
A S t u d y o f S e a r c h M e t h o d s : T h e E f f e c t o f

C o n s t r a i n t S a t i s f a c t i o n a n d A d v e n t u r o u s n e s s

Hans Berliner
Gordon Goetsch

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA. 15213

Abstract

This research addresses how constraint satisfaction interacts
with the search mode, and how the ratio of breadth of effort to
depth of effort can be controlled. Four search paradigms, each
the best of its kind for non adversary problems, are investigated.
One is depth first, and the others best first. All methods except
one highly informed best first search use the same knowledge,
and each of these methods is tested with and without the use of a
constraint satisfaction procedure on sets of progressively more
difficult problems.

As expected, the most informed search does better than the less
informed as the problems get more difficult. Constraint
satisfaction is found to have a pronouncedly greater effect when
coupled with the most informed algorithm. Large performance
increments over A* can be produced by the use of a coefficient
associated with the h term, and this algorithm produces solutions
that are only 5% worse than optimal. This is a known
phenomenon; however, the range of this coefficient is very
narrow. We term this coefficient, which controls the ratio of depth
of effort to breadth of effort, the adventurousness coefficient. The
less tractable a problem the greater the adventurousness should
be. We present evidence to support this.

Introduction
Heuristics are employed when the domain space being explored

is too large to search exhaustively. A heuristic increases the
likelihood of making a correct choice, but cannot prevent the
making of an incorrect choice. The knowledge embodied by the
heuristics is needed to reduce the cost of the search, but is
insufficient to alleviate the need to search. The basic problems
associated with heuristic search are: the desire to follow
"successful" branches, while leaving less successful ones for
later, and, when to quit pursuing a branch as its estimated merit
declines.

Both problems are addressed by any search paradigm; however,
the second problem can be effectively dealt with by a constraint
satisfaction procedure that eliminates states that can no longer be
solved. Brute force methods solve problems by searching to the
maximum penetration allowed in the time available. As the
problems get more difficult, the utility of such methods decreases.
Thus depth-first searches are often augmented with techniques
such as branch and-bound and minimal move ordering

knowledge, but the use of heuristic knowledge is minimal. In
contrast, a pure best first search relies exclusively on its heuristic
knowledge with all the search control decisions being based on
that knowledge.

We wished to study the interaction between heuristics, search
techniques, and constraint satisfaction. Superpuzz, a solitaire
puzzle that can benefit from constraint satisfaction techniques,
was chosen as our problem domain. We selected four search
algorithms as being the best exemplars of their class for solving
non-adversary problems, and devised a constraint satisfaction
procedure. We then investigated the degree of degradation fcr
each search algorithm as the problems became more difficult, and
the interaction of constraint satisfaction with each technique.

The Domain
The domain chosen for this study was Superpuzz, an extremely

difficult solitaire puzzle. The rules of Superpuzz are as follows:

Superpuzz is played with 24 cards, 6 (numbered 0 to 5) in each
of 4 suits. To start a problem deal the cards in a raster of 6 wide
by 4 deep. Then remove the "0" denomination cards, leaving
"holes". Legal moves consist of moving a card into a hole, thus
creating a hole at its former location. The card that is moved into
a hole must be of the same suit as the card to the left of the hole,
and be one higher in denomination.

No card can be moved to the right of the last card in a suit, nor to
the right of a hole. If a hole is on the left edge, any 1 may be
moved there. The game is won when all the cards have been
placed in ascending order by suit, with one suit in the first 5 places
of each row as demonstrated by Figure 1B. There is no
requirement to have particular suits in particular rows. The game
is lost when there are no longer any legal moves. These are the
rules for 4x6 Superpuzz; it is also possible to play harder versions
adjusting the rules for 4x7 and 4x8 formats.

1080 H. Berliner and G. Goetsch

Figures 1A and 1B show an initial and terminal position
respectively. A solution to the initial position can be found at the
end of this article. The most challenging aspect of Superpuzz is
determining which ace to move into a hole on the left-edge.
Making the proper ace move is often-non intuitive, which makes
the domain interesting and results in programs that outperform
well practiced humans.

The Search Paradigms
Initial studies determined the following search algorithms were

the bet,t exemplars of their class :
1. A depth-first search (Df) using the branch and bound,

and iterative deepening |5| techniques. Iterative
deepening has recently beer) proved to dominate
simple depth first search when the depth of the
solution is unknown |3| The constant of iteration
used was 2. The bound is the number of misplaced
cards (N) in the present configuration If the present
configuration is at depth D, it is impossible to reach a
solution at a depth less than D + N.

2 The A* search [4) A* expands the frontier node with
the minimal function I, where / = g + h = D + N.

3 A best first search (BF1) that uses the simple
evaluation function f - N + D. where , the
adventurousness coefficient which we discuss
later, was equal to 1.8.

