THE COVPLEXITY OF SEARCHNG
SEVERAL AASSSS CF ANDOR GRARHS

Honad E. Matieler

Laven N. Kandd *
The Machre Inteligence ad Pattiem Andlysis Laborakory
Dq:ahmdcogrpHSc'B’re
Cdege Pak, VD 20742
Abstract Praduction Ceat Function
The complexiy of for a minmum aost solution gaph L A—uB tifry) - (24 y- 3
o an ANDOR gaph b aalyzd for the dess of ANDOR gads !
repreaentzbe by a conlext fee with adt funclions; indinga 2 4 -~ tafz) — =
mirimum aet souion geph e ren equivalertibindng abnestacst 5. 4 s iyfry) =z 0w
derivation. Severd desses of seadh problems are defined, bessd on o i
ies of the aost fundions ad V\/ed—nNthatmd-' cost of a,f,r 1}
texe dessss hae different, seadh " we dowv
ﬂ'latﬂ'seaedlshnd@BSbrWrmmewrdedydfrdmg
a minimum aot solyion ggph is nonHeaursive, , NP-
Waﬁ%n ?), whee n ia the sie of the o A CDP with the assocated ANDJOR graph

seach complexdy may seve as a guide for modeing real praders
with ANDOR gaphs.

1. Introduction

The complexdy of A.l. seach poasdues s a topic of curent
rierest[13,2,6] hﬂwqugmeaaweﬂ’ecxxrpl@dyo‘seadm
saverd dessss o ANDOR gaas. The ANDOR geds in
we ae ineresied ae represenied
(CDP) 4,8]. This is a generadizaiion of the sequenia poeEss
SDP) b,/Kapadl—Et:In[ﬂ Tre desses of ANDOR

dyramic proganmning pradems.,
rebvace o pradical pabems mey be found in 4,89
A CDP is defined by giving a coniextiiee gammer,
fundlion assodaied with each ad terminal symbd. This
is essentialy Knuihs "synhesized atfributes” [7], with a different

moativation. The minmalixaton problemis to find a b/\est(nstr_a&

free for ary sting the gammar might dexive. This s equivalent ©
pd:iamdfrdgarrﬁnmaﬁsobﬁonga:hdheN\D(R
ggch carespoding to the ganmrer [I1].

The carespodenae beineen ANDIOR gagdhs ad coniext fee
gammas s that comnedors (the AND arcs) aorespord © produc-
tions, ad OR acs carespod 1 a doce of produdions. The sinple
gama ad ggoh of figue 1 dons the corespondence. This aor-
responckence wes fist noied by Hall [3]; foloning the feaiment in
Nisson, nocks ae nat restricied © be anly of fypes AND ar OR [12]
Ou ANDOR ggds ney coniain oydes, ad in genard a solution
ggch ey indude a wek aoud sore gde ay nurber of fimes.
Thinking in ams of ganmmas, a soluion gaph s just a pase treg;
a salufion ggph mey be much arger than the ganmar gapoh, ad
thare ney be infinitely mary parse’solulion frees. Fgure 1 gves
o soluion tees for the ANDOR geph shoan there; noe that the
lrger of the tnvo soluion tees hes minimal cost

SrEapyITess iy,

by te compOSIte deCIS/on process

Twor solutiom trees; weades are poored with backed ap costs,

Figure 1. Exanple of a CDP and solution graphs

We define dasses of CDPs based on properties of the cost func-
tions and the grammar, and for each such dass analyze the complex-
ity of the minimalization problem. These dasses are intended to have
some realistic motivation. For example, positive monotone CDPs [8]
include generalizations of Dijkstra's algorithm, /-bounded CDPs are
a formulation of bounded search. Suppose n is the size of some CDP.
In the /~bounded CDP, we assume that any possible minimum value
must ocaur in a free with no more than f(n) nodes. Acyclic CDPs
ae just the common restriction that the underlying AND/OR graph
have no cycles.

The size of a CDP is defined as the size of the grammar (the sum
of the lengths of the productions, written as \G\). We shall show upper
and lower bounds on the complexity of solving the minimalization
problem for various dasses of CDP. An upper bound expressed as
some function / means that every member of the dass can be solved
in /(|G|) steps, and a lower bound of / means that infinitely many
members of a dass require more than /(| G|) steps. The notion of "step
of a computation" and bounding computation time are formalized in
Alio, et al. [I]. We assume their "logarithmic cost criterion”, where
the cost of storing or manipulating a large number is then proportional
to the length of the number. We assume unit cost for storing or
manipulating a single grammar symbol, and cost proportional to the
length of a string for manipulating a string of such symbols.

