
THE COMPLEXITY OF SEARCHING
SEVERAL CLASSES OF AND/OR GRAPHS

Howard E. Motteler
Laveen N. Kanal *

The Machine Intelligence and Pattern Analysis Laboratory
Department of Computer Science

University of Maryland
College Park, MD 20742

Abstract
The complexity of searching for a minimum cost solution graph

of an AND/OR graph is analyzed for the class of AND/OR graphs
repreaentable by a context free grammar with coat functions; finding a
minimum coat solution graph ia then equivalent to finding a lowest coat
derivation. Several classes of search problems are defined, based on
properties of the cost functions and grammar. We show that certain of
these classes have different, search complexities- specifically, we show
that there are distinct classes for which the complexity of finding
a minimum cost solution graph is non-recursive, exponential, NP-
complete, and Q(n2), where n ia the size of the grammar representing
the problem. The correspondence between problem structure and
search complexity may serve as a guide for modeling real problems
with AND/OR graphs.

1. Introduction
The complexity of A.I. search procedures is a topic of current

interest [13,2,6]. In this paper we analyze the complexity of searching
several classes of AND/OR graphs. The AND/OR graphs in which
we are interested are represented by the composite decision process
(CDP) [4,8]. This is a generalization of the sequential decision process
(SDP) proposed by Karp and Held in [5]. The classes of AND/OR
graphs represented by the composite decision process are a model for
a wide variety of search procedures, problems in pattern recognition,
and dynamic programming problems. Applications and examples of
relevance to practical problems may be found in [4,8,9].

A CDP is defined by giving a context-free grammar, and a cost
function associated with each production and terminal symbol. This
is essentially Knuth's "synthesized attributes" [7], with a different
motivation. The minima.lixa.tion problem is to find a lowest cost parse
tree for any string the grammar might derive. This is equivalent to the
problem of finding a minimum cost solution graph of the AND/OR
graph corresponding to the grammar [ll].

The correspondence between AND/OR graphs and context free
grammars is that connectors (the AND arcs) correspond to produc­
tions, and OR arcs correspond to a choice of productions. The simple
grammar and graph of figure 1 shows the correspondence. This cor­
respondence was first noted by Hall [3]; following the treatment in
Nilsson, nodes are not restricted to be only of types AND or OR [1.2].
Our AND/OR graphs may contain cycles, and in general a solution
graph may include a walk around some cycle any number of times.
Thinking in terms of grammars, a solution graph is just a parse tree;
a solution graph may be much larger than the grammar graph, and
there may be infinitely many parse/solution trees. Figure 1 gives
two solution trees for the AND/OR graph shown there; note that the
larger of the two solution trees has minimal cost.

*Research supported by NSF grants to the Machine Intelligence
and Pattern Analysis Lab., Dept. of Computer Science, University
of Maryland.

We define classes of CDPs based on properties of the cost func­
tions and the grammar, and for each such class analyze the complex­
ity of the minimalization problem. These classes are intended to have
some realistic motivation. For example, positive monotone CDPs [8]
include generalizations of Dijkstra's algorithm, /-bounded CDPs are
a formulation of bounded search. Suppose n is the size of some CDP.
In the /-bounded CDP, we assume that any possible minimum value
must occur in a tree with no more than f(n) nodes. Acyclic CDPs
are just the common restriction that the underlying AND/OR graph
have no cycles.

The size of a CDP is defined as the size of the grammar (the sum
of the lengths of the productions, written as \G\). We shall show upper
and lower bounds on the complexity of solving the minimalization
problem for various classes of CDP. An upper bound expressed as
some function / means that every member of the class can be solved
in /(|G|) steps, and a lower bound of / means that infinitely many
members of a class require more than /(|G|) steps. The notion of "step
of a computation" and bounding computation time are formalized in
Alio, et al. [l]. We assume their "logarithmic cost criterion", where
the cost of storing or manipulating a large number is then proportional
to the length of the number. We assume unit cost for storing or
manipulating a single grammar symbol, and cost proportional to the
length of a string for manipulating a string of such symbols.