4. A best first search (BF2) with a highly informed
evaluation function that would encourage the
development of good "positional" formations that
could be transformed into wins.

A hash table containing the generated nodes plays a key role in
three ways. In the best first searches, it becomes the
representation of the tree. The hash encoding detects identical
states, so that the same subtree will be searched only once. The
hash encoding also detects cycles. In the depth-first search, the
hash table only performs the two latter functions.

Two evaluation functions were required. These are 1) A
misplaced card counter, and 2) A position goodness function.
These functions are described in detail in [2]. The misplaced card
function is used in all the search programs, while the goodness
function is used only in BF2.

The Constraint Satisfaction Method
Any state of a domain is either solvable or unsolvable. We define

the set of totally solvable domains to be those in which all states
accessible from a solvable state are solved or solvable. In such
domains any operator applied to any state preserves the solvability
of the new state. Frequently, for each operator there exists a
reverse operator that can re-establish the previous state. This
type of problem is represented by puzzles such as the 15 Puzzle
and Rubik's Cube. An alternate condition is that the permissible
operations do not allow transformation to an unsolvable state.

Set against the class of totally solvable problems is the class of
partially solvable problems in which not every state of the
domain can be solved, and the set of operations allow unsolvable
states to be reached from solvable states, For totally solvable
domains the only thing of interest is the speed of the solution

process and the quality of the solution. Tor partially solvable
problems, each instance may have to be classified as solvable or
unsolvable.

Constraint satisfaction is the term used for the sot of algorithms
that can determine when a subtree cannot contain a solution. We
wanted to study the role of constraint satisfaction on a difficult,
partially solvable problem as the difficulty of the problem varied.
This was the reason Superpuzz was selected, as standard puzzles
such as the 15 Puzzle are totally solvable, and others such as
Instant Insanity are not very difficult for a computer.

Both totally and partially solvable problems can use heuristic
knowledge in order to speed up the search for a solution.
Heuristic knowledge can be used to choose the order of applying
operators and to evaluate the new states. However, totally
solvable problems need no process to identify subtrees in which
no solution can exist because, ipso facto, such subtrees cannot
exist.

The constraint satisfaction function developed for this problem
[2] is as follows: Once all the aces are in place, the final
destination of every card can be determined. Cards not at their
final destination must be moved. We only examine cards that are
to the left of their destination since they are typically the hardest to
move, If such a card is unmovable, the problem instance is
unsolvable. The constraint satisfaction procedure is able to reject
about 50% of all configurations presented to it during a search as
being unsolvable Constraint satisfaction is applied only after all
the aces are in place, since identifying deadlocked positions
earlier was unproductive. It ts able to deal with situations where
not only individual cards, but whole trains of cards must be
moved. Trains arise frequently as the result of putting a card
behind its predecessor. The problem of determining whether a
tram can be moved is very difficult, and a number of finesses were
used which are described in the above cited reference.

H. Berliner and G. Goetscn 1081

which we discuss in the next section.

Discussion and Conclusions
Superpuzz is a much more difficult than standard puzzles.

Further, the difficulty of the game varies with the width of the
puzzle. In this study we examine the 4x6, 4x7 and 4x8 games.
Although the branching factor in each of these remains the same,
the solution depth and percent of unsolvable problems increases
significantly with increases of width.
The solution process can be thought of as occurring in two

phases. In phase one, the combinatonc power of search attempts
to sec whether it is possible to obtain a position where till four
aces are in place. When this has occurred, the deadlock
detection algorithm is invoked, which can reject about 50% of all
positions it encounters. Phase two is invoked for positions that
pass the deadlock test. Here by relatively small searches, the
solution is either found or rejected. When no solution is found in
the sub-tree, phase one again obtains control.

Given that the combination of deadlock detection and very small
searches in phase two is very efficient, certain ideas emerge. If
the position is solvable, then it is advantageous to reach phase
two as quickly as possible. The BF2 search does this most
effectively. It is not at all unusual to have the first all aces in-place
configuration discovered by the BF2 search be solvable,
whereupon the solution proceeds immediately. In those cases
where this does not happen, the first dozen or so attempts do
usually yield a solvable phase two. Only in cases where the
solution is very contrived, or where there is no solution, is the BF2
procedure outperformed by others, in the case where there is no
solution, all phase two positions must be explored and the
procedure that reaches these with the minimum amount of effort is
the most effective. From this it can be seen that some knowledge
of what percentage of problems is solvable is instrumental in
deciding on a search paradigm. In this research, the BF2
evaluation function is expensive to compute, as is traversing the
tree. But, while the BF2 search is only marginally superior in the
width 6 puzzle, it becomes completely dominant by the time the
width is increased to 8.

