An Analysis of Consecutively Bounded Depth-First

with Applications

Search

in Automated Deduction

Mark E. Stickel and W. Mabry Tyson

Artificial Intelligence Center
SRI International
Menlo Park, California 94025

Abstract

Consecutively bounded depth-first search involves repeatedly
performing exhaustive depth-first search with increasing depth
bounds of 1, 2, 3, and so on. The effect is similar to that of
breadth-first search, but, instead of retaining the results at level
n - 1 for use in computing level n, earlier results are recom-
puted. Consecutively bounded depth-first search is useful when-
ever a complete search strategy is needed and either it is desirable
to minimize memory requirements or depth-first search can be
implemented particularly efficiently. It is notably applicable to
automated deduction, especially in logic-programming systems,
such as PROLOG and EQLOG, and their extensions. Consec-
utively bounded depth-first search, unlike unbounded breadth-
first search, can perform cutoffs by using heuristic estimates of
the minimum number of steps remaining on a solution path.
Even if the possibility of such cutoffs is disregarded, an anal-
ysis shows that, in general, consecutively bounded depth-first
search requires only bb-1 times as many operatlons as breadth-
first search, where 6 is the branching factor.!

1 Introduction

In this paper, we investigate the properties of consecutively

bounded depth-first search. In this method, exhaustive depth-first

search is repeatedly performed with increasing depth bounds of
1, 2, 3, and so on. The effect is similar to that of breadth-first
search, but, instead of retaining the results at level n — 1 for use
in computing level n, earlier results are recomputed

Although this may appear to be a naive and costly search
method, it is not necessarlly so. It is sometimes advantageous
to perform consecutively bounded depth-first search instead of
the breadth-first search it imitates. One reason for this is that
depth-first search requires much less memory.

Consecutively bounded depth-first search can also make use
of heuristic information, in contrast to unbounded breadth- and
depth-first search—the latter are uninformed search strategies
that do not take into account heuristic estimates of the remain-
ing distance to a solution. Informed search strategies such as
the A* algorithm use such heuristic information to order the

This research wes supported Advanoed Reseath Proedts
% NIII%M—K-(D?SWIU'IWBN&/HEM‘OWICS)G—
s The views and condusions contained in this doaument
ae those of the authors and should not be interpreted as representative of
the official |q&se|ﬁ'\ere>¢{&§8d%é IleddﬂeDehBeAdvamfgr
Fmeamégeds o n govemment. Approved
public release. Distnbution unlimited.
2Weaﬁarreabescfamlllantywnj'1slandatdbrl=:ad1hﬁr'st depth-first, and
A" seath strategies (e.g., sse Nisson [4]).

search space. Consecutively bounded depth-first search does not
do that, but can use an estimate of the minimum number of re-
maining steps to a solution to perform cutoffs if the estimate ex-
ceeds the number of levels left before the depth bound is reached.
If the number of remaining levels is uniformly exceeded by these
estimates by more than one level, then one or more levels can be
skipped when the next depth bound is set. As with the A* algo-
rithm, admissability the guarantee of finding a shortest solution
path first is preserved provided the heuristic estimate never ex-
ceeds the actual number of remaining steps to a solution

Another advantage of consecutively bounded depth-first
search stems from the fact that, in some applications, depth-
first search can be implemented with much higher efficiency than
breadth-first search; consecutively bounded depth-first search
combines this efficiency with the completeness of breadth-first
search. In these applications, the greater efficiency of depth-
first search more than compensates for the effort of recomputing
earlier-level results in consecutively bounded depth-first search.

A specific instance of this is PROLOG-style automated deduc-
tion. PROLOGs use of depth-first search contributes significantly
to its performance. If depth-first search were not used, more than
one derived clause would have to be represented simultaneously
and variables would have more than a single value simultane-
ously, i.e., different values in different dlauses. This would imply
the need for a more complex and less efficient representation for
variable bindings than the one PROLOG currently uses.

One of our interests is in adapting PROLOG implementation
technology to the design of high-performance general automated-
deduction systems [6]. For general deduction, PROLOG'S depth-
first search is incomplete and of limited utility. But to adopt
breadth-first search would result in losing the efficiency advan-
tages of PROLOGS representation for variable bindings. Per
forming bounded depth-first search would preserve the depth-
first character of the search while allowing exhaustive searching
of the space to a specified level.

There is still the problem of selecting the depth bound. In an
exponential search space, searching with a higher-than-necessary
depth bound can waste an enommous amount of effort before the
solution is found. This is because the cost of searching level tf in
an exponential search space is generally large compared with the
cost of searching earlier levels.

But this also makes it practical to perform consecutively
bounded depth-first search. The depth bound is set successively
at 1, 2, '3, etc., until a solution is found. If a uniform brandling
factor 6 is assumed, this results in only about b/b-1; times as many
operations as are necessary for breadth-first search to the same
depth.

