TAKING ADVANTAGE OF STABLE SETS OF VARIABLES
IN CONSTRAINT SATISFACTION PROBLEMS

Eugene C. Freuder and Michael J. Quinn*

Department of Computer Science, University of New Hampshire, Durham, NH 03824

ABSTRACT

Binary constraint satisfaction problems involve finding values for
variables subject to constraints between pairs of variables. Algorithms
that take advantage of the structure of constraint connections can be
more efficient than simple backtrack search. Some pairs of variables
may have no direct constraint between them, even if they are linked
indirectly through a chain of constraints involving other variables. A
set of variables with no direct constraint between any pair of them
forms a stable set in a constraint graph representation of a problem.
We describe an algorithm designed to take advantage of stable sets
of variables, and give experimental evidence that it can outperform
not only simple backtracking, but also forward checking, one of the
best variants of backtrack search. Potential applications to parallel
processing are noted. Some light is shed on the question of how and
when a constraint satisfaction problem can be advantageously divided
into subproblems.

1 DIRECT INDEPENDENCE OF VARIABLES

Constraint satisfaction problems involve finding values for vari-
ables subject to constraints, or relations among the variables. Often
these constraints are restricted to being binary relations between two
variables, we shall consider binary constraints here. Standard back-
Hack search can be used to solve such problems. In general the upper
bound on the complexity of the search is exponential in the number
of variables

consiraints
L} (3]

a b c
TN N AN
[4 f d & I d e i
AN N LAY ALY FARS FARY LA FAAY
3 ghi ghi ghi ghi ghi ghi ghi ghi

vand z de ghi & ghi d ghi

()

Figure | Taking advantage of the “relative independence’ of variables.

* The authars' namer appear in alphabetical order.

In this paper we propose taking advantage of the "relative in-
dependence" of variables to ameliorate the search complexity. We
term two variables directly independent if there is no direct constraint,
between them, even if they may be indirectly related by a chain of
constraints passing through intermediate variables.

The basic insight is illustrated by the example in Figure 1. The
problem involves three variables, each with three possible values, and
a constraint graph (Figure la, Ib) Links in the graph represent con-
straints; nodes represent variables Note that there is no direct con-
straint between variables y and z. If we approach the problem with
a straightforward backtracking algorithm, we might have to examine
almost 3 x (3 x 3) or 27 possible triples of values before hitting upon
a solution in the rightmost branch of the search tree. More than 27
tests on pairs of values would be performed (Figure]c).

Now let. us take into account the relat ive independence of variables
y and z. Having chosen a value for x, we can go ahead and choose
a value for y and a value for z independently There will be at most
6 values to consider (3 for each) before we succeed or fail If we fail,
we repeat the process for the next x value. At most we will perform
3x (3 + 3) or 18 tests on pairs of values (Figure Id).

In general we can partition constraint graphs into sets of "mu-
tually independent" variables, where there is no direct constraint be-
tween any pair of variables in the set. Such a set is called a stable set
in graph theory. Consider the constraint graph shown in Figure 2, for
the problem of labeling the cube. The scene labeling problem Waltz.,
1975 provides an application domain here, but those unfamiliar with
it can regard the cube as an abstract constraint graph The graph in
Figure 2b is simply a redrawing of the constraint graph in Figure 2a.
Observe that the variables F and C are not joined by a constraint,
nor are B and D, not A and E. There are no edges between variables
at the same level in Figure 2b. Once a value has been chosen for (7,
the values for F and C may be chosen mutually independently, then
values for D and D, and so on. (Figure 2b is a generalized form of an
"ordered constraint graph" [Freuder, 1982.)

Many interesting improvements on basic backtracking have been
made Haralick and Elliott, 1980; Gaschnig, 1978]. Generally these
improvements operate at a "microlevel," involving the relationships
between individual values for variables, e.g., value a for variable x
is inconsistent with value b for variable y. Our concerns are at a
"macrolevel," involving the relationships between the variables them-
selves, e.g., there is no constraint between variables x and y. A more
detailed experimental comparison with one of the best of the backtrack
variations is made later

D L5

E B F I
. X X
F A [N F

(a) (b

Figure 2: Labeling the cube.