1084 H. Motteler and L. Kanal

If the cost, functions are easy to compute, we can ignorethem
in analyzing search complexity. The notion of "easy to compute"
must be made precise, because if we just ignore the complexity of
computing the oost functions, our condusions may not be correct.
For example, if we did not consider the complexity of computing the
cost functions in giving proofs of upper bounds, by solving a CDP
we could compute any recursive function with a constant cost. For
let / be some such function. Define cost functions c(d) — d| giving
the value of a digit as its cost, and f(x; .. . ,.Xx) — /0 g(X4,. . ., X),
where g franslates a string of digits of length k to an integer. Let
G be the singe production St -> x, where x is the string of k digits
representing x. Then to compute /(x), find the minimum (the only)
value of this CDP. If we charge only for search steps and we have only
ore step, then we have a constant cost. This difficulty is crcumvented
by requiring our CDPs to be "honest", that is for some function /, we
guarantee that no computation of a cost function ¢ takes more than
/(|G|) steps. Here we shall assume (unless otherwise noted) that
every CDP is honest for some fixed polynomial h. This restriction is
not necessary for proofs of lower bounds, as computation of the cost
functions can only add to the complexity.

3. The Complexity of Several Classes of CDPs

The complexity of the natural CDP, acycic CDPs, p-ounded
CDPs for some polynomial p, and monotone CDPs are analyzed in
this section. Figure 2 shows the structural relationships among various
CDPs oonsidered here. Figure 3 summarizes our results, showing the
relationship of the complexity of the various minimalization problems.
In the structure hierarchy, the positive monotone CDP is contained
in the ACDP only in the serse that any minimum oost solution graph
of the former is guaranteed to be acyclic; an arbitrary parse free of
a positive monotone CDP may not be acyclic. Formal proofs and
further examples are presented in [11]; we present only an outline

Ifihe range of cost functions is over real numbers, there may be no
minimum oost parse tree. Restricting the range of the cost functions
to natural numbers guarantees that a solution tree will exist, but as

general CDP

CDP over natural numbera

f-bounded CDY

Prositive puenodone DI

figure 2. Structure Hierarchy

~
((_!enernl cor May have no soluijon

CDP over natural May have no computable solution

nuimbers

f-bounded CDP Arbitrarily hard

A Solvable in douhly exponential time

Reguires exponential time i.o.
bounded CDT NI~ complete
Positive monndone 1P ()[n }
/

Figure 3. Complexity Hicrarchy

Theorem 2. The m/n/mal/zat/on problem for any member of ACDP

the following theorem shows, there mey still be no effiecive way 1o maybe solvedin 0(cxp2(\G\ 2)) steps, and requires more than

find it. 1 ; c 2172 steps for infinitely many members of ACDP.
Th Th lizati bl the natural CDP is not
reci?rrg\l/qe e minimalization problem for the natura 'sno Proof of the upper bound is by outlining a procedure MIN*Z)

Proof. The problem of generating the shortest program P that
outputs m and halts is reduced to a minimization problem for a CDP.
Details are presented in [11]. {4

This result is not surprising, since L[G) may be infinite, giving
an unbounded number of parse frees whose backed up value must
be tested. If we try to find the minimum by simply generating and
testing parse trees, and save the lowest value encountered so far as
min, there is in general no guarantee that if we stop at any given
point, the next, untested, value may not be lower than min. The
obvious way to getadeodableproblemlstosmplyboundmesrme
of all parse frees (or all parse frees that could possibly contribute to
a minimum) in some way. The ACDP, /-bounded CDPs and MCDPs
bound their search space in various ways, giving decidable problems
of varying complexity.

To show an upper bound on the time to solve an ACDP, we must
first find a bound for the size of any parse free and the number of
distinct parse frees that may be generated by an acyclic context free
grammar. Let exp2(x) — 2" , to keep our exponents from stacking
too high. The following lemmes and theorem are proved in [I1].

Lemma 1. No parse tree for an acyclic grammar G has more than

2IGIm-1 nodes.

that finds a minimal cost derivation for any Z f ACDP by doing an

exhaustive search of the space of all possible parse frees. To show

the lower bound it is sufficient to show that there are inﬁniteIJy many

acydlic grammars where every parse free has more than 2'°"' nodes.
[

A simple grammar G with on the order of exp2(|G| |) distinct parse
trees is presented in [I1j. With such a potentially large search space,
it would be reasonable to expect (although this does not constitute
a proof) that there are infinitely many ACDPs which require on the
order of exp2(jc7|) steps for their solution.

We condude that the minimalization problem for ACDPs (and
/bounded CDPs for exponential /) is not practically solvable. The
difficulty arises from the. very compact representation of large trees
given by an acyclic grammar. We now consider other means of bound-
ing the size of the search tree. The following theorem shows that even
if we bound the size of the free by a polynomial in the size of the
grammar, we still have a hard problem.

Theorem 3. Forevery polynomial p such that p{x) > x, the mini-
malization problem for the p-bounded CDP is NP-complete.

Proof. Assure p is some fixed polynomial, p(x) > x. We first
show the problem is JVP-hard [1,10]. The problem with inte-
ights is easily reduced to a p-boutided CDP. (That is, we show

mma 2. No acyclic grammar G generates more than exp2((\G\ ~ t%e;t if we can solve the minimalization problem, then we can solve the

II-)g) distinct parse trees.

knapsack problem, which is known to be NP-complete.) Details are

presented in 11]. The same reduction shows that acyciic CDPs and
the natural CDP are NP-hard, since the CDP we have defined is a
member of these dasses. The acydic, and natural CDP dasses do not
appear to be NP-complete, since there is no obvious nondeterministic
polynomial time algorithm that solves them.

