
TAKING ADVANTAGE OF STABLE SETS OF VARIABLES 
IN CONSTRAINT SATISFACTION PROBLEMS 

Eugene C. Freuder and Michael J. Quinn* 

Department of Computer Science, University of New Hampshire, Durham, NH 03824 

A B S T R A C T 

Binary constraint sat is fact ion problems involve f ind ing values for 
variables subject to constraints between pairs of variables. A lgo r i t hms 
that take advantage of the st ructure of constra int connections can be 
more efficient than simple backtrack search. Some pairs of variables 
may have no direct constraint between them, even if they are l inked 
ind i rect ly th rough a chain of constraints invo lv ing other variables. A 
set of variables w i t h no direct constraint between any pair of them 
forms a stable set in a constraint graph representat ion of a p rob lem. 
We describe an a lgo r i thm designed to take advantage of stable sets 
of variables, and give exper imenta l evidence that it can ou tpe r fo rm 
not only s imple back t rack ing, but also fo rward checking, one of the 
best var iants of backtrack search. Potent ia l appl icat ions to paral le l 
processing are noted. Some light is shed on the question of how and 
when a constraint sat isfact ion problem can be advantageously d iv ided 
into subproblems. 

1 D I R E C T I N D E P E N D E N C E O F V A R I A B L E S 

Const ra in t sat isfact ion problems involve f inding values for va r i ­
ables subject to constraints, or relat ions among the variables. Often 
these constra ints are restr icted to being b inary relat ions between two 
variables, we shall consider b inary constraints here. Standard back-
Hack search can be used to solve such problems. In general the upper 
bound on the complex i ty of the search is exponent ia l in the number 
of variables 

In th is paper we propose tak ing advantage of the " re lat ive in­
dependence'1 of variables to amel iorate the search complex i ty . We 
te rm t w o var iables d i rect ly independent if there is no direct constraint, 
between t h e m , even if they may be ind i rect ly related by a chain of 
constraints passing th rough intermediate variables. 

The basic insight is i l lustrated by the example in Figure 1. The 
problem involves three variables, each w i t h three possible values, and 
a constraint graph (Figure l a , l b ) L inks in the graph represent con­
st ra ints ; nodes represent variables Note that there is no direct con­
straint between variables y and z. If we approach the problem w i t h 
a s t ra igh t fo rward backt rack ing a lgo r i t hm, we might have to examine 
almost 3 x (3 x 3) or 27 possible t r ip les of values before h i t t i ng upon 
a solut ion in the r ightmost branch of the search tree. More than 27 
tests on pairs of values would be performed (Figure ]c) . 

Now let. us take in to account the relat ive independence of variables 
y and z. Hav ing chosen a value for x, we can go ahead and choose 
a value for y and a value for z independent ly There w i l l be at most 
6 values to consider (3 for each) before we succeed or fa i l If we fa i l , 
we repeat the process for the next x value. At most we w i l l per form 
3x (3 + 3) or 18 tests on pairs of values (Figure Id ) . 

In general we can pa r t i t i on constraint graphs in to sets of " m u ­
tua l ly independent" variables, where there is no direct constraint be­
tween any pair of variables in the set. Such a set is called a stable set 
in graph theory. Consider the constraint graph shown in Figure 2, for 
the prob lem of label ing the cube. The scene labeling problem Waltz., 
1975 provides an appl icat ion domain here, but those unfami l ia r w i t h 
it can regard the cube as an abstract constraint graph The graph in 
Figure 2b is s imply a redrawing of the constraint graph in Figure 2a. 
Observe tha t the variables F and C are not jo ined by a const ra in t , 
nor are B and D, not A and E. There are no edges between variables 
at the same level in Figure 2b. Once a value has been chosen for (7, 
the values for F and C may be chosen mutua l l y independent ly, then 
values for D and D, and so on. (F igure 2b is a generalized fo rm of an 
"ordered constra in t graph" [Freuder, 1982. ) 

Many interest ing improvements on basic backt rack ing have been 
made Haral ick and E l l i o t t , 1980; Gaschnig, 1978]. General ly these 
improvements operate at a "microlevel," invo lv ing the relat ionships 
between ind iv idua l values for variables, e.g., value a for var iable x 
is inconsistent w i t h value b for var iable y. Our concerns are at a 
"macro leve l , " i nvo lv ing the relat ionships between the variables them­
selves, e.g., there is no constraint between variables x and y. A more 
detai led exper imenta l comparison w i t h one of the best of the backtrack 
var iat ions is made later 



E. Freuder and M. Quinn 1077 

I I P S E U D O - T R E E S E A R C H A L G O R I T H M 

Given a constraint graph par t i t ioned in to stable .sets, we wou ld 
like to take advantage of direct independence not only on one m a x i m a l 
stable set (or an app rox ima t ion thereof) , but on al l the stable sets. For 
example, we wou ld l ike to use the stable sets ident i f ied in Figure 2 as 
"levels" in a generalized backtrack a lgo r i t hm that employed the basic 
"add i t i ve " insight of Section 1 at each level. 