Il PSEUDO-TREE SEARCH ALGORITHM

Given a constraint graph partitioned into stable .sets, we would
like to take advantage of direct independence not only on one maximal
stable set (or an approximation thereof), but on all the stable sets. For
example, we would like to use the stable sets identified in Figure 2 as
"levels" in a generalized backtrack algorithm that employed the basic
"additive" insight of Section 1 at each level.

This can be done, up to a point, in a straightforward way Pro-
ceeding down through the levels, each variable at a given level can be
considered independently. However, a problem arises in backtracking.
If two variables at one level have a constraint path down to a single
variable at a lower level (as in Figure 2b), all combinations of values
for the two higher level variables may need to be tried before finding
one compatible with the lower level variable Thus, we again have a
"multiplicative" rather than an "additive" effect.

Definition: A pseudo-tree is a rooted tree T (V. E) augmented
with zero or more additional edges /," such that all edges between
some vertex v and vertices closer to the root be along the path in T
from v to the root The level of a variable in a pseudo-tree is its level
in the underlying rooted tree

A pseudo-tree structured constraint graph supports an algorithm
that avoids the "multiplicative backtracking™ problem cited above.
It also makes it easy to determine what variables need to be mod-
ified during backtracking Thirdly, the pseudo-tree property makes
the constraint satisfaction problem more amenable to solution on a
multiprocessor, because a processor could try to assign values to a
variable and all its descendenis without having to communicate with
other processors Freuder and Quinn, 1985

Pseudo-Tree Search Algorithm

e number of levels i peendo-tree

size{rh--number of viriahles at levei s

Wl 3)--pth variable at fevel

1.0, ehoversfula, 11 potential values ol af, ;)
vafurfa{s, ;}) curreat valie of afs, 7}

parentiae, 1)) mdex of parent of wfi, 3) at levels - 1

Tor v ;1o do
lor 3. 1 tw sezelr) de
vafuefe{e. 7)) o< 1" Initialize all vanialles *)
emllor
encllor,
o B[N i current searel Tevel *)
while {1 = 1) and {1 .) o

1* Examine level o 7
IR

Tepmit
if eafuefofe, 1] viokades o consramt witl au aneestor then
whiile werfye (ufa. g)] violates a s opstraint do
Wovefuefule, 1) vhowersfale g} then
1* Noomore alternative: for ol o) mist backrack *)
po purentiula, g
L |
ity 0then ext ooatermost while loop codif
emilil:
{* Former value bl 1o coustramt conflice ey another *)
odue fofe, g3 - vt fufe, 41 - A
endwhile;
set valioe of all descendents of v g) el
endil;
J0 g U Ty nest variabde at level s *)
unisl §oo-oweee 0
1* Al constrinmty sotizfed through level s deepen search *)
[EREE B |
endwhite;
Wy - then Y Solntien lonnd it is stored dnoarray maedue)
elae {4 No solution *)
el

The following lemma proves that the pseudo-tree search algorithm
has a complexity bound exponential in the number of levels in the
pseudo-tree, rather than in the number of variables in the problem In
the next section we present an algorithm for transforming an arbitrary
constraint satisfaction problem into an equivalent "metaproblem" with
a pseudo-tree constraint graph structure.

E. Freuder and M. Quinn 1077

Lemma: Given a pseudo-tree T and A variables at level m in T,
each variable capable of taking on b values, the search algorithm back-
tracks at most bk times to level rn before backtracking to level rn 1.