1084 H. Motteler and L. Kanal

If the cost, functions are easy to compute, we can ignore them
in analyzing search complexity. The notion of "easy to compute"
must be made precise, because if we just ignore the complexity of
computing the cost functions, our conclusions may not be correct.
For example, if we did not. consider the complexity of computing the
cost functions in giving proofs of upper bounds, by solving a CDP
we could compute any recursive function with a constant cost. For
let / be some such function. Define cost functions c(d) — d, giving
the value of a digit as its cost, and t(x1 .. . ,Xk) — / o g(x1,. . . , xk),
where g translates a string of digits of length k to an integer. Let
G be the single production St -> x, where x is the string of k digits
representing x. Then to compute /(x), find the minimum (the only)
value of this CDP. If we charge only for search steps and we have only
one step, then we have a constant cost. This difficulty is circumvented
by requiring our CDPs to be "honest", that is for some function /, we
guarantee that no computation of a cost function t takes more than
/(|G|) steps. Here we shall assume (unless otherwise noted) that
every CDP is honest for some fixed polynomial h. This restriction is
not necessary for proofs of lower bounds, as computation of the cost
functions can only add to the complexity.

3. The Complexity of Several Classes of CDPs
The complexity of the natural CDP, acyclic CDPs, p-bounded

CDPs for some polynomial p, and monotone CDPs are analyzed in
this section. Figure 2 shows the structural relationships among various
CDPs considered here. Figure 3 summarizes our results, showing the
relationship of the complexity of the various minimalization problems.
In the structure hierarchy, the positive monotone CDP is contained
in the ACDP only in the sense that any minimum cost solution graph
of the former is guaranteed to be acyclic; an arbitrary parse tree of
a positive monotone CDP may not be acyclic. Formal proofs and
further examples are presented in [11]; we present only an outline
here.

If the range of cost functions is over real numbers, there may be no
minimum cost parse tree. Restricting the range of the cost functions
to natural numbers guarantees that a solution tree will exist, but as
the following theorem shows, there may still be no effective way to
find it.
Theorem 1. The minimalization problem for the natural CDP is not
recursive.

Proof. The problem of generating the shortest program P that
outputs m and halts is reduced to a minimization problem for a CDP.
Details are presented in [11]. {x]

This result is not surprising, since L[G) may be infinite, giving
an unbounded number of parse trees whose backed up value must
be tested. If we try to find the minimum by simply generating and
testing parse trees, and save the lowest value encountered so far as
min, there is in general no guarantee that if we stop at any given
point, the next, untested, value may not be lower than min. The
obvious way to get a decidable problem is to simply bound the space
of all parse trees (or all parse trees that could possibly contribute to
a minimum) in some way. The ACDP, /-bounded CDPs and MCDPs
bound their search space in various ways, giving decidable problems
of varying complexity.

To show an upper bound on the time to solve an ACDP, we must
first find a bound for the size of any parse tree and the number of
distinct parse trees that may be generated by an acyclic context free
grammar. Let exp2(x) — 2'2 , to keep our exponents from stacking
too high. The following lemmas and theorem are proved in [l l|.
Lemma 1. No parse tree for an acyclic grammar G has more than
2lGI 1 - 1 nodes.
Lemma 2. No acyclic grammar G generates more than exp2((\G\ ~
l)2) distinct parse trees.

Theorem 2. The minimalization problem for any member of ACDP
may be solved in 0(cxp2(\G\2 2)) steps, and requires more than
2l('l/3 steps for infinitely many members of ACDP.

Proof of the upper bound is by outlining a procedure MIN^Z)
that finds a minimal cost derivation for any Z f- ACDP by doing an
exhaustive search of the space of all possible parse trees. To show
the lower bound it is sufficient to show that there are infinitely many
acyclic grammars where every parse tree has more than 2'°''J nodes.

[- 1
A simple grammar G with on the order of exp2(|G,|) distinct parse

trees is presented in [l l j. With such a potentially large search space,
it would be reasonable to expect (although this does not constitute
a proof) that there are infinitely many ACDPs which require on the
order of exp2(jc7|) steps for their solution.

We conclude that the minimalization problem for ACDPs (and
/-bounded CDPs for exponential /) is not practically solvable. The
difficulty arises from the. very compact representation of large trees
given by an acyclic grammar. We now consider other means of bound­
ing the size of the search tree. The following theorem shows that even
if we bound the size of the tree by a polynomial in the size of the
grammar, we still have a hard problem.
Theorem 3. For every polynomial p such that p{x) > x, the mini­
malization problem for the p-bounded CDP is NP-complete.

Proof. Assume p is some fixed polynomial, p(x) > x. We first
show the problem is JVP-hard [1,10]. The knapsack problem with inte­
ger weights is easily reduced to a p-boutided CDP. (That is, we show
that if we can solve the minimalization problem, then we can solve the
knapsack problem, which is known to be NP-complete.) Details are

H. Motteler and L. Kanal 1085

presented in 11]j. The same reduction shows that acyclic CDPs and
the natural CDP are NP-hard, since the CDP we have defined is a
member of these classes. The acyclic, and natural CDP classes do not
appear to be NP-complete, since there is no obvious nondeterministic
polynomial time algorithm that solves them.

