space is generally large compared with the 
cost of searching earlier levels. 

But this also makes it practical to perform consecutively 
bounded depth-first search. The depth bound is set successively 
at 1, 2, '3, etc., until a solution is found. If a uniform brandling 
factor 6 is assumed, this results in only about b/b-1t times as many 
operations as are necessary for breadth-first search to the same 
depth. 

Another potential application in automated deduction and 



1074 M. Stickel and W Tyson 

logic programming is in systems like EQLOG [l]. EQLOG extends 
PROLOG by replacing the standard unification algorithm with an 
algorithm based on narrowing that unifies terms in equationa) 
theories. Because the narrowing process is not necessarily finite, 
it may be necessary for completeness to interleave computation of 
unifiers by narrowing with the Horn-clause-resolution backtrack­
ing search. Here the use of consecutively bounded depth-first 
search would be beneficial both for its representational efficiency 
and for its low space consumption—the latter is particularly im­
portant because there may be a large number of unification at­
tempts that are simultaneously active. 

Consecutively bounded depth-first search is similar to the 
tree-searching strategy of iterative deepening used in chess [5]. 
In iterative deepening, search is repeatedly performed with in­
creasing depth bounds until a time limit is reached. Insofar as 
these chess searches can be modeled by breadth-first search with 
a uniform branching factor, our analysis reveals that iterative 
deepening search in chess is only marginally more expensive than 
a single search to the maximum depth. 

Despite this use of consecutively bounded depth-first search 
in chess and its obvious utility, it has surprisingly remained un-
analyzed and unargued for—until now. Our proposal of a PRO­
LOG technology theorem prover [6] included a description of this 
search strategy (which we implemented) and a very rough analy­
sis on which this work builds. Korf [2,3] has independently come 
to similar conclusions on the value of this search strategy and has 
done his own analysis that emphasizes its asymptotic optimality 
in space and time among brute-force searches and, with the use 
of cutoffs, its optimality among admissable best-first searches. 



M. Stickel and W. Tyson 1075 

If the sum of the differences is positive, then the added ef­
ficiency in dealing with problems whose first solution is on an 
even level outweighs any extra overhead expended upon prob­
lems whose first solution is on an odd level. If that is so, evenly 
bounded depth-first search is clearly more efficient than consec­
utively bounded depth-first search. Analysis reveals that evenly 
bounded depth-first search is always preferable for a branch­
ing factor of 2 (or less), while consecutively bounded depth-first 
search is preferable for a branching factor of 4 or more For a 
branching factor of .3, the advantages of finding solutions on even 
levels are approximately equal to the disadvantages of finding 
solutions on odd levels. 

4 C o n c l u s i o n 

We have analyzed the behavior of consecutively bounded depth-
first search. This strategy is useful whenever a complete search 
strategy is needed, and either it is desirable to minimize memory 
requirements or depth-first search can be implemented partic­
ularly efficiently. Moreover, consecutively bounded depth-first 
search, in contrast to the unbounded breadth-first search it al­
most emulates, can take advantage of heuristic estimates of the 
minimum number of steps remaining on a solution path to per­
form cutoffs if that number exceeds the number of levels left be­
fore the depth bound is reached. Even if the possibility of such 
cutoffs is disregarded, we have found the performance penalty re­
sulting from the use of consecutively bounded depth-first search 
to be small when compared with breadth-first search the for­
mer performs only b/b1 times as many operations as the latter, 
where b is the branching factor. 

References 

[I] Goguen, J. and .1. Mcscgucr. Equality, types and generics 
for logic programming. Proceedings of the 1984 Logic Pro­
gramming Symposium, Uppsala, Sweden, 1984, 115 125. 

[2] Korf, R.E. Depth-first iterative-deepening: an optimal ad-
missable tree search. To appear in Artificial Intelligence 
Journal. 

[3] Korf, HE. Iterative-deepening-A*: an optimal admissable 
tree search. Proceeding* of the Ninth International Joint 
Conference on Artificial Intelligence, Los Angeles, (Califor­
nia, August 1985. 

[4| Nilsson, N..I. Principles of Artificial Intelligence. Tioga 
Publishing Co., Palo Alto, California, 1980. 

[5] Slate, D..I. and L.R. Atkin. CHESS 1.5 The Northwestern 
University chess program. In Frey, P.W. (ed), Chess Skill in 
Man and Machine, Springer-Verlag, New York, New York, 
1977, 82- 118. 

[6] Stickel, ME. A PROLOG technology theorem prover. Pro­
ceedings of the 1984 International Symposium on Logic Pro­
gramming, Atlantic City, New Jersey, February 1984, 211 
217. Revised version appeared in New Generation Comput­
ing 2, 4 (1984), 371-383. 