Proof: The first time the search algorithm reaches level m, the
value of every variable at that level is initialized as low as possible.
The search algorithm backtracks from level rn - 1 in T when there
exists at that level a variable v that cannot be given a value that does
not violate constraints with the values of ancestor variables in T. By
the pseudo-tree property, all of the variables constraining v lie along a
simple path from v to the root of T. In order to try all combinations of
values that might lead to an allowable value of v, only vaiiables along
this path need to have their values changed Hence every time the
search backtracks to level m, exactly one of the variables w at level m
must have its value modified. The value of w cannot be decremented:
all lowei values were previously held by w and led to a backtracking
lower in the tree. Because it is only necessary to reset the value of w
when one of its ancestors has its value incremented, the value of no
variable at level m will lowei until the search backtracks from level m.
Since there are k variables, each with b possible values, the maximum
number of values variables at level m can take on before one variable
has no more possible values is bk,

Theorem: Given a pseudo-tree T with rn levels, each level / con-
taining A, variables capable of taking on b, values, the worst-case time
complexity of our algorithm is & {I17" t&,}.

Corollary; Given a pseudo-tree T our algorithm can find one as-
signment of values to variables that satisfies the constraints, if one
exists, but it cannot be used to find all solutions that satisfy the con-
straints.

Il DERIVING PSEUDO-TREE METAPROBLEMS

A constraint graph can be subdivided into subproblems, where
each subproblem involves satisfying a subset of the original variables
The problem of satisfying all the subproblems simultaneously may then
be regarded as a metproblem, with the subproblems as metavariables

It has long been recognized that partitioning a constraint, satisfac-
tion problem into subproblems may simplify the problem. However,
little guidance is available as to how and when to subdivide prob-
lems. One criterion for considering a problem subdivision is the felic-
ity of the structure of the resulting metaproblem. For example, if the
metaproblem has a tree structured constraint graph on the metavari-
ables, then it c an be solved in time linear in the number of metavari-
ables ; Mackworth and Freuder, to appear Here we present a method
lor producing a metaproblem where the metavariables are organized
into stable sets forming levels in a pseudo-tree constraint structure.
Recall that the previous section presented an algorithm for pseudo-
tree-struct ured problems, with a complexity bound exponential in the
number of pseudo-tree levels.

The original problem is partitioned into a metaproblem as follows:

1 Find a cut set in the constraint graph; i.e., a set of vertices
whose removal divides the graph into two or more unconnected
subgraphs. The cut set S corresponds to S variables in the
metaproblem; these- metavariable*will form the first \S\ levels of
the pseudo-tree The unconnected subgraphs temporarily become
metavariables and are children of the variable in S deepest in the
"tree "

2 Apply this process recursively to each of the children, terminating
when the- subgraph being examined cannot be split further.

The algorithm will not necessarily produce an "optimal" pseudo-
tree We would like to be certain of efficiently transforming a given
constraint graph into a pseudo-tree structure which takes optimal (or
nearly optimal) advantage of direct independence, This remains an
area for furt her work.

IV EXPERIMENTAL RESULTS

To experimentally verify the efficiency of this algorithm, we have
used it to try to color graphs with three colors The performance
of our algorithm is contrasted with two others. The first algorithm
performs simple backtracking, where the order in which the variables
are searched is randomly chosen. The second algorithm uses forward
checking Haralick and Elliott. 1980], which Haralick and Elliot showed
to be superior to several other variants of backtracking under certain
experimental conditions The order in which variables are considered
corresponds to a level-by-level traversal of the pseudo-tree.