To complete the proof it must be shown that p-bounded CDP
minimalization can be solved by a nondeterministic algorithm in poly­
nomial time. This is done by defining an algorithm which repeatedly
makes a nondeterministic selection (a guess) of a production until
some string is derived, and for each such string tests its backed up
value aginst successively increasing values of a counter. It is not suf­
ficient to simply guess a parse tree and return its value; tliis would
produce a tree with fewest possible nodes, but not necessarily mini-
mum cost. [x]

Finally, we consider an easily solved class of CDPs. A positive
monotone CDP has all t, monotone nondecreasing, and also satisfying
t1,(x1.......xk) >xji

Theorem 4. The minimalization problem for the positive monotone
CDP can be solved in 0[\G\2) steps.

Proof is by presenting an algorithm and proving its runtime and
correctness. The proof closely parallels proofs of the runtime and
correctness of various algorithms that it generalizes, e.g., Dijkstra's
algorithm and certain dynamic programming problems. A similar
algorithm appears in [8]. Details are presented in [11]. [x]

Conclusions
Slight variations in the structure of the cost functions or gram­

mar can cause a large change in the complexity of the minimalization
problem. If only a single cost function fails to be monotone increas­
ing, the result is a problem of much greater complexity. These results
have the following practical application: When modeling some real
problem as an AND/OR graph search, every effort should be made to
create a graph model in the structural class with lowest search com­
plexity. The proof of a large lower bound for the complexity of some
problem is not necessarily the last word as to whether the problem
is practically solvable. This sort of analysis does not take into ac­
count the distribution of members of a class which are most, difficult.
Even though we know there are infinitely many difficult members,
they could still be very rare, i.e., most members of the class could be
easily solved.

Positive monotone CDPs are the only easily solvable CDPs con­
sidered here. There is an interesting natural class of CDPs, which
satisfy only the monotone restriction; these are considered in [8,9],
Let c*(W) be the lowest cost for any tree rooted at W; the monotone
CDP satisfies the equations

1 If W is a terminal node, then c*(W) — c(W),
2 If W is a nonterminal node, we have c*(W) — min{ti(c*(A'i), . .. ,

c*(Xki) \pi=-W->X1...Xkt}.
We conjecture that the monotone CDPs are not in general solv­

able in polynomial time (in the context of definitions and restrictions
presented here). It would also be of interest to find other natural or
easily definable classes of CDPs with an easily solved minimalization
problem.

References

1. Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design And
Analysis of Computer Algorithms. Addison-Wesley, 1974.

2. Carter, L., Stockmeyer, L., and Wegman, M. "The complexity of
backtrack searches." In Proceedings of the 17th Annual Sympo­
sium on Theory of Computing (Providence RI, May 6-8). ACM,
New York, 1985.

3. Hall, P. A. V. Equivalence between AND/OR graphs and context-
free grammars. Communications of the ACM If), 7 (July 1973).

4. Kanal, L. N., and Kumar, V. "Some New insights into the rela­
tionships among dynamic programming, branch and bound, and
heuristic search procedures." University of Maryland technical
report, 1982.

5. Karp, R. M., and Held, M. II. Finite-State Processes and Dy­
namic Programming. SI AM J. Appl. Math 15,, (1907), 693 718.

0. Karp, R. M., Upfal, E., and Wigderson, A. "Are search and de­
cision problems computationally equivalent?'' In Proceedings of
the 17th Annual Symposium on Theory of Computing (May 0-8,
Providence, R.I.). ACM, New York, 1985.

7. Knuth, D. E. Semantics of context-free languages. Math. Systems
Theory 2, 2 (1968), 127-145.

8. Kumar, V. "A Unified Approach to Problem Solving Search
Procedures.'' Ph.D. thesis, Dept. of Computer Science, Univ. of
Maryland, Dec. 1982.

9. Kumar, V. A General Bottom-up Procedure for Searching And/Or
Graphs. In Proceedings of AAA]-1984, 1984.

10. Machl.cy, M., and Young, P. An Introduction to the Genera/ 7he-
ory of Algorithm.. Elsevier North Holland, 1978.

11. Motteler, 11. E., and Kanal, I,. N. "The Complexity of Search­
ing Several classes of AND/OR Graphs." University of Maryland
Technical Report, 1985.

12. Nilsson, N.J. Principles of Artificial Intelligence. Tioga, 1980.
13. Pearl, .1- Heuristics: Intelligent Search Strategies for Computer

Problem Solving. Addison-Wesley, 1984.