Let us consider why one search paradigm is better than another.
A* and DF are really quite similar. They probe to new depths in a
breadth-first style that takes advantage of certain efficiencies. A*
knows about effort remaining and builds a permanent copy of the
tree, which it continues to expand at the best leaf nodes. DF also
knows about effort remaining and gets its power from great
efficiency in space and time. However, neither is able to venture
very far on a probe down a branch unless it is continuously having
success (reducing the number of misplaced cards). Any failure to
improve this measure would immediately force the A* search to try
another branch. Because the DF search has an iteration constant
of 2, two non successful moves can occur in expanding a branch
before returning. Since the criterion for success is rather
simplistic, and it is very likely that any solution will require a
number of non-constructive or backward-appearing steps, it is
unlikely that either search will be able to make significant forward
progress through such territory. Instead they plow steadily
forward until the treacherous territory is overcome by all highly
evaluated branches, and then pursue one to a successful
conclusion.

1082 H. Berliner and G. Goetsch

Now consider the BF 1 search paradigm The evaluation
function for BF1 is / - /i N + D. The constant /i is the
advonturousness coefficient; for this program μ = 1.8. In BF1
the value of a descendant node either decreases by .8 units in
case the number of misplaced cards is reduced, or is increased by
1.0. This allows the descendant node to put some distance
between it and its competitors when it is able to take a few
constructive steps intermixed with some that do not appear so
constructive. The essential point is that a branch does not have to
produce "progress" on every move The degree of such
adventurousness is what the constant 1.8 controls, and for the
given domain and evaluation function it appears to be best.

Best first search disciplines exist that have a reluctance to
abandon a branch until it is judged a constant amount worse than
the current best branch. The adventurousness coefficient allows
the number of non-intuitive moves included in a branch to be a
linear function of the number of "good" moves. This appears to
be a better construction.

The BF2 search is even more adventurous (though it not clear
how to obtain its adventurousness other than by empirical
observation) since it can gain numerous points in heuristic value
by placing a card into what is considered an advantageous
location. This allows it to penetrate deeply in certain branches
that it "likes" while leaving others behind. This additional
knowledge appears to pay off in performance.

In some cases the evaluation function will lead the search up a
blind alley. Here is where constraint satisfaction helps the most: it
can disenchant the search causing it to look elsewhere. This
happens for all of the searches, but is most effective in BF2
because the other searches are not as adventurous.

In any search paradigm, once a node is known to be
deadlocked, its successors will never be expanded. However,
these savings can only be realized once such a sub tree is
reached. This is where adventurousness is important. If
situations where constraint satisfaction procedures can be
applied occur only after almost all important branches have been
pushed to the same depth, then the savings will not be very great.
Here, the most adventurous search has a big advantage (see
Table 3) since // allows selectively approaching the point where
constraint satisfaction can be applied.

If the above notions of adventurousness are correct, then the
less tractable the domain, the higher the adventurousness should
be We tested this hypothesis by re-running the? Bf 1 (deadlock)
algorithm on all the 4x8 problems with μ = 2.4 This resulted in
the average nodes per problem being reduced by 15%, and in the
number of intractable problems being reduced from 9 to 5. We
intend to investigate this scaling of adventurousness further in
future studies.

In anv domain the heuristic function must evaluate the
desirability of the moves available. The decision of whether to
abandon a branch in a best first search or continue it is basic to
the efficiency of the search. The adventurousness coefficient for
any domain /function combination, determines the degree to
which the past history of the branch influences this decision. It is
not necessary to "succeed" on every move in a branch in order to
continue it. Instead a success gradient (the adventurousness
coefficient) must be maintained. This tends to produce
consistent, plan-like behavior.

A minimal solution to Figure 1A is: (read left to right; names of
moving cards only, except for aces where the row is also given).

C2 S1 (Z) D4 D3 D4 CI (Y) C2 D1 (X) C3 S2 H2 S4 C4 D2 S5 C5 H4
S3 D1 (W) H1 (X) S4 D2 H2 S5 D3 D4 D5 H5

Acknowledgements
We wish to acknowledge the efforts of T. Anantharaman,

B. Pearlmutter, and H. Printz who were the first to use constraint
satisfaction in Superpuzz, and K. Goldberg whose graphic support
aided in understanding the performance of the search.

References
[1] Berliner, H., "On the Construction of Evaluation Functions for

Large Domains", Proc. IJCAI-77, Tokyo, 1977.

[2] Berliner, H., and Goetsch, G., "A Quantitative Study of
Search Methods and the Effect of Constraint Salisfaction",
Computer Science Dept., Carnegie Mellon University, 1984.

[3] Korf, RE., "The Complexity of Brute Force Search",
Technical Report, Department of Computer Science, Columbia
University, 1984.

[4] Nilsson, N., Problem Solving Methods in Artificial Intelligence,
McGraw-Hill, 1971.

[5] Slate, D. J., and Atkin, L. Ft., "CHESS 4.5 The Northwestern
University Chess Program", in Chess Skill in Man and Machine,
P. Frey (Ed.). Springer Verlag, 1977.