1078 E. Freuder and M. Quinn

The form of the test graphs is shown in Figure 3. Notice that
we have created constraint graphs that have the pseudo-tree property,
which avoids the previously-mentioned problem of efficiently trans-
forming constraint graphs into pseudo-trees. We have tested the three
algorithms on a large number of graphs. For each problem size ranging
from 4 to 36 variables, we have generated 100 random pseudo-trees.
We have run the three search algorithms on all 900 graphs, measurin
the number of constraint checks made by each algorithm. Each result
has been put into one of two categories, depending upon whether the
graph is three-colorable or not. This is because unsuccessful searches
require many more constraint checks on average. Figure 4 displays the
mean number of constraint checks performed by the three algorithms
for successful and unsuccessful searches of the various graphs. Not only
does our algorithm outperform standard backtracking, it also performs
substantially fewer constraint checks than the forward checking algo-
rithm on both colorable and uncolorable graphs. (We have also com-
puted the median number of constraint checks performed by the three
algorithms Our algorithm outperforms standard backtracking and
forward checking on unsuccessful and standard backtracking
on successful searches. However, the median number of constraint
checks performed by forward checking on successful searches is a few
percent lower than the number performed by our algorithm.)

Certainly our search algorithm will not outperform other algo-
rithms, such as forward checking, in all situations. The constraints
must fit a certain pattern in order to benefit from our exploitation of
direct independence. For example, if our methodology were agplied
to the eight-queens problem (placing eight queens on a chess board
so that no queen can attack another), the pseudo-free would have
eight levels, and the search algorithm would degenerate into standard
backtracking.

In fact, much of the experimental work on backtrack search has
been done in the context of the eight-queens problem. This is actually
a very specialised type of problem: the constraint %raph is complete,
all constraints are the same, and all variables have the same domain.
Direct independence in a constraint graph is in a sense the opposite of
completeness; it involves subsets of variables, which, far from forming
complete subgraphs, form stable sets, where no variable is conn
to any other.

Figure 3: Form of the pseudo-trees used in the experiments.

V CONCLUSIONS

We have presented an algorithm tailored to solve constraint satis-
faction problems on constraint graphs that have the pseudo-tree prop-
erty. We have also described an algorithm for turning any constraint
graph into a constraint'graph with the pseudo-tree property Experi-
mental evidence indicates there exist constraint graphs for which our
algorithm outperforms not only standard backtracking, but also for-
ward checking.

ACKNOWLEDGMENTS

This paper is based in part upon work supported by the National
Science Foundation under (grant R/ICS 8003307‘.)

REFERENCES

[1] Freuder, E.C. 1982. A sufficient condition for backtrack-free
search. J. ACM 29, 1, pp. 24-32.

[2] Freuder, E.C, and Quinn, M.J. 1985. Parallelism in an algorithm
that takes advanta%e of stable sefs of variables in constraint satis-
faction problems. Tech Rep. 85-21, Dept. of Computer Science,
Univ of New Hampshire.

|3j Gaschnig, J. 1978. Experimental case studies of backtrack vs.
Waltz-type vs. new algorithms for satisficing-assignment prob-
lems. Proc. 2nd National Conf. of Canadian Society for Compu-
5%%?57"]’7/ Studies of Intelligence, Toronto, Ontario, July 19-21 pp

[4] Haralick, R , and Elliott, G. 1980. Increasing tree search efficiency
for constraint satisfaction problems. Artificial Intelligence 14, pp.
263-313.

|51 Waltz,D_1975. Understanding line drawings of soenes with shad-

ows In The Ps cholog{(of Computer Vision, P.H. Winston, ed.,
McGraw-Hill, York, pp. 19-91.

COLORABLE GRAPHS:

5
10
109 - BACKTRACKING

3 ' ...~ FORWARD CHECKING
10° . ,

p PSEUDO-TREE SEARCH
10!

I T T R 1 [|

12 16 20 24 2B 12 36 VARIABLES
1

4 8
4 56 78 9101112 METAVARIABLES

UNCOLORABLE GRAPHS:

MEAN NUMBER OF CONSTRAINT CHECKS

10‘;’ -~ BACKTRACKING
:g4 N . .~ FORWARD CHECKING
103 _________,_._..—-— PSEUDO-TREE SEARCH
4 8 121620 24 28 32 36 VARIABLES
456 7 B 9101112 METAVARIABLES

Figure 4: Experimental results.