Another potential application in automated deduction and

1074 M. Stickel and W Tyson

logic programming is in systems like EQLOG [I]. EQLOG extends
PROLOG by replacing the standard unification algorithm with an
algorithm based on narrowing that unifies terms in equationa)
theories. Because the narrowing process is not necessarily finite,
it may be necessary for completeness to interleave computation of
unifiers by narrowing with the Hom-clause-resolution backtrack-
ing search. Here the use of consecutively bounded depth-first
search would be beneficial both for its representational efficiency
and for its low space consumption—the latter is particularly im-
portant because there may be a large number of unification at-
tempts that are simultaneously active.

Consecutively bounded depth-first search is similar to the
tree-searching strategy of iterative deepening used in chess [5].
In iterative deepening, search is repeatedly performed with in-
creasing depth bounds until a time limit is reached. Insofar as
these chess searches can be modeled by breadth-first search with
a uniform branching factor, our analysis reveals that iterative
deepening search in chess is only marginally more expensive than
a single search to the maximum depth.

Despite this use of consecutively bounded depth-first search
in chess and its obvious utility, it has surprisingly remained un-
analyzed and unargued for—until now. Our proposal of a PRO-
LOG technology theorem prover [6] included a description of this
search strategy (which we implemented) and a very rough analy-
sis on which this work builds. Korf [2,3] has independently come
to similar conclusions on the value of this search strategy and has
done his own analysis that emphasizes its asymptotic optimality
in space and time among brute-force searches and, with the use
of cutoffs, its optimality among admissable best-first searches.

2 Consecutively Bounded Depth-First
Search Versus Breadth-First Search

We now present a comparison of the the effort required to per-
form consecutively bounded depth-first search and breacih-first
search. The analysis ighorea the effects of using Leuristic mfor-
mation in conseruiively bounded depth-first search, which would
yield even more favorable results for thai strategy.

Worst-case behavior for conaecutively bounded depth-firat
search, as compared with breadth-first search, oceurs when the
branching factor is 1, i.e., when no searching is required. In this
case, il the solution is found at depth n, the cost of breadth-
fiest search with uniform branching fsctor 1 is BFSi(n) = n,
while the cost of consecutively hounded depth-first search is
CHUFS (r)=T424 . +n= 2840

For larger branching farlora consecutively bounded depth-
first search will be shown te be the generally small constant factor
gl times as expensive as breadth-fist search (ie., 1 extrn
effort). This is true regardlesa of whether consecutively bounded
depth-first search in used to search exhaustively to some depth
or only until the first solution is found.

2.1 Exhaustive Search

The number of operations BFSy(n) performed in searching a
space exhaustively with uniform branching facior b to depth n,
using breadili-first search, in given by

BF Sir) =

R+] _
):b' o 1=£—iu"—11. (1)

We will also use the approximation

BESuin) b

i ot {2)

Because searching a space exhaustively with breadth-first or

depth-first search differs only in the order of operations, the num-
ber of operations DiSy(n) Tor depth-lirst search is given by

DFSy{n) = BFSy(n) = i_j'n“‘" -1)

The number of operations ¢ 8D FS,{n) performed in search-
ing a space exkaustively with uniform branching factor b to depth
1, wsing consecutively bounded depth-lirst search, te., scarching
exhaustively to depth 1,2, ... n, s given by

E DFS{i) = ---_):[b‘ ~1)
= ‘l', =1 (‘1)
m(DFSb("J —n).

H

CBDFS(n)

I

Thus, the ratio of the costs of searching exhaustively to depth
n, using consecutively bounded depth-first seacch, compared with
searching to depth r by using hreadth-first search can be approx-
imated by
CBDISyin)
TBFSyln)

_CBDES(n) b 5
= DEsm Sioi (5)

2.2 Search to First Solution

Assume that the there are no solutions betow level n and that the
first solution is found at fraction r of the way through searching
level r—e.g., r = 0.5 if half of the level i operations have heen
done when the first solution is found.

We now define the approximale number of operations
BFSi{n.r) and CBDFS{n,r), corresponding 1o BF S,{n) and
CBDFS,(n), pedormed in searching a space to the first solution
found at point r on level n:

BEFSy(n.r) = HESHn) ~ (1 — e} (6)
CBDES{n.r) = CBOPS,(n) = {1 ~r)DF5(n}. {7)

Thus, the ratio of the costs of searching to the first wolution at
point r on level n, using consceutively bounded depti-first search
compared with using breadth-first seareli, can be approximated.
by uze of Fquations {5) and {2}, by

CHDESn.r) _ CBDFSn) = (1 = r} 1S (n)

BESnn — 7 BESUn) = {1~ r)bn
_ CHDEStn — (1 - U BDES, (1)
T BFSn) = (i - o) (P3N B8 S(n)
_CBDFSi{n) _ b
BFSn) ~ b-1

(¥

2.3 Memory Requirements

An advantage of consecutively bounded depth-first search is that
it needs only an amount of memory that is lincar in the depth of
the tree. When the search routiue is at some node i the tree, o
needs to remember only the node’s ancestors or, sometines for
convenienrce. the node’s and ancrstors” sihlines ac well, Faen in
the latter case, the memory required s only b todes where 4 s
the branching factor and # is the depth. For ordinary breadth.
first search, the memory required is O{#™), since each node in
the tree at the current depth must be stored. Consequently,
much lezs memory i3 needed for consecutively bounded depth-
first search.