This can be done, up to a po in t , in a s t ra ight forward way Pro­
ceeding down th rough the levels, each var iable at a given level can be 
considered independent ly . However, a problem arises in backt rack ing. 
If two variables at one level have a constraint path down to a single 
var iable at a lower level (as in Figure 2b) , al l combinat ions of values 
for the two higher level variables may need to be tr ied before f ind ing 
one compat ib le w i t h the lower level var iable Thus, we again have a 
" m u l t i p l i c a t i v e " rather than an "add i t i ve " effect. 

Def in i t ion : A pseudo-tree is a rooted tree T (V. E) augmented 
w i th zero or more add i t iona l edges /,'' such that all edges between 
some vertex v and vertices closer to the root be along the path in T 
f rom v to the root The level of a var iable in a pseudo-tree is its level 
in the under ly ing rooted tree 

A pseudo-tree st ructured constraint graph supports an a lgo r i thm 
that avoids the "mu l t i p l i ca t i ve backtracking" , problem cited above. 
It also makes it easy to determine what variables need to be mod­
ified dur ing backt rack ing Th i rd l y , the pseudo-tree proper ty makes 
the constra int sat isfact ion problem more amenable to solut ion on a 
mult iprocessor, because a processor could t ry to assign values to a 
var iable and all its descendenis w i thout having to communicate w i t h 
other processors Freuder and Qu inn , 1985 

Pseudo-Tree Search A lgo r i t hm 

The fo l lowing lemma proves that the pseudo-tree search a lgo r i thm 
has a complex i ty bound exponent ia l in the number of levels in the 
pseudo-tree, rather than in the number of variables in the problem In 
the next section we present an a lgo r i thm for t ransforming an arb i t ra ry 
constra int sat isfact ion problem in to an equivalent "me tap rob lem" w i t h 
a pseudo-tree constraint graph s t ructure. 

Lemma: Given a pseudo-tree T and A variables at level m in T, 
each var iable capable of tak ing on b values, the search a lgo r i thm back­
tracks at most bk t imes to level rn before backt rack ing to level rn 1. 

Proof: The first t ime the search a lgo r i thm reaches level m, the 
value of every var iable at that level is in i t ia l ized as low as possible. 
The search a lgo r i thm backtracks f rom level rn - 1 in T when there 
exists at that level a var iable v that cannot be given a value that does 
not v io late constraints w i t h the values of ancestor var iables in T. By 
the pseudo-tree proper ty , al l of the variables const ra in ing v lie along a 
simple path f rom v to the root of T. In order to t ry al l combinat ions of 
values that might lead to an al lowable value of v, on ly vai iables along 
this path need to have their values changed Hence every t ime the 
search backtracks to level rn, exact ly one of the variables w at level m 
must have its value modi f ied. The value of w cannot be decremented: 
all lowei values were previously held by w and led to a backt rack ing 
lower in the tree. Because it is only necessary to reset the value of w 
when one of its ancestors has its value incremented, the value of no 
variable at level m w i l l lowei un t i l the search backtracks f rom level m. 
Since there are k variables, each w i t h b possible values, the m a x i m u m 
number of values variables at level m can take on before one var iable 
has no more possible values is bk, 

Theorem: Given a pseudo-tree T w i t h rn levels, each level / con­
ta in ing A:, variables capable of tak ing on b, values, the worst-case t ime 
complex i ty of our a lgor i thm is 

Coro l la ry ; Given a pseudo-tree T our a lgo r i t hm can f ind one as­
signment of values to variables that satisfies the const ra in ts , if one 
exists, but it cannot be used to find all solut ions that satisfy the con­
stra ints. 

I l l D E R I V I N G P S E U D O - T R E E M E T A P R O B L EMS 

A constraint graph can be subdiv ided in to subproblems, where 
each subproblem involves sat isfying a subset of the or ig ina l variables 
The problem of sat isfying al l the subproblems s imul taneously may then 
be regarded as a metproblem, w i t h the subproblems as metavariables 

It has long been recognized that pa r t i t i on ing a constraint, satisfac­
t ion problem in to subproblems may s impl i fy the p rob lem. However, 
l i t t l e guidance is avai lable as to how and when to subdiv ide prob­
lems. One cr i ter ion for considering a problem subdiv is ion is the felic­
i ty of the st ructure of the resul t ing metaprob lem. For example, if the 
metaprob lem has a tree s t ructured constraint graph on the metavar i ­
ables, then it c an be solved in t ime l inear in the number of metavar i ­
ables ; Mack wor th and Freuder, to appear Here we present a method 
lor produc ing a metaprob lem where the metavar iables are organized 
in to stable sets f o rm ing levels in a pseudo-tree constraint s t ructure. 
Recall that the previous section presented an a lgo r i t hm for pseudo-
tree-struct ured problems, w i t h a complex i ty bound exponent ia l in the 
number of pseudo-tree levels. 