To complete the proof it must be shoawn that pbounded CDP
minimalization can be solved by a nondeterministic algorithm in poly-
nomial time. This is done by defining an algorithm which repeatedly
mekes a nondeterministic selection (a guess) of a production until
some string is derived, and for each such string tests its baded up
value aginst sucoessively increasing values of a counter. It is not suf
ficient to simply guess a parse tree and retum its value; tliis would
produce a free with fewest possible nodes, but not necessarly mini-
mum cost. [

Finally, we consider an easily solved dass of CDPs. A positive
monotone CDP has all t, monotone nondecreasing, and also satisfying
t1,(X1 Xk) >XJ|

Theorem 4. The mm/mallzat/on problem for the positive monotone

CDP can be solved in O\G\’) steps.

Proof is by presenting an algorithm and proving its runtime and
comectness. The proof dosely parallels proofs of the runtime and
coredness of various algorithms that it generalizes, e.g., Dikstra's
algorithm and certain dynamic programming problems. A similar
algorithm appears in [8]. Details are presented in [11]. [X]

Conclusions

Slight variations in the structure of the cost functions or gram-
mar can cause a large change in the complexity of the minimalization
problem. If only a single cost function fails to be monotone increas-
ing, the resullt is a problem of much greater complexity. These results
have the following practical application: When modeling some real
problem as an AND/OR graph search, every effort should be made to
create a graph model in the structural dass with lowest search com-
plexity. The proof of a large lower bound for the complexity of some
problem is not the last word as to whether the problem
is practically solvable. This sort of analysis does not take into ac-
oount the distribution of members of a dass which are most, difficult.
Even though we know there are infinitely many difficult members,
they could still be very rare, i.e., most members of the dass could be
easiy solved.

Positive monotone CDPs are the only easily solvable CDPs con-
sidered here. There is an interesting natural dass of CDPs, which
satisfy only the monotone restriction; these are considered in [8,9],
Let c*(W) be the lowest cost for any tree rooted at W/, the monotone
CDP satisfies the equations

1 If Wis a terminal node, then c*(W) — ¢(W),

2 If Wis a nonterminal node, we have c*(W) —
C*(Xk,') \p,'=-W->X1...th}.
We conjecture that the monotone CDPs are not in general solv-
able in polynomial time (in the context of definitions and restrictions
here). It would also be of interest to find other natural or
easily definable dasses of CDPs with an easily solved minimalization
problem.

min{t(c*(A%), . ..,

References

1. Aho, A. V., Hopcroft, J. E., and Ullman, J. D. The Design And
Analysis of Computer Algorithms. Addison-\Wesley, 1974.

2. Carter, L., Stockmeyer, L., and Wegman, M. "The complexity of

backtrack searches.” In Proceedings of the 17th Annual Sympo-
sium on Theory of Computing (Providence RI, May 6-8). ACM,

New York, 1985.

8.

9.

10.
11.

H. Motteler and L. Kanal 1085

. Hall, P. A. V. Equivalence between AND/OR graphs and context-

free grammars. Communications of the ACM If), 7 (July 1973).

. Kanal, L. N., and Kumar, V. "Some New insights into the rela-

tionships among dynamic programming, branch and bound, and
heuristic search procedures." University of Maryland technical
report, 1982,

. Karp, R. M., and Held, M. Il. Finite-State Processes and Dy-

namic Programming. S/ AM J. Appl. Math 15,, (1907), 693 718.

. Karp, R M., Upfal, E., and Wigderson, A. "Are search and de-

cision problems computationally equivalent?" In Proceedings of
the 17th Annual Symposium on Theory of Computing (May 0-8,
Providence, R.l.). ACM, New York, 1985.

. Knuth, D. E. Semantics of context-free languages. Math. Systems

Theory 2,2 (1968), 127-145.

Kumar, V. "A Unified Approach to Problem Solving Search
Procedures." Ph.D. thesis, Dept. of Computer Scence, Univ. of
Maryland, Dec. 1982,

Kumar, V. A General Bottom-up Procedure for Searching And/Or
Graphs. In Proceedings of AAA]J-1984, 1984.

Machl.cy, M., and Young, P. An Introduction to the Genera/ 7he-
ory of Algorithm.. Elsevier North Holland, 1978.

Motteler, 11. E., and Kanal, I,. N. "The Complexity of Search-
ing Several dasses of AND/OR Graphs." University of Maryland
Technical Report, 1985.

12. Nilsson, N.J. Principles of Artificial Intelligence. Tioga, 1980.
13. Pear, .1- Heuristics: Intelligent Search Strategies for Computer

Problem Solving. Addison-Wesley, 1984,