3 Evenly Bounded Depth-First Search

At first it appears that consecutively bounded depth-first search
wastes effort. by redaing the same steps tan often. In fact only §
of the offort. is wasted, but for small branching factors, when the
waste is greatest, the amount of wasted effort can be decreased
by modifying the strategy.

Uonsader using even bounds (2.4, ...) instead of consecutive
bounds (1,2, ...) when searching for the first solution.

If the solution occurs on one of the hounding levels [ie, at
an even depih), evenly bounded depth-first search is a elear win-
ner. Hut if the solution oceurs on another tevel, it may he worse.
Sinece we probably do not know the parity of Lhe depth of the first
solution any more than we know the depth itself, a' comparison of
evenly bounded with consecutively bounded depth-first search is
difficutt for any set of problems. One way to compare them would
be Lo determine under what conditions Lthe savings (when a sobu-
tion is found at an even depth} outweigh the cxira eflort (when
the solulion could have been found at the preceding odd depth).
For this anslysis, we will assume that the solution that could
have heen found at the previous odd depth will still lie the first
sodution found when searching to the next greater cven depth.
A contrary assumption would make evenly hounded depih-first
search more favorable. We shall first compute the number of ap-
erations for evenly bounded depth-first search when the solution
is found at even or odd depths.

Simitarly 10 Equation {4},

EBDFS,(29) = ;: DFS(2i). {9
i=1
As a resull of Lthe even bounds,
EBDFS(2¢ - 1) = EBDFS{1y). (10)
Lakewise, similarly to Equation (7),
ERDES{2q,r) = EBDFS(2q — 2) + r DFS(2g) {11)
and again
EBDFS (29— 1,r) = ERDFS{2q,r). (12)

For selutions at even levels, the difference between finding
the first solulion by cansecutively bounded and evenly bounded
depth-first. scarch is

CHDES,(2q,r} - EBDFS,(2q,7)

2y—1 g1 q (l:”
= Y DFS{) - Y. DFSy () = Y DFSy(2 ~ 1).
i=l =1 =l
For selulions at odd levels,
CHDES(2g— 1,¢) — EBDFS{2q - 1,r)
Tg=12
= Y. DFS()+ rDFS84(2¢ ~ 1)~
l=ql_1
DFS(260) + rDFS,(2
(E 121) s(2q) (14)
q=1 2q—-1) F] .
= Y DFS2i-1+r Y ¥ -r ¥

=] =1 =1
=1l

= Y DFS(2i— 1) —rb™.

M. Stickel and W. Tyson 1075

If the sum of the differences is positive, then the added ef
ficiency in dealing with problems whose first solution is on an
even level outweighs any extra overhead expended upon prob-
lems whose first solution is on an odd level. If that is so, evenly
bounded depth-first search is clearly more efficient than consec-
utively bounded depth-first search. Analysis reveals that evenly
bounded depth-first search is always preferable for a branch-
ing factor of 2 (or less), while consecutively bounded depth-first
search is preferable for a branching factor of 4 or more For a
branching factor of .3, the advantages of finding solutions on even
levels are approximately equal to the disadvantages of finding
solutions on odd levels.

4 Conclusion

We have analyzed the behavior of consecutively bounded depth-
first search. This strategy is useful whenever a complete search
strategy is needed, and either it is desirable to minimize memory
requirements or depth-first search can be implemented partic-
ularly efficiently. Moreover, consecutively bounded depth-first
search, in contrast to the unbounded breadth-first search it al-
most emulates, can take advantage of heuristic estimates of the
minimum number of steps remaining on a solution path to per-
form cutoffs if that number exceeds the number of levels left be-
fore the depth bound is reached. Even if the possibility of such
cutoffs is disregarded, we have found the performance penalty re-
sulting from the use of consecutively bounded depth-first search
to be small when compared with breadth-first search the for-
mer performs only bb1 times as many operations as the latter,
where b is the branching factor.

References

[l Goguen, J. and .1. Mcscgucr. Equality, types and generics
for logic programming. Proceedings of the 1984 Logic Pro-
gramming Symposium, Uppsala, Sweden, 1984, 115 125.

[2] Korf, RE. Depth-first iterative-deepening: an optimal ad-
missable tree search. To appear in Artificial Intelligence

Journal.

—

[3] Korf, HE. lterative-deepening-A*: an optimal admissable
tree search. Proceeding* of the Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, (Califor-

nia, August 1985.

==

[4] Nilsson, N..I. Principles of Atrtificial Intelligence. Tioga

Publishing Co., Palo Alto, California, 1980.

Slate, D..I. and L.R. Atkin. CHESS 15 The Northwestem
University chess program. In Frey, PW. (ed), Chess Skill in
Man and Machine, Springer-Verlag, New York, New York,
1977, 82- 118.

[6] Stickel, ME. A PROLOG technology theorem prover. Pro-

5

-

ceedings of the 1984 International Symposium on Logic Pro-

gramming, Atlantic City, New Jersey, February 1984, 211
217. Revised version appeared in New Generation Comput-
ing 2, 4 (1984), 371-383.