The or ig ina l problem is par t i t i oned in to a metaprob lem as fo l lows: 

1 F ind a cut set in the constraint graph; i.e., a set of vertices 
whose removal d iv ides the graph in to t w o or more unconnected 
subgraphs. The cut set S corresponds to S variables in the 
metaprob lem; these- metavariable*will fo rm the first \S\ levels of 
the pseudo-tree The unconnected subgraphs temporar i l y become 
metavariables and are chi ldren of the var iable in S deepest in the 
"tree " 

2 App ly this process recursively to each of the ch i ld ren , te rm ina t ing 
when the- subgraph being examined cannot be split fur ther . 

The a lgor i thm w i l l not necessarily produce an " o p t i m a l " pseudo-
tree We wou ld l ike to be certain of eff iciently t rans fo rming a given 
constraint graph in to a pseudo-tree s t ructure wh ich takes op t ima l (or 
nearly op t ima l ) advantage of direct independence, Th is remains an 
area for f urt her work . 

I V E X P E R I M E N T A L R E S U L T S 

To exper imenta l ly ver i fy the efficiency of this a lgo r i t hm, we have 
used i t to t r y to color graphs w i t h three colors The performance 
of our a lgo r i t hm is contrasted w i t h two others. The first a lgor i thm 
performs s imple back t rack ing , where the order in which the variables 
are searched is randomly chosen. The second a lgo r i t hm uses fo rward 
checking Haral ick and E l l i o t t . 1980], wh ich Haral ick and El l iot showed 
to be superior to several other var iants of backt rack ing under certain 
exper imenta l condi t ions The order in which variables are considered 
corresponds to a level-by- level t raversal of the pseudo-tree. 



1078 E. Freuder and M. Quinn 

The form of the test graphs is shown in Figure 3. Notice that 
we have created constraint graphs that have the pseudo-tree property, 
which avoids the previously-mentioned problem of efficiently trans­
forming constraint graphs into pseudo-trees. We have tested the three 
algorithms on a large number of graphs. For each problem size ranging 
from 4 to 36 variables, we have generated 100 random pseudo-trees. 
We have run the three search algorithms on all 900 graphs, measuring 
the number of constraint checks made by each algorithm. Each result 
has been put into one of two categories, depending upon whether the 
graph is three-colorable or not. This is because unsuccessful searches 
require many more constraint checks on average. Figure 4 displays the 
mean number of constraint checks performed by the three algorithms 
for successful and unsuccessful searches of the various graphs. Not only 
does our algorithm outperform standard backtracking, it also performs 
substantially fewer constraint checks than the forward checking algo­
rithm on both colorable and uncolorable graphs. (We have also com­
puted the median number of constraint checks performed by the three 
algorithms Our algorithm outperforms standard backtracking and 
forward checking on unsuccessful searches and standard backtracking 
on successful searches. However, the median number of constraint 
checks performed by forward checking on successful searches is a few 
percent lower than the number performed by our algorithm.) 

Certainly our search algorithm will not outperform other algo­
rithms, such as forward checking, in all situations. The constraints 
must fit a certain pattern in order to benefit from our exploitation of 
direct independence. For example, if our methodology were applied 
to the eight-queens problem (placing eight queens on a chess board 
so that no queen can attack another), the pseudo-tree would have 
eight levels, and the search algorithm would degenerate into standard 
backtracking. 

In fact, much of the experimental work on backtrack search has 
been done in the context of the eight-queens problem. This is actually 
a very specialised type of problem: the constraint graph is complete, 
all constraints are the same, and all variables have the same domain. 
Direct independence in a constraint graph is in a sense the opposite of 
completeness; it involves subsets of variables, which, far from forming 
complete subgraphs, form stable sets, where no variable is connected 
to any other. 

V CONCLUSIONS 

We have presented an algorithm tailored to solve constraint satis­
faction problems on constraint graphs that have the pseudo-tree prop­
erty. We have also described an algorithm for turning any constraint 
graph into a constraint'graph with the pseudo-tree property Experi­
mental evidence indicates there exist constraint graphs for which our 
algorithm outperforms not only standard backtracking, but also for­
ward checking. 

ACKNOWLEDGMENTS 

This paper is based in part upon work supported by the National 
Science Foundation under Grant MCS 8003307. 

REFERENCES 
[1] Freuder, E.C. 1982. A sufficient condition for backtrack-free 

search. J. ACM 29, 1, pp. 24-32. 

[2] Freuder, E.C, and Quinn, M.J. 1985. Parallelism in an algorithm 
that takes advantage of stable sets of variables in constraint satis­
faction problems. Tech Rep. 85-21, Dept. of Computer Science, 
Univ of New Hampshire. 

|3j Gaschnig, J. 1978. Experimental case studies of backtrack vs. 
Waltz-type vs. new algorithms for satisficing-assignment prob­
lems. Proc. 2nd National Conf. of Canadian Society for Compu­
tational Studies of Intelligence, Toronto, Ontario, July 19-21 pp 
268-277. 

[4] Haralick, R , and Elliott, G. 1980. Increasing tree search efficiency 
for constraint satisfaction problems. Artificial Intelligence 14, pp. 
263-313. 

|5I Waltz,D 1975. Understanding line drawings of scenes with shad­
ows In The Psychology of Computer Vision, P.H. Winston, ed., 
McGraw-Hill, New York, pp. 19-91. 


